FATEC

Motion Controller School Textbook (Advanced Synchronous Control Edition) Windows PC Compatible MT Works2
(Always read before performing practical work.)

When designing systems, always read related manuals and give sufficient consideration to safety. Pay due attention to the following points when performing practical work, and ensure correct handling of the product.

[Practical work precautions]

! 1 DANGER

- Do not touch terminals while the power is ON. Failure to observe this may result in electric shock.
- When removing the safety cover, either turn OFF the power, or ensure that sufficient attention is paid to safety.

CAUTION

- Carry out practical work in accordance with the instructions of your teacher.
- Do not remove the demonstration machine, or make changes to the wiring. Failure to observe this may result in a fault, malfunction, injury, or fire.
- Turn OFF the power before attaching or removing the module.

Removing or attaching the module with the power ON may result in a module fault or electric shock.

- If the demonstration machine emits an abnormal odor or noise, press the [Power] button or [EMERGENCY STOP] button to stop the module.
- If an error occurs, notify your teacher immediately.
* The text number is indicated in the lower left of the rear cover of this manual.

This manual does not guarantee the enforcement of industrial property or other rights, and does not grant licensing rights. Furthermore, Mitsubishi accepts no responsibility for industrial property related problems arising through use of the content described in this manual.
© 2015 MITSUBISHI ELECTRIC CORPORATION

Contents

Introduction A-8
Chapter 1 Overview 1-1 to 1-6
1.1 Motion Controller Features 1-1
1.2 Control Overview 1-4
1.2.1 Real mode control for SV13 conveyance and assembly/SV22 automatic machines 1-4
1.2.2 Advanced synchronous control for SV22 automatic machines 1-5
1.3 System Startup Requirements 1-6
Chapter 2 Function Description 2-1 to 2-8
2.1 Specifications List 2-1
2.1.1 Motion control specifications list (SV13/SV22) 2-1
2.1.2 Motion SFC performance specifications list (SV13/SV22) 2-2
2.1.3 System configuration device list (SV13/SV22) 2-3
2.2 System Configuration Diagrams 2-4
2.2.1 Q173DSCPU/Q172DSCPU system 2-4
2.3 Name of Each Part 2-5
Chapter 3 Q PLC Multiple CPU 3-1 to 3-19
3.1 Multiple CPU System 3-2
3.1.1 Multiple CPU system settings 3-2
3.1.2 Q PLC CPU, Q motion CPU installation locations 3-3
3.1.3 I/O numbers 3-4
3.1.4 CPU shared memory 3-6
3.1.5 Multiple CPU high speed transmission 3-9
3.2 Dedicated Multiple CPU Motion Commands 3-15
3.2.1 SFCS motion SFC program start command 3-15
3.2.2 SVST servo program start request command 3-17
Chapter 4 Q Motion CPU 4-1 to 4-27
4.1 System Settings 4-2
4.1.1 Basic settings 4-2
4.1.2 System configuration 4-3
4.1.3 SSCNET configuration 4-3
4.2 Servo Data Settings 4-4
4.2.1 Servo data 4-4
4.2.2 Parameter blocks 4-4
4.2.3 Servo parameters 4-5
4.3 Positioning Control Devices 4-6
4.3.1 Internal relays (status/command signals) 4-11
4.3.2 Internal relays (common devices) 4-22
4.3.3 Data register (monitor device/control change register) 4-24
4.3.4 Special relays 4-38
4.3.5 Special Registers 4-38
4.4 Motion Devices 4-39
4.4.1 Motion registers (\#0 to \#12287) 4-39
4.5 Coasting Timer (FT) 4-43
5.1 Features 5-1
5.2 Motion SFC Program Configuration 5-2
5.3 SFC Diagram Symbol List 5-3
5.4 Branch and Node Diagram List 5-5
5.5 Motion SFC Program Name 5-6
5.6 Steps 5-7
5.6.1 Motion control steps 5-7
5.6.2 Operation control steps 5-8
5.6.3 Sub-routine call/start steps 5-9
5.6.4 Clear Steps 5-10
5.7 Transition 5-11
5.8 Jumps and Pointers 5-13
5.9 END 5-13
5.10 Branches and Nodes 5-14
5.10.1 Series transitions 5-14
5.10.2 Selection branches and selection nodes 5-15
5.10.3 Parallel branches and parallel nodes 5-16
5.11 Y/N Transitions 5-17
5.12 Task Operation 5-19
5.13 SFC Parameters 5-21
5.13.1 Task parameters 5-21
5.13.2 Program parameters 5-21
5.14 Motion SFC Program Start Method 5-22
5.15 Motion SFC Program Exit Method 5-22
Chapter 6 SV22 Servo Programs 6-1 to 6-27
6.1 Servo Programs 6-1
6.1.1 Servo program configuration 6-1
6.1.2 Servo command lists 6-2
6.1.3 Linear control 6-15
6.1.4 Circular interpolation control for interpolation point designation 6-16
6.1.5 Circular interpolation control for radius designation 6-17
6.1.6 Circular interpolation control for center point designation 6-18
6.1.7 Fixed feeding 6-19
6.1.8 Speed control 6-19
6.1.9 Speed, position switching control 6-20
6.1.10 Constant speed control 6-21
6.1.11 Repeat control (for speed switching control and constant speed control) 6-22
6.1.12 Simultaneous start 6-23
6.1.13 Zeroing 6-24
6.1.14 Fixed-pitch feed control 6-25
6.1.15 Current value change 6-26
Chapter 7 Operation Control Programs 7-1 to 7-4
7.1 Operator, function priority order 7-1
7.2 Operational control, transition command list 7-2
8.1 Data Creation Flow for Motion Controller Operation 8-1
8.2 Q PLC CPU Settings 8-2
8.2.1 Opening a project 8-2
8.2.2 Multiple CPU settings 8-3
8.2.3 Writing sequence programs 8-7
8.3 Starting MT Works2 8-9
Chapter 9 Basic Practice in SV22 Real Mode 9-1 to 9-81
9.1 Practice Content 9-1
9.2 Q172DSCPU Demonstration Machine System Configuration 9- 2
9.3 System Settings 9-5
9.4 Servo Data Input Operation 9-18
9.5 Practice Motion SFC Programs 9-25
9.5.1 Program list 9-25
9.5.2 Initial processing 9-31
9.5.3 JOG Operation 9-32
9.5.4 Zeroing 9-35
9.5.5 Main routine motion SFC program (real mode operation) 9-37
9.5.6 Standby point positioning 9-39
9.5.7 Point selection positioning 9-40
9.5.8 Address indirect designation positioning 9-41
9.5.9 Changing the speed (CHGV) [additional practice] 9-42
9.6 Motion SFC Program Creation Procedure 9-46
9.6.1 Creating a new motion SFC program 9-46
9.6.2 SFC diagram creation procedure 9-48
9.6.3 Entering transition and operation control steps 9-55
9.6.4 Entering motion control steps 9-59
9.6.5 Motion SFC program parameter settings, batch conversion 9-64
9.7 Writing to the Motion CPU 9-66
9.8 Test Operation 9-68
9.8.1 JOG operation 9-68
9.8.2 Servo program execution 9-71
9.9 Demonstration Machine Operation 9-74
9.9.1 Operation 9-74
9.9.2 Monitor operation with monitor screen 9-78
9.9.3 Motion SFC program monitor 9-80
9.10 Exit Operation 9-83
9.10.1 Exiting MT Works2 9-83
9.10.2 Exiting GX Works2 9-83
Chapter 10 SV22 Advanced Synchronous Control Practice 10-1 to 10-43
10.1 Synchronous Control Parameters 10-1
10.1.1 Synchronous control modules 10-1
10.1.2 Synchronous control module list 10-2
10.1.3 Servo input axes 10-3
10.1.4 Command generation axes 10-3
10.1.5 Synchronous encoder axes 10-4
10.1.6 Main shaft main input axis 10-5
10.1.7 Main shaft sub input axis 10-6
10.1.8 Composite main shaft gear 10-6
10.1.9 Main shaft gear 10-6
10.1.10 Main shaft clutch 10-7
10.1.11 Auxiliary shafts 10-8
10.1.12 Auxiliary shaft gear 10-9
10.1.13 Auxiliary shaft clutch 10-9
10.1.14 Auxiliary shaft clutch 10-11
10.1.15 Speed change gear 10-11
10.1.16 Output axes 10-12
10.2 Practice Content 10-14
10.3 Cam Data Creation 10-16
10.4 Advanced Synchronous Control Programs 10-21
10.4.1 Creating new advanced synchronous control motion SFC programs 10-23
10.4.2 Entering motion control steps for advanced synchronous control 10-25
10.5 Editing Command Generation Axis Parameters 10-30
10.6 Editing Servo Input Axis Parameters 10-30
10.7 Editing Synchronous Control Parameters 10-31
10.8 Writing to the Q Motion CPU 10-36
10.9 Practice Programs 10-37
10.10Demonstration Machine Operation 10-41
Appendices Appendix - 1 to Appendix - 146
Appendix 1 Application Practice in SV22 Real Mode Appendix - 1
Appendix 1.1 Practice Content Appendix - 1
Appendix 1.2 Practice Motion SFC Programs Appendix - 2
Appendix 1.2.1 Program list Appendix - 2
Appendix 1.2.2 Main routine motion SFC program (real mode operation) Appendix - 5
Appendix 1.2.3 Continuous positioning (1) 5 Appendix - 7
Appendix 1.2.4 Continuous positioning (2) Appendix - 10
Appendix 1.2.5 Teaching, teaching playback Appendix - 11
Appendix 1.2.6 Fixed feed, fixed feed advance Appendix - 13
Appendix 1.3 Demonstration Machine Operation Appendix - 15
Appendix 1.3.1 Operation Appendix 15
Appendix 2 Digital Oscilloscope Appendix 19
Appendix 3 Windows Computer Operation Appendix 25
Appendix 3.1 MELSOFT MT Works2 Installation Procedure Appendix 25
Appendix 4 Q173DCPU and Q172DCPU Comparison Appendix 28
Appendix 5 OS Software Installation Procedure Appendix 30
Appendix 6 Dedicated Motion Sequence Commands Appendix - 33
Appendix 6.1 GINT Interrupt Commands to Other CPUs Appendix - 33
Appendix 6.2 Read Command from DDRD Q Motion CPU Device Appendix - 36
Appendix 6.3 Read Command from DDWR Q Motion CPU Device Appendix - 39
Appendix 6.4 CHGT Torque Limit Value Change Request Command Appendix - 42
Appendix 6.5 CHGA Current Value Change Command Appendix - 45
Appendix 6.6 CHGV Speed Change Command Appendix - 48
Appendix 7 Operation Control Programs (Details) Appendix 51
Appendix 7.1 Device Descriptions Appendix 51
Appendix 7.2 Constant Description Appendix 53
Appendix 7.3 Binary Operation Appendix - 54
Appendix 7.3.1 Substitution: = Appendix - 54
Appendix 7.3.2 Addition: + Appendix - 56
Appendix 7.3.3 Subtraction: Appendix - 57
Appendix 7.3.4 Multiplication: * Appendix - 58
Appendix 7.3.5 Division: / Appendix - 60
Appendix 7.3.6 Remainder: \% Appendix - 61
Appendix 7.4 Bit Operation Appendix - 62
Appendix 7.4.1 Bit inversion (complement): Appendix - 62
Appendix 7.4.2 Bit logical product: \& Appendix 63
Appendix 7.4.3 Bit logical sum: | Appendix - 64
Appendix 7.4.4 Bit exclusive logical sum: ${ }^{\wedge}$ Appendix 65
Appendix 7.4.5 Bit right shift: >> Appendix - 66
Appendix 7.4.6 Bit left shift: << Appendix - 67
Appendix 7.5 Bit Device Status Appendix - 68
Appendix 7.5.1 ON (contact A): (none) Appendix - 68
Appendix 7.5.2 OFF (contact B): Appendix - 69
Appendix 7.6 Bit Device Control Appendix - 70
Appendix 7.6.1 Device set: SET Appendix - 70
Appendix 7.6.2 Device reset: RST Appendix - 72
Appendix 7.6.3 Device output: DOUT Appendix - 74
Appendix 7.6.4 Device input: DIN Appendix 75
Appendix 7.6.5 Bit device output: OUT Appendix 76
Appendix 7.7 Logical Operations Appendix 77
Appendix 7.7.1 Logical affirmation: (none) Appendix - 77
Appendix 7.7.2 Logical negation: ! Appendix - 78
Appendix 7.7.3 Logical product: * Appendix - 79
Appendix 7.7.4 Logical sum: + Appendix - 80
Appendix 7.8 Comparison Operations Appendix - 81
Appendix 7.8.1 Match: == Appendix - 81
Appendix 7.8.2 Mismatch != Appendix - 82
Appendix 7.8.3 Less than: < Appendix - 83
Appendix 7.8.4 Less than or equal to: <= Appendix - 84
Appendix 7.8.5 Greater than: > Appendix - 85
Appendix 7.8.6 Greater than or equal to: >= Appendix - 86
Appendix 7.9 Dedicated Motion Functions (CHGV/CHGT) Appendix - 87
Appendix 7.9.1 Speed change request: CHGV Appendix - 87
Appendix 7.9.2 Torque limit value change request: CHGT Appendix - 93
Appendix7.9.3 Torque limit value individual change request: CHGT2 Appendix - 95
Appendix 7.9.4 Target position change request: CHGP Appendix - 98
Appendix 7.10 Other Commands Appendix - 107
Appendix 7.10.1 Event task authorized: El Appendix - 107
Appendix 7.10.2 Event task prohibited: DI Appendix - 108
Appendix 7.10.3 No processing: NOP Appendix - 109
Appendix 7.10.4 Block transfer: BMOV Appendix - 110
Appendix 7.10.5 Same data block transfer: FMOV Appendix - 113
Appendix 7.10.6 Data writing to self CPU shared memory: MULTW Appendix - 115
Appendix 7.10.7 Data reading from shared memory: MULTR Appendix - 117
Appendix 7.10.8 Word data writing to intelligent function module: TO Appendix - 120
Appendix 7.10.9 Word data reading from intelligent function module: FROM Appendix - 123
Appendix 7.10.10 Time wait: TIME Appendix - 126
Appendix 8 Overview of Virtual Mode Control for SV22 Automatic Machines Appendix - 128
Appendix 9 Glossary Appendix - 129

Introduction

This document is a schooling text created for the purpose of helping users understand the motion controller developed to easily control multi-axis positioning.
This manual provides an overview of the Q motion controller, and describes how to specify data settings to perform positioning, and create servo programs, mechanical support languages, and sequence programs using a Windows computer and programming tool (MT Works2).
(Usable software packages and function specifications will differ depending on the model.)

The following related manuals are available.

(1) User's manual

- Q172D(S)CPU/Q173D(S)CPU

Model Model code

Describes the motion controller hardware (exterior, wiring, etc.).
IB(NA)-0300133 1XB927
(2) Programming manuals

- Q172D(S)CPU • Q173D(S)CPU Common Edition

IB(NA)-0300134 1XB928

- SV13/22 (Q172D(S) / Q173D(S) Real Mode Edition)
- (Q172D(S)/Q173D(S) Advanced Synchronous Control Edition) for SV22 automatic machine

IB(NA)-0300136 1XB930

- Motion SFC Edition (Q172D(S)/ Q173D(S))

IB(NA)-0300198 1XB953
IB(NA)-0300135 1XB929
Describes parameters for positioning control, dedicated positioning devices, positioning methods, and motion SFC, etc.
(3) Software manual

- MELSOFT MT Works2 Installation Instructions BCN-B62008-364
(4) Sequence programming manuals
- QCPU (Q mode) Common Command Edition

- QnUCPU User's Manual Function Description, Program Basics Edition
- QnUCPU User's Manual Hardware Design, Maintenance \& Inspection Edition
- QnUCPU User's Manual Multi-CPU System Edition Describes devices and all commands required to create sequence programs.
(5) GX Works2 related manuals
- GX Works2 Version1 Operating Manual (Common Edition) SH(NA)-080779ENG
$13 \mathrm{JU63}$
$13 \mathrm{JU64}$
GX Works2 Version1 Operating Manual (Simple Project Edition) SH(NA)-080780ENG
- GX Works2 Version1 Operating Manual (Intelligent Function Unit Operation Edition)

SH(NA)-080921ENG
13JU69
(6) Technical document collections

- MR-J4-DB Servo Amp Technical Document Collection

SH(NA)-030106 1CW805 Describes SSCNET III (/H) servo amp handling and error displays, etc.

- MELSERVO-J4 Servo Amp Technical Document Collection (Troubleshooting Edition) SH(NA)-030109

SSCNET is an abbreviation of Servo System Controller Network.

Chapter 1 Overview

1.1 Motion Controller Features

The motion controller has the following features.
(1) Q PLC CPU and multiple CPU System

Processing loads can be balanced to realize a flexible system construction by using the Q motion CPU module for complex servo control, and the Q PLC CPU module for all other machine and information control.
(2) Full range of controllers for all applications

The following motion controller models are available to suit the scale of the systems required to perform multi-axis positioning.
$\left.\begin{array}{ll}\text { - Q172DSCPU } & \begin{array}{l}\text { (Multi-axis positioning function for } 1 \\ \text { to } 16 \text { axes) } \\ \text { (Multi-axis positioning function for } 1 \\ \text { to } 32 \text { axes) }\end{array} \\ \text { - Q173DSCPU } \\ \text { (Multi-axis positioning function for } 1 \\ \text { to } 8 \text { axes) } \\ \text { (Multi-axis positioning function for } 1 \\ \text { to } 32 \text { axes) } \\ \text { - Q172DCPU } \\ \text { (Multi-axis positioning function for } 1 \\ \text { to } 8 \text { axes) } \\ \text { - Q173DCPU } \\ \text { (Multi-axis positioning function for } 1\end{array}\right\}$ SSCNET III/H
(3) Control is possible with an MR-J4-DB servo amplifier.

Servo motors can be controlled by externally connecting an MR-J4-DB servo amplifier with motion network SSCNET III/H.
(Using the Q172DSCPU or Q173DSCPU, up to 16 or 32 servo motors can be controlled, respectively.)
(4) High-speed serial communication with servo amplifiers is possible. Servo data can be collected, changes can be made to servo parameters, servo tests can be carried out, servos can be monitored, and mechanical system programs can be monitored through motion network SSCNET III/H high-speed serial communication. Furthermore, SSCNET III/H communication offers a maximum communication speed of 150 Mbps , accelerated command communication synchronization of 0.22 ms , and high-speed, high-accuracy positioning.

(5) An absolute position system is possible.

An absolute position system is possible using servo motors equipped with absolute position detector. (Zeroing is unnecessary even in the event of a power outage.)
(6) A Windows computer is used as the programming tool for positioning. Motion SFC programming, servo control programming, monitoring, and testing can be performed using a Windows computer and dedicated software package.
Windows computer peripheral software package: MT Works2
(7) Changes can be made to the operating system (OS).

A comprehensive range of software packages is available to suit all applications, and the applicable OS can be written directly to the CPU built-in Flash memory to realize a motion controller suitable for any machine. Furthermore, functional upgrades to software packages are also possible.

1) SV13 for conveyance and assembly

SV13 can perform tasks such as 1 to 4 -axis linear interpolation with dedicated servo commands, 2 -axis circular interpolation, 3 -axis helical interpolation, CP control (constant speed control), speed control, and fixed-pitch feeding, making it ideal for equipment such as conveyors and assembly machines.
2) SV22 for automatic machines

Multiple servo motors can be controlled simultaneously with a mechanical support language, and cam control is possible using software, making SV22 ideal for automatic machines and so on.
Motion controllers come preinstalled with SV22 when shipped.
Furthermore, the latest versions of the OS software for all motion controllers can be downloaded from the Mitsubishi Electric FA site and then installed.
(8) Mechanical support language (mechanical system program): valid only for SV22
In the past, synchronous motion and cooperative motion were required for industrial equipment and automatic machines, and these motions were combined as an implementation tool.
This method used transfer mechanisms such as main shafts, which were the driving forces, and gears, clutches, and cranks to drive output mechanisms such as rotational motions, linear motions, reciprocating motions, and feed motions,. This method was excellent in terms of synchronous and cooperative motions, but was lacking in flexibility.

Separating the mechanical support language from the previous mechanical combination, and using software to process machine mechanism motions has led to improvements in the functionality and performance of the positioning control used to control servo motors, and because this is an electrical method, there are few mechanical limitations, facilitating a logical design.

Transfer mechanisms from main shafts to gears, clutches, transmissions, and differential gears, and output mechanisms such as roller output, ballscrew output, rotary table output, and cam output are shown in diagrams on peripheral equipment screens, and simply by setting the respective module parameters, synchronous and cooperative motions can be realized, facilitating the easy construction of flexible control systems.
Consequently, mechanical parts such as main shafts, gears, clutches, cranks, transmissions, differential gears, and cams can be significantly eliminated or omitted, meaning lower costs and less wear.
(9) Software cam: valid only for SV22

By replacing the cam mechanism for which synchronous control was being performed mechanically with software, and then setting synchronous control parameters, the following features can be obtained by synchronizing control with input axes.

1) Cam curved line data can be created easily with cam curved line creation software, eliminating the need to manufacture cam parts.
2) Cams can be replaced easily by changing the cam No. from the motion SFC program or sequence program.
3) There is no need to consider the wear or short life characteristic of cams.
(10) Teaching function

Gauging servo programs can be created with the current value teaching function.
(11) Limit switch function

This function outputs ON/OFF signals corresponding to the data range for watch data set for each output device (X, Y, M, L, B).
Output devices for up to 32 signals can be set.
(12) Peripheral I/F (Ethernet)

With the peripheral I/F built-in motion CPU, connections can be made to a wide range of devices such as GOT and COGNEX vision systems via Ethernet.
(13) Support for 4 million pulse synchronous encoder as standard The "Q171ENC-W8" 4 million pulse synchronous encoder is supported as standard, meaning significant improvements in synchronized operation accuracy (16 times higher than previous system). High-accuracy control can be achieved in combination with an MR-J4-B servo amplifier (standard motor resolution of 4 million (22-bit) pulses).

1.2 Control Overview

1.2.1 Real mode control for SV13 conveyance and assembly/SV22 automatic machines

(a) Systems using servo motors are controlled directly with a servo program.
(b) Positioning parameters must be set, and servo programs and motion SFC programs must be created.
(c) The procedure when performing positioning control is as follows.

1) Issue a motion SFC program start request with a sequence program SFCS command.
2) Perform positioning control with the specified motion SFC program.
\downarrow
3) Servo motors are controlled.

1.2.2 Advanced synchronous control for SV22 automatic machines

(a) Performs the same control by replacing the mechanism used to perform mechanical synchronous control using devices such as gears, shafts, transmissions, and cams with software.
(b) Synchronous control parameters are required in addition to the positioning parameters, servo programs, and motion SFC programs used in real mode.
(c) The procedure for positioning control with advanced synchronous control is as follows.

1) Issue an advanced synchronous control motion SFC program start request with a sequence program SFCS command.
2) The advanced synchronous control command generation axis starts up.
3) Output synchronous control parameters to the servo amplifier for each axis.
4) Servo motors are controlled.

1.3 System Startup Requirements

The steps inside the boxes with unbroken lines must be carried out.
The steps inside the boxes with broken lines should be carried out as required.
Refer to Chapter 8 for details on system startup.

1	Motion controller device selection system assembly, wiring

Select devices such as the Q PLC base, power supply modules, Q motion CPU, Q PLC CPU, motion module, servo amplifiers, servo motors, and cables, and assemble and wire the system.

Register the software package (MT Works2, MR Configurator2, GX Works2).

3	Q PLC CPU multiple CPU settings Create with GX Works2. ${ }^{2}$.

5	Data writing to the Q PLC CPU	te the sequence program and computer parameters at the computer.

'- 6

| 7 | SV13, SV22 startup (new project
 creation) |
| :--- | :--- | Start the software package used, and then create a new project.

8	System settings creation

Create system basic settings, multiple CPU settings, the Q PLC base, motion module, servo amplifiers, servo motors, axis numbers and so on as the motion controller system.

9	Servo data creation • Fixed parameters • Servo parameters - Zeroing data - JOG operation data \bullet

- Set unit settings, travel value per pulse, stroke limit values, etc.
- Set the rotation direction, auto tuning, etc.
- Set the zeroing direction, method, address, speed, etc.
- Set the JOG speed limit value, parameter block numbers, etc.
- Set the speed limit values, acceleration/deceleration time, torque limit values, etc.
(Set servo parameters at MR Configurator2 started from MT Works2.)

11	Motion SFC program creation

--- 「 Mēchānical system program creation
12 Synchronous control parameter
setting
Set only when using the limit switch output function.

Create and set when using SV22.

13	Cable connection to Q motion CPU

Use Ethernet to connect to the Windows computer, and use Ethernet, RS-232C, or USB to connect to the Q PLC CPU.
14
\qquad Registering the OS in the Q motion
CPU

Register the OS using the installation procedure at the servo menu screen. (Performed only once when constructing the system. SV22 comes preinstalled.)
15

> Data writing to the Q motion CPU

Write the motion SFC program, servo data, servo program, mechanical system program, synchronous control parameters, and cam data.

16	Resetting the Q PLC CPU Press the Q PLC CPU [RESET] button.

17	Running the Q PLC CPU, Q motion CPU

Press the Q PLC CPU, Q motion CPU [RUN] button.

Chapter 2 Function Description

This section describes the system functions.

2.1 Specifications List

2.1.1 Motion control specifications list (SV13/SV22)

Comparison item Model		Q173DSCPU	Q172DSCPU
External dimensions [mm]		$120.5(\mathrm{H}) \times 27.4(\mathrm{~W}) \times 120.3(\mathrm{D})$	
Number of control axes		Max. 32 axes (Max. 16 axes per system $\times 2$)	Max. 16 axes
No of equipped motion related modules		Up to $4 \times$ Q172DLX modules can be used.	Up to $2 \times$ Q172DLX modules can be used.
		Up to $6 \times$ Q172DEX modules can be used.	
		Up to $4 \times$ Q173DPX modules can be used. ${ }^{* 1}$	
Operation cycle (default)	SV13	$0.22 \mathrm{~ms} / 1$ to 4 axes $0.44 \mathrm{~ms} / 5$ to 10 axes $0.88 \mathrm{~ms} / 11$ to 24 axes 1. $77 \mathrm{~ms} / 25$ to 32 axes	$0.22 \mathrm{~ms} / 1$ to 4 axes $0.44 \mathrm{~ms} / 5$ to 10 axes $0.88 \mathrm{~ms} / 11$ to 16 axes
	SV22	$0.44 \mathrm{~ms} / 1$ to 6 axes $0.88 \mathrm{~ms} / 7$ to 16 axes 1. $77 \mathrm{~ms} / 17$ to 32 axes	$0.44 \mathrm{~ms} / 1$ to 6 axes $0.88 \mathrm{~ms} / 7$ to 16 axes
Interpolation function		Linear interpolation (max. 4 axes), circular interpolation (2 axes), helical interpolation (3 axes)	
Control mode		PTP (Point To Point) control, speed control, speed position control, fixed feeding, constant speed control, fixed-pitch feed, fixed position stop speed control, speed change control, high-speed oscillation control, speed/torque control, synchronous control (SV22)	
Acceleration/deceleration processing		Trapezoidal acceleration/deceleration, S-curve acceleration/deceleration, advanced S-curve acceleration/deceleration	
Compensation function		Backlash compensation, electronic gear, phase compensation (SV22)	
Program language		Motion SFC, dedicated commands, mechanical support language (SV22)	
Servo program capacity		16 k steps	
Number of positioning points		3,200 points (indirect designation possible)	
Peripheral I/F		USB/RS-232/Ethernet (via PLC CPU), peripheral I/F (motion CPU control)	
Zeroing function		Proximity dog method (2 types), count method (3 types), data set method (2 types) dog cradle method, stopper stopping method (2 types), combined use with limit switch, scale home position signal detection method (Equipped with zeroing retry function, home position shift function)	
JOG operation function		Yes	
Manual pulse generator operation function		3 modules can be connected (when using Q173DPX) 1 module can be connected (when using motion CPU built-in interface)	
Synchronous encoder operation function		12 modules can be connected (when using SV22) (Q172DEX + Q173DPX + motion CPU built-in interface)	
M-code function		Equipped with M-code output function Equipped with await M-code completion function	
Limit switch output function	SV13	32 output points Watch data: motion control data/word device	
	SV22	64 output points $\times 2$ settings Output timing compensation Watch data: motion control data/word device	
ROM operation function		Yes	
Absolute position system		Compatible by inserting battery in servo amplifier. (Absolute system/incremental system can be specified for each axis.)	
Number of SSCNETIII(/H) systems *2		2 systems *3	1 system ${ }^{\text {*3 }}$

*1: This is the number of modules if using an INC synchronous encoder (when using SV22). Only one module can be used if connecting a manual pulse generator.
*2: SSCNET compatible servo amplifiers cannot be used.
*3: SSCNET III and SSCNET III/H cannot be used together within the same system. If using Q173DSCPU, SSCNET III and SSCNET III/H can be set for each system.

2.1.2 Motion SFC performance specifications list (SV13/SV22)

Item				Q173DSCPU/Q172DSCPU
Program capacity	Code total(SFC diagram + operation control +transition)			652 kb
	Text total (Operation control + transition)			668 kb
Motion SFC program	Number of motion SFC programs			256 (No. 0 to 255)
	SFC diagram size/program			Max. 64 kb (inc. SFC diagram comment)
	Number of SFC steps/program			Max. 4,094 steps
	No. of selection branches/branch			255
	No. of parallel branches/branch			255
	Parallel branch nest			Max. 4 types
Operation control Program (F/FS) 1 transition program (G)	Number of operation control programs			F (one-time execution type)/FS (scan execution type) 4,096 in total (F/FS0 to F/FS4095)
	Number of transition programs			4096 (G0 to G4095)
	Code size/program			Max. approx 64 kb (32,766 steps)
	Number of blocks (lines)/program			Max. 8,192 blocks (if 4 steps (min.)/block)
	Number of characters/block (line)			Max. 128 single-byte characters (inc. comment)
	Number of operands/block			Max. 64 (operand: constant, word device, bit device)
	() nests/block			Max. 32 types
	Running form	Operation control program		Calculation method, bit conditional expression, branch/iteration
		Transition program		Calculation method, bit conditional expression, comparison conditional expression
Execution specifications	Number of simultaneous execution programs			Max. 256
	Number of simultaneous active steps			Max. 256 steps/all programs
	Execution tasks	Normal ta		Execution during motion main cycle
		Event tasks (Mask possible)	Fixed cycle	$\begin{gathered} \text { Execution every fixed cycle } \\ (0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, 1.77 \mathrm{~ms}, 3.55 \mathrm{~ms}, 7.11 \mathrm{~ms}, 14.2 \mathrm{~ms}) \end{gathered}$
			External interrupts	Execution when turning set inputs ON out of 16 interrupt module Q160 inputs
			$\begin{array}{\|l\|} \hline \text { PLC } \\ \text { interrupts } \end{array}$	Execution with interrupt command (D(P).GINT) from PLC
		NMI tasks		Execution when turning set inputs ON out of 16 interrupt module Q160 inputs
Number of inputs/outputs (X/Y)				8,192
Number of actual inputs/outputs (PX/PY)				256 (Motion CPU built-in interface (4 inputs) $+1 / \mathrm{O}$ module)
Devices (Motion CPU built-in portion only) (inc. dedicated positioning devices)	Number of internal relays (M)			12288
	Number of link relays (B)			8192
	Number of annunciators (F)			2048
	Number of special relays (SM)			2256
	Number of data registers (D)			8192
	Number of link registers (W)			8192
	Number of special registers (SD)			2256
	Number of motion registers (\#)			12288
	Number of coasting timers (FT)			$1(888 \mu \mathrm{~s})$
	Multiple CPU area devices			Max. 14336 types

*: The number of devices that can be used differs depending on the system settings.

2.1.3 System configuration device list (SV13/SV22)

(1) Motion controller OS software

Application		Model	
		Q172DSCPU *1	
For conveyance and assembly (SV13)	SW8DNC-SV13QJ	SW8DNC-SV13QL	
For automatic machines (SV22)	SW8DNC-SV22QJ	SW8DNC-SV22QL	

*1: The motion controller OS software (SV22 (advanced synchronous control method)) is already installed when the product is shipped.)
The latest OS software can be downloaded from the Mitsubishi Electric FA site.
(2) Peripheral software package

Software name	Model
MELSOFT MT Works2 (MT Developer2 *1)	SW1DNC-MTW2-J

*1: This programming software is included in motion controller engineering environment "MELSOFT MT Works2".
(3) Related software packages
(a) PLC software packages

Software name	Software package name
GX Works2	SW1DNC-GXW2-J

(b) Servo setup software package

Software name	Software package name
MR Configurator2	SW1DNC-MRC2-J

2.2 System Configuration Diagrams

Refer to the User's Manual for details on wiring.

2.2.1 Q173DSCPU/Q172DSCPU system

(QCDB)

*1: Ethernet: QnUDE(H)CPU only RS-232: QnUD(H)CPU only

- If the operation performed when an error occurs and the system safe direction operation differs for the controller and servo amplifier, construct a countermeasure circuit outside the servo amplifier.
- Use parts used in the system (other than controller, servo amplifiers, servo motors) with rating and characteristics suited to the controller, servo amplifiers, and servo motors.
- Set parameter values applicable to the controller, servo amplifier, servo motor, regenerative resistor models, and system application. Safeguards may fail to function if settings are specified incorrectly.

2.3 Name of Each Part

This section describes the names and settings of all Q172DSCPU/ Q173DSCPU parts.
(1) Names of Q172DSCPU/Q173DSCPU parts

No.	Item	Function			
1)	7-segment LED	Displays the operating status and error information.			
2)	For function selection 1 Rotary switch (SW1)	- Sets the operation mode (normal operation mode, installation mode, ROM operation mode, etc.) - Switch settings are specified with 0 to F. (Default: SW1 "0", SW2 "0")			
3)	For function selection 2 Rotary switch (SW2)				
4)	RUN/STOP switch	- Used for RUN/STOP. (Default: STOP) RUN : Runs the motion SFC program (SV13/SV22). STOP: Stops the motion SFC program (SV13/SV22).			
5)	Emergency stop input connector (EMI)	- Performs an emergency stop for all servo amplifier axes together. EMI ON (open) : Emergency stop EMI OFF (24 VDC input) : Cancels emergency stop			
6)	SSCNET III CN1 connector ${ }^{*}$	Connector used to connect with the first system servo amplifier (for 16 axes).			
7)	SSCNET III CN1 connector ${ }^{*}, 3$	Connector used to connect with the second system servo amplifier (for 16 axes).			
8)	Serial No. indication	Indicates the serial No. on the rating plate.			
9)	Module attachment lever	Used to attach modules to the base module.			
10)	Module securing hook ${ }^{* 4}$	Hook used to secure the module to the base module. (Helps when performing module attachment.)			
11)	Module securing screw	Screw used to secure to the base module. (M3 $\times 13$)			
12)	Module securing protrusion	Protrusion used for securing to the base module.			
13)	Battery connector (BAT) ${ }^{\text {* }}$	Connector used to connect to battery holder module Q170DBATC.			
14)	Peripheral I/F connector	For communication interface with peripheral devices - Bottom LED Flashing : Accessing peripheral devices ON : Not accessing peripheral devices - Top LED Data transfer speed ON : 100 Mbps OFF: 10 Mbps		Item	Specification
				Data transfer speed	$100 \mathrm{Mbps} /$ 10 Mbps
				Communication mode	Full duplex/ half duplex
				Transfer method	Base band
				Cable length	Max. 30 m
15)	RIO connector	Connector used to connect to safety signal module (Q173DSXY).			
16)	Built-in interface connector	Connector used for manual pulse generator/INC synchronous encoder connection, and to input general-purpose input signals/mark detection input signals. (Voltage output/open collector type, differential output type)			
17)	Battery connector	Connector used to connect to the battery (Q6BAT).			
18)	Battery holder	Holder used to hold the battery (Q6BAT).			
19)	Battery cover	Cover for battery (Q6BAT) protection			
20)	Battery *5	Battery (Q6BAT) for program, parameter, motion device (\#), latch range device, and absolute position data protection.			

*1: Always use an external forced stop input cable (sold separately). If not used, it will not be possible to clear emergency stop conditions. If preparing your own external forced stop input cable, ensure a cable length of 30 [m] or less.
*2: In order that the weight of the SSCNET III cable is not applied to the SSCNET III connector, store the cable in a duct, or secure the part near the motion CPU with a cable tie.
*3: Q173DSCPU only
*4: This helps when attaching modules to the main base module. Always secure modules to the main base module with the screws provided.
*5: Always use a battery.
If the battery is not inserted properly, programs stored in the motion CPU built-in SRAM, parameters, motion device (\#), latch range device, and absolute position data will not be retained.

(2) 7-segment LED display

The mode display turns ON or flashes based on the combination with each error.

Item	7-segment LED	Remarks	Item
Self-diagnosis error (Multiple CPU related error)		"AL" flashes 3 times. "A1" lights up. (Self-diagnosis error) The 4-digit error code is split up and displayed twice. (The example on the left is for error code [3012].)	Multiple CPU system setting error Refer to the "Q173D(S)CPU/Q172D(S)CPU Motion Controller Programming Manual (common edition)" for details.

POINT

1) If an error is indicated at the 7 -segment LED, check the error code and so on at MT Works2.
2) For error details, refer to the MT Works2 motion error monitor, or the error list in each programming manual.
(3) Rotary switch allocation
(a) Function selection 1 rotary switch (SW1)

Rotary switch	Setting *	Mode	Details
	0	Normal mode	Normal operation mode
	A	Installation mode	Used to install the motion controller OS software from MT Works2.

*: Settings other than the above are prohibited.
(b) Function selection 2 rotary switch (SW2)

Rotary switch	Setting *	Mode	Details
	0	RAM operation mode	Normal operation mode (Functions with motion CPU built-in SRAM settings data and parameters.)
	6	ROM operation mode	Functions with settings data written to the motion CPU built-in FLASH ROM and parameters.
	8	Ethernet IP address Display mode	This mode displays the Ethernet IP address.
	C	SRAM clear	SRAM 0 clear

*: Settings other than the above are prohibited.

CAUTION
 - If changing the rotary switch setting, always turn the multiple CPU System power OFF beforehand.

Chapter 3 Q PLC Multiple CPU

I/O unit and special function unit sequence control, and calculation with application commands and dedicated commands is performed with sequence programs.
Furthermore, they are also used to execute SFCS (motion SFC start request) commands used to start motion SFC programs, GINT commands used to perform interrupts for motion CPUs, DDRD and DDWR commands used to perform direct device reading and writing for Q motion CPUs, SVST commands used to issue servo program startup request, CHGA current value change commands, CHGV speed change commands, and CHGT torque limit value change commands.

This is described as Q172DSCPU specifications in this chapter.
(Refer to Appendix 8 for details on GINT, DDRD, DDWR, CHGA, CHGV, and CHGT commands.)

3.1 Multiple CPU System

The multiple CPU system incorporates multiple (max. 4) Q PLC CPU/Q motion CPUs on a main base unit, and is used to control I/O units and intelligent function units with each Q PLC CPU/Q motion CPU.
Processing loads can be balanced by using the Q motion CPU unit for complex servo control, and the Q PLC CPU unit for all other machine and information control.

3.1.1 Multiple CPU system settings

With the multiple CPU system, it is necessary to set (control CPU settings) which I/O modules and intelligent function modules are to be controlled with which Q PLC CPU/Q motion CPU, and the number of installed Q PLC CPU/Q motion CPU units for all Q PLC CPU/Q motion CPUs. (The multiple CPU setting method is described in section 8.3.2.)

Controlled with Q motion CPU (No.2) motion SFC program.

Initially, the Q motion CPU compares the parameters in the following table against the No. 1 Q PLC CPU. An error occurs if there is a mismatch, and therefore the following parameters must be made to match.

No.	Comparison item		Parameter				Remarks
			Name at Q motion CPU		Name at Q PLC CPU		
1	Unit control CPU No.		Motion slot setting		I/O assignment settings	Control CPU	Compares only the unit No. set at Q motion CPU.
2	Total base qty		Base settings			Basic settings	No comparison made if no settings specified at Q PLC CPU.
3	Base	Base No.					
		No. of base slots					
4	No. of CPU module		$\begin{aligned} & \text { Multiple CPU } \\ & \text { settings } \end{aligned}$	No. of multiple CPUs	Multiple CPU settings	No. of CPUs	
5	Operation mode when CPU stop error occurs			Operation mode		Operation mode	
6	No. of automatic refreshes			Automatic refresh settings		Refresh settings	

3.1.2 Q PLC CPU, Q motion CPU installation locations

Up to four PLC CPU modules or motion CPU modules can be installed from the main base unit CPU slot (slot to right of power supply module) to slot 2.
Motion CPU modules cannot be installed in CPU slots.
With multiple CPU combinations, CPU No. 1 must be a PLC CPU module. There are no restrictions in the installation order for CPU module No. 2 to No. 4.
*: If using in combination with high-performance model CPU modules, process CPU modules, computer CPU modules, or C language controller modules, refer to the manual for each CPU module.

CPU module installation example

No. of CPUs	CPU module installation location		
2		--	--
3			--
4			

| CPU | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |

A vacant slot can be added for additional CPU modules in the future. Set the number of CPUs, including the vacant slot, in the multiple CPU settings, and set the type for the slot to be left vacant to "CPU (Vacant)" in the CPU settings.

3.1.3 I/O numbers

With the multiple CPU system, the number of slots set in the computer parameter multiple CPU settings is occupied by Q PLC CPU/Q motion CPUs.
The I/O numbers for I/O modules and intelligent function modules installed to the right of the slots occupied by Q PLC CPU/Q motion CPUs begin with "OH", and are numbered sequentially from left to right.

Q PLC CPU: If the number of CPUs is set to 2

Q motion CPU I/O numbers are unrelated to Q PLC CPU I/O numbers. The Q motion CPU I/O numbers are those set in the Q motion CPU system settings. (I/O numbers for modules controlled by Q motion CPUs are indicated by PX/PY.)
Allocating Q motion CPU control module I/O numbers to Q PLC CPUs is meaningless.
It is generally recommended that I/O numbers be common to all CPUS, and that they are set sequentially.

If setting Q motion CPU control modules when allocating Q PLC CPU I/O numbers, refer to the following table and set. (With the Q172DLX, Q172DEX, and Q173DPX, intelligent function modules occupy 32 points on Q PLC CPUs.)

Module	Type	No. of points	Remarks
Input module	Input	Set based on module.	- Set the control CPU No. applicable to the Q motion CPU. (Required) - Type and No. of points settings may be omitted.
Output module	Output	Set based on module.	
Mix of input/output modules	Mix of inputs/ outputs	Set based on module.	
Analog input module	Analog input	16	
Analog output module	Analog output		
Interrupt module (Q160)	Interrupt		
Q172DLX (servo external signal input)	Intelligent	32	
Q172DEX (synchronous encoder input)	Intelligent	32	
Q173DPX (manual pulse generator input)	Intelligent	32	

POINT

With the Q172DLX, Q172DEX, and Q173DPX, Q motion CPU modules cannot be installed in main base unit CPU slots or in I/O slots 0 to 2 . If mistakenly installed, the main base unit may be damaged.

Please note that with Q172DLX/DPX, modules can be installed in expansion base units, however, this is not possible with the Q172DEX.

3.1.4 CPU shared memory

CPU shared memory is memory used to transfer date between CPUs in the multiple CPU system, and has 24,335 words from 0H to 5F0FH.

CPU shared memory has a "self CPU operation information area", "system area", "user setting area", and "multiple CPU high speed transmission area".

The CPU shared memory configuration, and whether or not data exchange from self CPUs using CPU shared memory with a program is performed is shown in the following table.

				Commun	with self	$\begin{array}{r} \text { Comm } \\ \text { ot } \end{array}$	n with
		CPU shared memory		Write	Read	Write	Read
$\begin{gathered} (\mathrm{OH}) \\ \text { to } \\ (1 \mathrm{FFH}) \end{gathered}$	$\begin{gathered} 0 \\ \text { to } \\ 511 \end{gathered}$	Self CPU operation information area		\times	- *2	\times	○ ${ }^{2}$
$\begin{gathered} (200 \mathrm{H}) \\ \text { to } \\ (7 \mathrm{FFH}) \end{gathered}$	$\begin{gathered} 512 \\ \text { to } \\ 2047 \end{gathered}$	System area		\times	\times	\times	$\bigcirc{ }^{*}$
$\begin{aligned} & (800 \mathrm{H}) \\ & \text { to } \\ & (\mathrm{FFFH}) \end{aligned}$	$\begin{gathered} 2048 \\ \text { to } \\ 4095 \end{gathered}$	User setting area		○ *1	○ ${ }^{2}$	\times	$\bigcirc{ }^{*}$
$\begin{aligned} & (1000 \mathrm{H}) \\ & \text { to } \\ & (270 \mathrm{FH}) \end{aligned}$	$\begin{gathered} 4096 \\ \text { to } \\ 9999 \end{gathered}$	Use not possible		\times	\times	\times	\times
$\begin{aligned} & (2710 \mathrm{H}) \\ & \text { to } \\ & (5 \mathrm{FOFH}) \end{aligned}$	$\begin{gathered} 10000 \\ \text { to } \\ \text { Max. } \\ 24335 \end{gathered}$	Multiple CPU high speed transmission area (Size variable from 0 to 14 k [points]: 1 k word units)	High-speed bus between multiple CPUs	$\bigcirc{ }^{* 3}$	$\bigcirc{ }^{*}$	\times	$\bigcirc{ }^{* 3}$

Remarks

*1: With motion CPUs, use an MULTW command to write to the self CPU user setting area.
With PLC CPUs, use an S.TO command to write to the self CPU user setting area.
*2: With motion CPUs, use an MULTR command to read self CPU and other CPU shared memory.
To read motion CPU shared memory from a PLC CPU, use a FROM command/multiple CPU area device (UD\GD).
*3: Refer to section 3.1.5 for details on how to access the multiple CPU high speed transmission area
(1) Self CPU operation information area (0 H to 1 FFH)
(a) The following self CPU information is stored as multiple CPU information.

Shared memory address	Name	Content	Content details *	Corresponding special register
$\mathrm{OH}(0)$	Information presence	Information presence flag	Area used to confirm whether there is information stored in the self CPU operation information area (1 H to 1 FH). - 0: No information is stored in the self CPU operation information area. - 1: Information is stored in the self CPU operation information area.	-
1H(1)	Diagnostic error	Diagnostic error No.	The error No. when an error occurs during diagnosis is stored in BIN.	SD0
$2 \mathrm{H}(2)$			The year and month in which the error No. was stored in CPU shared memory address 1 H are stored with a 2-digit BCD code. Year (0-99) Month (1-12) (Example) Jan. 2006 H0601	SD1
$3 \mathrm{H}(3)$	Diagnostic error date/time	Diagnostic error date/time	The day and hour at which the error No. was stored in CPU shared memory address 1 H are stored with a 2-digit BCD code. (Example) 25th at 10 am Day (1-31) Hour (0-23) H2510	SD2
4H(4)			The minute and second at which the error No. was stored in CPU shared memory address 1 H are stored with a 2-digit BCD code.	SD3
5H(5)	Error information category code	Error information category code	A category code used to judge what the error common information and error individual information contains.	SD4
$\begin{gathered} 6 \mathrm{H}(6) \\ ? \\ 10 \mathrm{H}(16) \\ \hline \end{gathered}$	Error common information	Error common information	Common information corresponding to the error No. when an error occurs during diagnosis is stored.	$\begin{aligned} & \text { SD5 } \\ & \text { SD15 } \end{aligned}$
$\begin{aligned} & 11 \mathrm{H}(17) \\ & \mathrm{l} \\ & 1 \mathrm{BH}(27) \end{aligned}$	Error individual information	Error individual information	Individual information corresponding to the error No. when an error occurs during diagnosis is stored.	SD16 SD26
$1 \mathrm{CH}(28)$	Vacant	-	Use not possible	-
1DH(29)	Status of switch	Operating status of CPU	The CPU module switch status is stored. (1): Operating status of CPU: $0:$ RUN, 1 : STOP	SD200
1EH(30)	Vacant	-	Use not possible	-
1FH(31)	Operating status of CPU	Operating status of CPU	The CPU module operating status is stored.	SD203

*: Refer to the corresponding special register for details.
(b) The self CPU operation information area is updated during the main cycle when the corresponding register changes.
(c) Other PLC CPUs are able to read the self CPU operation information area data with an FROM command
However, the data update process will be delayed, and therefore read data should be used for monitoring purposes.
(2) System area (200H to 7FFH)

This is an area used by the PLC CPU/motion CPU system (OS). The OS uses this area when executing dedicated communication commands between multiple CPUs.

- System area (204H to 20DH) used with dedicated motion sequence commands
The completion status of each flag is stored in the following addresses.

Shared memory address	Name	Content details				
204H(516)	Axis start accept flag (axes 1 to 16)	There are start accept flags for 32 axes, and they are stored corresponding to each bit. (Bits are actually set in J 1 to J 32 for the Q173DSCPU, and J 1 to J 16 for the Q172DSCPU.) OFF: Start accept possible ON: Start accept not possible b15				
205H(517)	Axis start accept flag (axes 17 to 32)					
		Address 204H(516)	J16	-••••••	J2	J1
		Address 205H(517)	J32	-••••••		J17

(3) User setting area

This area is used to exchange data between each CPU unit in the multiple CPU system using the motion CPU MULTR and MULTW commands.
(With PLC CPUs, data is exchanged between CPUs using FROM and S.TO commands, and multiple CPU area devices.)
Refer to the programming manual for the OS software used for details on MULTR and MULTW commands.

3.1.5 Multiple CPU high speed transmission

(1) Multiple CPU high speed transmission

Multiple CPU high speed transmission is a function used to transfer data between multiple CPUs in fixed cycles (multiple CPU high speed transmission cycle: 0.88 [ms]).
With data transfer between multiple CPUs through multiple CPU high speed transmission, processing is performed in parallel with sequence program, and motion SFC program/motion program execution, facilitating stable data transmission without being affected by the PLC CPU scan time or motion CPU main cycle.
The multiple CPU high speed transmission cycle is synchronized with the motion CPU operation cycle, and high-speed responses can be delivered between multiple CPUs.

The following methods can be used to transfer data between multiple CPUs using multiple CPU high speed transmission.

- Using a multiple CPU area device Specify a multiple CPU high speed transmission area using a direct multiple CPU area device (UDIGロ) in the program.
- Using automatic refresh

All CPU internal devices are refreshed automatically via the multiple CPU high speed transmission area.
(a) Example using a multiple CPU area device

[^0]1) Access to multiple CPU high speed transmission area
a) Multiple CPU area device description method

Word device: U느늠
\rightarrow CPU shared memory address (decimal notation) (1000 to max. 24335)
\rightarrow CPU module first I/O No.

CPU No.	CPU No.1	CPU No.2	CPU No.3	CPU No.4
First I/O No.	3EO(H)	3E1(H)	3E2(H)	3E3(H)

Bit device:

(Example)

- CPU No. 2 multiple CPU high speed transmission memory address: 10002
U3E1|G10002
- CPU No. 3 multiple CPU high speed transmission memory address: 10200 bit14 U3E2IG10200.E
b) Example of access with program
<Motion SFC program> *SV13/SV22
- Program substituting K12345678 for self CPU (No.2) multiple CPU high speed transmission memory 10200, 10201.
U3E1\G10200L = K12345678
- Turns ON self CPU (No.3) multiple CPU high speed transmission memory 10301 bit12.
Program
SET U3E2IG10301.C

<Servo program> *SV13/SV22

- Program used to position axis 1 at the position set in CPU No. 1 multiple CPU high speed transmission memory 10400 and 10401, at speed set in CPU No. 1 multiple CPU high speed transmission memory 10402 and 10403, and use the CPU No. 1 multiple CPU high speed transmission memory 10404 bit1 as a cancel signal.

ABS-1		
Axis	1,	U3E0\G10400
Speed		U3E0\G10402
Cancel		U3E0\G10404.1

POINT

Only the CPU shared memory "multiple CPU high speed transmission area" can be accessed with this method. It cannot be used to access CPU shared memories 0 to 4095.
(b) Example using automatic refresh

) By specifying in the parameters, the content of D0 is sent to the auto refresh area *1 when performing END processing.
The content of the auto refresh area *1 is transferred to other CPUs in 0.88 ms cycles by multiple CPU high speed transmission.
3) By specifying in the parameters, the content of the auto refresh area ${ }^{* 1}$ is read and then transferred to D2000 when performing the motion CPU main
cycle.
*1: Area configured inside multiple CPU high speed transmission area (Refer to "(3) Multiple CPU high speed transmission area memory configuration".)

(2) System configuration

Multiple CPU high speed transmission can only be used between multiple CPU high speed transmission compatible CPU modules installed on the multiple CPU high speed main base (Q3ロDB).
The system configuration specifications are shown in the following table.

Applicable module	Restriction details
Base module	Uses multiple CPU high speed main base (Q3口DB).
CPU module	QnUD(E)(H) CPU is used for CPU No.1.
	Q173DSCPU/Q172DSCPU and QnUD(E)(H) CPUs are used for CPU Nos. 2 to 4.

If the multiple CPU system power is turned ON when the above specifications are not satisfied, a "MULTI EXE.ERROR (error code: 7011)" error occurs.
(3) Multiple CPU high speed transmission area memory configuration The multiple CPU high speed transmission area memory configuration is shown below.

1)
Multiple CPU high speed
transmission area
$\left[\right.$ Possible with 0 to $\left.14 \mathrm{k}[\text { points }]^{*} 1\right]$

2) CPU No. 1 transmission area
3) CPU No. 1 transmission area
4) CPU No. 1 transmission area
5) CPU No. 1 transmission area

6$)$ User setting area
7) Automatic refresh area

*1: The 14 k [points] in the multiple CPU high speed transmission area is the maximum value for two CPU modules.
This value will be 13 k [points] for three CPU modules, and 12 k [points] for four CPU modules.

No.	Name	Description	Size	
			Setting range	Setting unit
1)	Multiple CPU high speed transmission area	- This area is used for data transfer between CPU modules in the multiple CPU system. - An area of up to 14 k [points] is distributed among each CPU module in the multiple CPU system.	0 to 14 k	1 k
2)		- Area in which transmission data for each CPU module is stored. - Data stored in the self CPU transmission area is sent to other CPUs. - Data received from other CPU modules is stored in the other CPU transmission area.	0 to 14 k	1 k
3)				
4)				
5)				
6)	User setting area	- This areas is used to transfer data between other CPUs with a multiple CPU area device. - Accesses the transmission area with a user program using a Multiple CPU area device.	0 to 14 k	2
7)	Automatic refresh area	- This areas is used to transfer device data between other CPUs through exchange with automatic refresh. - Access with a user program is not possible.	0 to 14 k	2

(4) Parameter settings

The parameter settings required to use multiple CPU high speed transmission are shown in the following table.

Parameter name	Details	Applicable CPU
Multiple CPU high speed transmission area settings	Sets the size of the multiple CPU high speed transmission area assigned to each CPU module in the multiple CPU system.	Required for
automatic refresh settings	Sets the range for data transmission with the automatic refresh all CPU function from the user area inside the multiple CPU high speed transmission area.	modules

(a) Multiple CPU high speed transmission area settings

The Multiple CPU High Speed Transmission Area Setting screen and setting range are shown below.

(b) Automatic refresh settings

The settings required to use the automatic refresh function are shown below.
32 ranges can be set at each CPU module.
The Automatic Refresh Setting screen and setting ranges are shown below.

Item		Setting details
Tab		Select the CPU No. for which automatic refresh setting is to be specified.
Setting No.		Displays the transfer setting No. for each CPU module.
Automatic refresh	Points	Sets the number of points for which transfer is performed in word units. Setting range: 2 to 14336 Setting unit: 2
	Start	Sets the first device subject to transfer. Usable devices: X, Y, M, B, D, W, \#, SM, SD
	End	Sets the last device subject to transfer. The last device is calculated from the [No. of points] and [First device].
Refresh direction		Displays the refresh direction. <--: Send -->: Receive ---: If the number of points has been entered, and the self CPU has not been set x : If the device has not been set
CPU Specific Send Range		Displays the CPU transmission range used for automatic refresh.
The total points		Displays the total number of points.
Points can be set up		Displays the transmission range (k points) assigned to each CPU.

3.2 Dedicated Multiple CPU Motion Commands

This section describes dedicated commands (SFCS, SVST, CHGA, CHGV) for multiple CPUs.
However, refer to Appendix 7.5 (page, Appendix-54) for details on CHGA, and Appendix 7.6 (page, Appendix-57) for details on CHGV.

3.2.1 SFCS motion SFC program start command

This is an SFCS (SFC start) command used to start the specified motion SFC program.

*1: This command can be omitted if both (D1) and (D2) are omitted.

(1) Motion SFC program No. setting

The motion SFC program No. can be set directly or indirectly.
(a) Direct setting involves setting the motion SFC program No. directly with a numerical value (K0 to K255).

Example

Motion SFC program No. 50 is set as follows.

(b) Indirect setting involves setting the motion SFC program No. with word device (D0 to D8191, W0 to W1FF) content.

(2) Execution timing

A start request for the specified motion SFC program is made when the SFCS command execution command turns ON.
Motion SFC programs can be started regardless of whether the task setting is normal task execution or NMI task execution.
This is valid at any time, regardless of whether in real mode, virtual mode, or while changing mode.
The following is an overview of operation between CPUs when executing the DP.SFCS command.

(3) Operation error conditions

In the following cases, an operation error occurs, and the SFCS command is not executed.
(a) When a CPU No. reserved with the applicable CPU No. first No. I/O No. $\div 16(n 1)$ is specified.
(b) When specified for the self CPU with the applicable CPU No. first No. I/O No. $\div 16(n 1)$.
(c) When a CPU other than a Q motion CPU is specified with the applicable CPU No. first No. I/O No. $\div 16(\mathrm{n} 1)$.
(d) When the specified command name is incorrect.
(e) When the command is configured with a device other than a usable device.
(f) When 0 to 3 DFH , or 3 E 4 H and above is specified with the applicable CPU No. first No. I/O No. $\div 16(n 1)$.

3.2.2 SVST servo program start request command

This command is used to request the start of the specified servo program.

*1: This command can be omitted if both (D1) and (D2) are omitted.

(1) SVST command program example

This program is used to issue a servo program No. 10 start request for motion CPU (No.2) axis 1 and 2 when MO is ON.
<Example 1> Program with Completion device, completion status omitted

<Example 2> Program using Completion device, completion status

(2) Execution timing

A start request for the specified servo program is issued when the SVST command execution command turns ON.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (D2). If the completion status storage device (D2) is omitted, no error is detected and processing is not performed, and therefore caution is advised.

Completion status * (Error code) (H)	Error cause	Remedy	
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.		
2100	The number of command (D(P).SVST/D(P).CHGA combined) requests issued from the PLC CPU to the motion CPU simultaneously is 65 or more, and therefore the motion CPU is unable to process.	Check the program, and then change to the correct sequence program.	
2201	The No. of the servo program being executed lies outside the 0 to 4095 range.	The axis No. specified with the D(P).SVST command is illegal.	
2202	$*$		

In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code*	Error cause	Remedy
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16(\mathrm{n} 1)$ lies outside the 3EOH to 3E3H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	Check the program, and then change to se correct progrance
4352	The number of specified command devices is incorrect.	

*: 0 (normal)

Chapter 4 Q Motion CPU

Q motion CPUs hold system settings data and servo data, and run the servo programs and mechanical support language required to perform multi-axis positioning.

Q motion CPUs hold the following types of data. The default values are set, and therefore it is necessary to make changes to the data to suit the system. Data is stored in the motion CPU memory area (SRAM battery backup).

4.1 System Settings

System settings are used to select the bases and modules used, and to decide axis numbers, and the servo amplifier and servo motor types.

4.1.1 Basic settings

Basic settings are used to specify system basic settings such as main base and extension base settings, as well as multiple CPU system settings.

4.1.2 System configuration

The system configuration specifies module settings used for main bases and extension bases.

4.1.3 SSCNET configuration

The SSCNET configuration selects the servo amplifiers and servo motors used.

4.2 Servo Data Settings

Servo data settings are used to set servo data required to perform positioning control for the axes set in the system settings.

4.2.1 Servo data

Servo data is used to specify settings relating to machine characteristic values, zeroing, and JOG operation.

Item	Axis 1	Axis2
\square Fiked Parameter	Set the fixed parameters for each axis ...	
Unit Setting	3:PLS	3:PLS
Number of Pulses/Rev.	20000[PLS]	20000[PLS]
Travel Value/Rev.	20000[PLS]	20000[PLS]
Backlash Compensation	O[PLS]	$0[P L S]$
Upper Stroke Limit	2147483647 [PLS]	2147483647 [PLS]
Lower Stroke Limit	$0[P L S]$	$0[P L S]$
Command In-position	100[PLS]	100[PLS]
Sp. Ctrl. 10x Mult. for Deg.		-
$\underset{\text { Data }}{-} \begin{aligned} & \text { Home Position Return }\end{aligned}$	Set the data to execute the home position return.	
OPR Direction	0 :Reverse Direction	$0:$ Reverse Direction
OPR Method	0 :Proximity Dog Type 1	$0:$ Proximity Dog Type 1
Home Position Address	$0[P L 5]$	$0[P L S]$
OPR Speed	1[PLS/s]	1[PLS/s]
Creep Speed	1[PLS/s]	1[PLS/s]
Travel After Dog	-	-
Parameter Block Setting	1	1
OPR Retry Function	0:Invalid	0:Invalid
Dwell Time at OPR Retry	-	-
Home Position Shift Amount	$0[P L 5]$	$0[P L S]$
Speed Set at Home Pos. Shift	0:OPR Speed	0:OPR Speed
Torque Limit Value at Creep Speed		-
Operation for OPR Incompletion	1:Not Execute Servo Program	1:Not Execute Servo Program
OPR Request Setting in Pulse Conversion Unit	-	-
Standby Time after Clear Signal Output in Pulse C...		-
- JOG Operation Data	Set the data to execute the JOG operati...	
- JOG Speed Limit Value	20000[PLS/s]	20000[PLS/s]
- Parameter Block Setting	1	1

4.2.2 Parameter blocks

Parameter blocks contain data such as acceleration/deceleration time used in zeroing data, JOG operation data, and servo programs.

Item	Block No. 1	Block No. 2	Block No. 3
- Parameter Block	Set the data such as the acceleration/deceleration control used for ea		
--. Interpolation Control Unit	3:PLS	3:PL5	3:PLS
- Speed Limit Value	200000[PLS/s]	200000[PLS/s]	200000[PLS/s]
Acceleration Time	1000[ms]	1000[ms]	1000[ms]
Deceleration Time	1000[ms]	1000[ms]	1000[ms]
- Rapid Stop Deceleration Time	1000[ms]	1000[ms]	1000[ms]
-..- S-curve Ratio	O[\%]	0[\%]	0 [\%]
-..- Torque Limit Value	300[\%]	300[\%]	300[\%]
Deceleration Process on STOP	0:Deceleration Stop	0:Deceleration Stop	0:Deceleration Stop
Allowable Error Range for Circular Interpolation	100[PLS]	100[PLS]	100[PLS]
-. Bias Speed at Start	O[PLS/s]	O[PLS/s]	0[PLS/s]
Acceleration/Deceleration System	0:Trapezoid/S-curve	0:Trapezoid/S-curve	0:Trapezoid/S-curve
Advanced S-curve \square Acceleration/Decelerat...	Set the data of adyanced S-curve acceleration/deceleration, which pei converting the speed smoothly.		
- Accel. Section 1 Ratio	-	-	-
- Accel. Section 2 Ratio	-	-	-
- Decel. Section 1 Ratio	-	-	-
Decel. Section 2 Ratio	-	-	-

4.2.3 Servo parameters

Servo parameters contain data determined by the specifications of servo amplifiers and servo motors controlled with parameters set for each axis, as well as data required to control servo motors.
Servo parameters are set with the setup software (MR-Configurator2).
Refer to the Servo amplifier Technical Document Collection for details on servo parameters.

POINT

If changes are made to parameters that require the servo amplifier control power to be rebooted, do so after resetting or rebooting the multiple CPU system.

4.3 Positioning Control Devices

Q motion CPUs are equipped with positioning control devices for positioning information.

Of the devices in the motion CPU, the following five devices are used for motion CPU internal signals.

If using SV13 (real mode)

- Internal relay (M): M2000 to M3839 (1840 points)
- Special relay (SM): SM0 to SM2255 (2256 points)
- Data register (D): D0 to D799 (800 points)
- Motion register (\#): \#8000 to \#8735 (736 points)
- Special register (SD): SD0 to SD2255 (2256 points)

If using SV22 (advanced synchronous control)

- Internal relay (M): M2000 to M3839 (1840 points) M8192 to M12287 (4096 points)
- Special relay (SM): SM0 to SM2255 (2256 points)
- Data register (D): D0 to D799 (800 points)

D10240 to D19823 (9584 points)

- Motion register (\#): \#8000 to \#8751 (752 points)
- Special register (SD): SD0 to SD2255 (2256 points)
(1) Internal relay list

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{SV13} \& \multicolumn{4}{|c|}{SV22} \\
\hline \multirow[b]{2}{*}{Device No.} \& \multirow[b]{2}{*}{Application type} \& \multicolumn{2}{|r|}{Virtual mode switching method} \& \multicolumn{2}{|l|}{Advanced synchronous control method} \\
\hline \& \& Device No. \& Application type \& Device No. \& Application type \\
\hline \[
\begin{array}{|c}
\hline \text { M0 } \\
\text { l }
\end{array}
\] \& User device (2000 points) \& M0 \& User device (2000 points) \& M0 \& User device (2000 points) \\
\hline M2000 \& Common device (320 points) \& M2000 \& Common device (320 points) \& M2000 \& Common device (320 points) \\
\hline M2320 \& Unusable (80 points) \& M2320 \& Unusable (80 points) \& M2320 \& Unusable (80 points) \\
\hline M2400 \& \begin{tabular}{l}
Axis status \\
(20 points \(\times 32\) axes)
\end{tabular} \& M2400 \& \begin{tabular}{l}
Axis status \\
(20 points \(\times 32\) axes) \\
Real mode: all axes \\
Virtual mode: output modules
\end{tabular} \& M2400 \& \begin{tabular}{l}
Axis status \\
(20 points \(\times 32\) axes)
\end{tabular} \\
\hline \[
\begin{array}{|l|}
\hline \text { M3040 }
\end{array}
\] \& Unusable (32 points) \& M3040 \& Unusable (32 points) \& M3040 \& Unusable (32 points) \\
\hline M3072 \& \begin{tabular}{l}
Common device (command signal) \\
(64 points)
\end{tabular} \& M3072 \& \begin{tabular}{l}
Common device (command signal) \\
(64 points)
\end{tabular} \& M3072 \& \begin{tabular}{l}
Common device (command signal) \\
(64 points)
\end{tabular} \\
\hline M3136 \& Unusable (64 points) \& M3136 \& Unusable (64 points) \& M3136 \& Unusable (64 points) \\
\hline M3200 \& Axis command signal (20 points \(\times 32\) axes) \& | M3200 \& \begin{tabular}{l}
Axis command signal \\
(20 points \(\times 32\) axes) \\
Real mode: all axes \\
Virtual mode: output modules
\end{tabular} \& M3200 \& Axis command signal (20 points \(\times 32\) axes) \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
M3840 \\
1
\end{tabular}} \& \multirow{8}{*}{User device (4352 points)} \& M3840 \& Unusable (160 points) \& \multirow[t]{7}{*}{M3840

,} \& \multirow{8}{*}{User device (4352 points)}

\hline \& \& M4000 \& Virtual servo motor axis status (20 points $\times 32$ axes) \& \&

\hline \& \& M4640 \& | Synchronous encoder axis status |
| :--- |
| (4 points $\times 12$ axes) | \& \&

\hline \& \& M4688 \& | Unusable ${ }^{* 1}$ |
| :--- |
| (112 points) | \& \&

\hline \& \& M4800 \& Virtual servo motor axis command signal *1 (20 points $\times 32$ axes) \& \&

\hline \& \& M5440 \& Synchronous encoder axis command signal (4 points $\times 12$ axes) \& \&

\hline \& \& M5488 \& User device (2704 points) \& \&

\hline M8191 \& \& M8191 \& \& M8191 \&

\hline
\end{tabular}

SV13		SV22			
Device No.	Application type	Virtual mode switching method		Advanced synchronous control method	
		Device No.	Application type	Device No.	Application type
M8192	System area (4096 points)	M8192	System area (4096 points)	M8192	System area (1608 points)
				M9800	Command generation axis status (20 points $\times 32$ axes)
				M10440	Synchronous encoder axis status (10 points $\times 12$ axes)
				M10560	Output axis status (10 points $\times 32$ axes)
				M10880	Synchronous control signal[St.380] (32 points)
				M10912	Synchronous analysis complete signal [St.381] (32 points)
				M10944	Unusable (16 points)
				M10960	Command generation axis command signal (20 points $\times 32$ axes)
				M11600	Synchronous encoder axis command signal (4 points $\times 12$ axes)
				M11648	Unusable (32 points)
				M11680	Output axis command signal (10 points $\times 32$ axes)
				M12000	Synchronous control start signal [Rq.380] (32 points)
				M12032	Synchronous analysis request signal [Rq.381] (32 points)
				M12064	Unusable (224 points)
M12287		M12287		M12287	

*1: If using only in SV22 real mode, use with user devices is possible.

POINT

- Total number of user device points

SV13: 6352 points (SV13), SV22 virtual mode switching method: 4704 points*,
SV22 advanced synchronous control method: 6352 points
*: If not used with virtual mode, up to 6096 points can be used.

- If using the Q172DCPU, devices for 16 axes are used.
(2) Data register list

SV13		SV22			
Device No.	Application type	Virtual mode switching method		Advanced synchronous control method	
		Device No.	Application type	Device No.	Application type
				$\begin{aligned} & \text { D14808 }{ }^{\mathrm{F}} \\ & \text {, } \end{aligned}$	Unusable (12 points)
				$\begin{array}{\|l} \hline \text { D14820 }{ }^{-2} \\ 1 \end{array}$	Synchronous encoder axis control device (10 points $\times 12$ axes)
				$\begin{array}{\|l} \hline \text { D14940 }{ }^{* 2} \\ 1 \end{array}$	Unusable (60 points)
				$\begin{array}{\|l} \hline \text { D15000 }{ }^{* 2} \\ 1 \end{array}$	Output axis control device (150 points $\times 32$ axes)
				D19800 ${ }^{\text {"2 }}$	
		7		1	Unusable (24 points)

*1: If using only in SV22 real mode, use with user devices is possible.
*2: If using the advanced synchronous control method, D8192 to D19823 cannot be set in the latch range.

POINT

- Total number of user device points SV13: 7392 points, SV22 virtual mode switching method: 6632 points*, SV22 advanced synchronous control method: 9440 points
*: If not used with virtual mode, up to 7272 points can be used.
- If using the Q172DSCPU, devices for 16 axes are used.

4.3.1 Internal relays (status/command signals)

The Q17ロDSCPU is equipped with an internal relay with 12288 points from M0 to M12287.
Of these, M2400 to M5487 are used for data transfer for each axis, and the signal names and I/O Nos. for each axis are fixed as shown in the following tables.
(1) Axis status list

*1: Unusable in SV13/SV22 real mode, SV22 advanced synchronous control.

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(2) Axis command signal list

$\begin{array}{\|c\|} \hline \text { Axis } \\ \text { No. } \\ \hline \end{array}$	Device No.	Signal name				
1	M3200~M3219			Refresh cycle	Load cycle	Signal type
2	M3220~M3239		Signal name			
3	M3240~M3259					
4	M3260~M3279	0	Stop command		Operation cycle	Command signal
5	M3280~M3299	1	Rapid stop command			
6	M3300~M3319	2	Forward rotation JOG start		Main cycle	
7	M3320~M3339	3	Reverse rotation JOG start			
8	M3340~M3359	4	Complete signal OFF command			
9	M3360~M3379	5	Speed, position switching enable command		Operation cycle	
10	M3380~M3399	6	Unusable	-	-	-
11	M3400~M3419	7	Error reset command		Main cycle	Command signal
12	M3420~M3439	8	Servo error reset command		Main cycle	
13	M3440~M3459	9	External stop input disable at start command		When starting	
14	M3460~M3479	10	Unusable	-	-	-
15	M3480~M3499	11				
16	M3500~M3519	12	Feed current value update command		When starting	Command signal
17	M3520~M3539	13	Address clutch reference setting command (SV22 only) *1		When switching to virtual mode	
18	M3540~M3559					
19	M3560~M3579	14	Cam reference position setting command (SV22 only) *1			
20	M3580~M3599					
21	M3600~M3619	15	Servo OFF command		Operation cycle	
22	M3620~M3639	16	Gain changing command		Operation cycle ${ }^{* 2}$	
23	M3640~M3659	17	PI-PID changing command			
24	M3660~M3679	18	Control loop changing command		eration cycle	
25	M3680~M3699	19	FIN signal		peration cycle	
26	M3700~M3719					
27	M3720~M3739					
28	M3740~M3759					
29	M3760~M3779					
30	M3780~M3799					
31	M3800~M3819					
32	M3820~M3839					

*1: Unusable in SV13/SV22 real mode, SV22 advanced synchronous control.
*2: Every 3.5 [ms] if the operation cycle is 7.1 [ms] or longer.

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(3) Command generation axis status list

Axis No.	Device No.	Signal name					
1	M9800~M9819						
2	M9820 ~M9839			Signal name	Refresh cycle	Load cycle	Signal type
3	M9840~M9859						
4	M3260~M9879	0	St. 340	Command generation axis positioning start complete	Operation cycle		Status signal
5	M9880~M9899	1	St. 341	Command generation axis positioning complete			
6	M9900 ~M9919	2	-	Unusable	-	-	-
7	M9920~M9939	3	St. 342	Command generation axis command in-position	Operation cycle		Status signal
8	M9940~M9959	4	St. 343	Command generation axis speed controlling			
9	M9960 ~M9979	5	-	Unusable	-	-	-
10	M9980~M9999	6					
11	M10000 ~M10019	7	St 344		Immediate		Status signal
12	M10020~M10039			detection			
13	M10040~M10059	8	-	Unusable			
14	M10060~M10079	9					
15	M10080~M10099	10	St. 345	Command generation axis start accept flag	Operation cycle		Status signal
16	M10100~M10119	11	St. 346	Command generation axis speed change accepting flag			
17	M10120~M10139	12	347	Command generation axis speed change			
18	M10140~M10159						
19	M10160~M10179	13	St. 348	Command generation axis automatic decelerating flag			
20	M10180~M10199	14	-	Unusable	-	-	-
21	M10200~M10219	15					
22	M10220~M10239	16					
23	M10240~M10259	17					
24	M10260~M10279	18					
25	M10280~M10299	19	St. 349	Command generation axis M-code outputting	Operation cycle		Status signal
26	M10300~M10319						
27	M10320~M10339						
28	M10340~M10359						
29	M10360~M10379						
30	M10380~M10399						
31	M10400~M10419						
32	M10420~M10439						

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(4) Command generation axis command signal list

Axis No.	Device No.	Signal name					
1	M10960~M10979			Signal name	Refresh cycle	Load cycle	Signal type
2	M10980~M10999						
3	M11000~M11019						
4	M11020~M11039	0	Rq. 341	Command generation axis stop command		Operation cycle	Command signal
5	M11040~M11059	1	Rq. 342	Command generation axis rapid stop command			
6	M11060~M11079	2	Rq. 343	Command generation axis forward rotation JOG start		Main cycle	
7	M11080~M11099	3	Rq. 344	Command generation axis reverse rotation JOG start			
8	M11100~M11119	4	Rq. 345	Command generation axis complete signal OFF command			
9	M11120~M11139	5		Unusable			-
10	M11140~M11159	6					
11	M11160~M11179	7	Rq. 346	Command generation axis error reset command		Main cycle	Command signal
12	M11180~M11199	8	-	Unusable	-	-	-
13	M11200~M11219	9					
14	M11220~M11239	10					
15	M11240~M11259	11					
16	M11260~M11279	12	Rq. 347	Command generation axis feed current value update request command		When starting	Command signal
17	M11280~M11299	13	-	Unusable	-	-	-
18	M11300~M11319	14					
19	M11320~M11339	15					
20	M11340~M11359	16					
21	M11360~M11379	17					
22	M11380~M11399	18					
23	M11400~M11419	19	Rq. 348	Command generation axis FIN signal		Operation cycle	Signal type
24	M11420~M11439						
25	M11440~M11459						
26	M11460~M11479						
27	M11480~M11499						
28	M11500~M11519						
29	M11520~M11539						
30	M11540~M11559						
31	M11560~M11579						
32	M11580~M11599						

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(5) Synchronous encoder axis status list

$\begin{array}{\|l\|l} \text { Axis } \\ \text { No. } \end{array}$	Device No.	Signal name					
1	M10440~M10449						
2	M10450~M10459	\Symbol		Signal name	Refresh cycle	Load cycle	Signal type
3	M10460~M10469						
4	M10470~M10479	0	St. 320	Synchronous encoder axis setting valid flag	When power turned ON		Status signal
5	M10480~M10489	1	St. 321	Synchronous encoder axis connecting valid flag	Operation cycle		
6	M10490~M10499	2	St. 322	Synchronous encoder axis counter enable flag			
7	M10500~M10509						
8	M10510~M10519	3	St. 323	Synchronous encoder axis current value setting request flag			
9	M10520~M10529						
10	M10530~M10539	4	St. 324	Synchronous encoder axis error detection flag	Immediate		
11	M10540~M10549	5	-	Unusable	-	-	-
12	M10550~M10559	6	St. 325	Synchronous encoder axis control complete flag	Immediate		Status signal
		7	-	Unusable	-	-	-
	\square	8					
		9					

(6) Synchronous encoder axis command signal list

Axis No.	Device No.	Signal name						
1	M11600~M11603			Signal name				
2	M11604~M11607			Refresh cycle	Load cycle	Signal type		
3	M11608~M11611			Refresh cycle	Load cycle	Signal type		
4	M11612~M11615	0	Rq. 323		Synchronous encoder axis error reset		Main cycle	Command signal
5	M11616~M11619	1	Rq. 320		Synchronous encoder axis control request		Operation cycle	
6	M11620~M11623	2	3	Connection command of synchronous encoder via device/master CPU		Main cycle		
7	M11624~M11627							
8	M11628~M11631	3	-	Unusable	-	-	-	
9	M11632~M11635							
10	M11636~M11639							
11	M11640~M11643							
12	M11644~M11647							

(7) Output axis status list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(8) Output axis command signal list

$\begin{array}{\|l\|l} \text { Axis } \\ \text { No. } \end{array}$	Device No.	Signal name					
1	M11680~M11689			Signal name	Refresh cycle	Load cycle	Signal type
2	M11690~M11699						
3	M11700~M11709						
4	M11710~M11719	0	Rq. 400	Main shaft clutch command		Operation cycle	Command signal
5	M11720~M11729	1	Rq. 401	Main shaft clutch control invalid command			
6	M11730~M11739	2	Rq. 402	Main shaft clutch forced OFF command			
7	M11740~M11749	3	-	Unusable	-	-	-
8	M11750~M11759	4	Rq. 403	Auxiliary shaft clutch command		Operation cycle	Command signal
9	M11760~M11769	5	Rq. 404	Auxiliary clutch control invalid command			
10	M11770~M11779	6	Rq. 405	Auxiliary clutch forced OFF command			
11	M11780~M11789	7	-	Unusable	-	-	-
12	M11790~M11799	8	Rq. 406	Control change request command	-	Operation cycle	Command signal
13	M11800~M11809	9	-	Unusable		-	-
14	M11810~M11819						
15	M11820~M11829						
16	M11830~M11839						
17	M11840~M11849						
18	M11850~M11859						
19	M11860~M11869						
20	M11870~M11879						
21	M11880~M11889						
22	M11890~M11899						
23	M11900~M11909						
24	M11910~M11919						
25	M11920~M11929						
26	M11930~M11939						
27	M11940~M11949						
28	M11950~M11959						
29	M11960~M11969						
30	M11970~M11979						
31	M11980~M11989						
32	M11990~M11999						

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(9) Synchronous control signal list

$\begin{array}{\|l} \hline \text { Axis } \\ \text { No. } \end{array}$	Device No.	Symbol	Signal name	Refresh cycle	Load cycle	Signal type
1	M10880	St. 380	Synchronous controlling	Operation cycle		Status signal
2	M10881					
3	M10882					
4	M10883					
5	M10884					
6	M10885					
7	M10886					
8	M10887					
9	M10888					
10	M10889					
11	M10890					
12	M10891					
13	M10892					
14	M10893					
15	M10894					
16	M10895					
17	M10896					
18	M10897					
19	M10898					
20	M10899					
21	M10900					
22	M10901					
23	M10902					
24	M10903					
25	M10904					
26	M10905				,	
27	M10906				,	
28	M10907					
29	M10908					
30	M10909					
31	M10910					
32	M10911					

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(10) Synchronous analysis complete signal list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(11) Synchronous control start signal list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(12) Synchronous analysis request signal list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.

4.3.2 Internal relays (common devices)

Q17DDSCPU is equipped with an internal relay with 12288 points from M0 to M12287.
Of these, M2000 to M2319 and M3072 to M3135 are used for positioning control, and their respective applications are fixed as shown in the following tables.
(1) Common devices

Device No.	Signal name
M2000	PLC ready flag
${ }_{S}^{\text {M2001 }}$	Axis 1 start accept flag S
M2032	Axis 32 start accept flag
M2033	Unusable
M2034	Unusable
M2035	Motion error history clear request flag
M2036	
M2037	Unusable
M2038	Motion SFC debugging flag
M2039	Motion error detection flag
M2040	Speed switching point specified flag
M2041	System setting error flag
M2042	All axis servo ON command
M2043	Real mode/virtual mode switching request (SV22) ${ }^{1 /}$
M2044	Real mode/virtual mode switching request (SV22)
M2045	Real mode/virtual mode switching error (SV22) ${ }^{\text {² }}$
M2046	Out-of-sync warning (SV22) ${ }^{\text {a }}$
M2047	Motion slot module error
M2048	JOG simultaneous start command
M2049	All axes servo ON accept flag
M2050	Unusable
M2051	Manual pulse generator 1 enable flag
M2052	Manual pulse generator 2 enable flag
M2053	Manual pulse generator 3 enable flag
M2054	Operation cycle over flag
$\begin{aligned} & \begin{array}{l} \text { M2055 } \\ \text { M2060 } \end{array} \end{aligned}$	Unusable
$\begin{aligned} & \text { M20061 } \\ & \text { M2092 } \end{aligned}$	Axis 1 speed change flag S Axis 32 speed change flag
$\begin{aligned} & \text { M2093 } \\ & \text { M2100 } \end{aligned}$	Unusable
$\begin{gathered} \text { M2101 } \\ \text { M2112 } \end{gathered}$	Axis 1 synchronous encoder current value changing flag S $\underset{\substack{\text { Axis }}}{\text { Ax }} 12$ synchronous encoder current value changing flag
$\begin{aligned} & \text { M2113 } \\ & \text { M2127 } \end{aligned}$	Unusable
$\begin{aligned} & \text { M2128 } \\ & \text { M2159 } \end{aligned}$	Axis 1 automatic decelerating flag S Axis 32 automatic decelerating flag
$\begin{aligned} & \text { M2160 } \\ & \text { M2239 } \end{aligned}$	Unusable
$\begin{aligned} & \text { M2240 } \\ & \text { M2271 } \end{aligned}$	Axis 1 speed change " 0 " accepting flag S Axis 32 speed change " 0 " accepting flag

Device No.	Signal name
M2272	Axis 1 control loop monitor status
$\int_{\mathrm{S}} \mathrm{M} 2303$	Axis 32 control loop monitor status
M2304 M2319	Unusable

*1: Unusable when performing SV22 advanced synchronous control.
*2: Unusable in real mode.
(2) Common device (command signal) list

Device No.	Signal name	Refresh cycle	Load cycle	Signal type	Remarks ${ }^{* 1, * 2}$
M3072	PLC ready flag		Main cycle	Command signal	M2000
M3073	Speed switching point specified flag		When starting		M2040
M3074	All axes servo ON command		Operation cycle		M2042
M3075	Real mode/virtual mode switching Request (SV22) *3		When switching to virtual mode		M2043
M3076	JOG operation simultaneous start command		Main cycle		M2048
M3077	Manual pulse generator 1 enable flag				M2051
M3078	Manual pulse generator 2 enable flag				M2052
M3079	Manual pulse generator 3 enable flag				M2053
M3080	Motion error history clear request flag				M2035
M3081	Unusable ${ }^{*}{ }^{4}$ (55 points)		-	-	-
M3135					

*1: If the device in the Remarks field is turned ON/OFF directly, the device status will not match. Please note that if requests are issued simultaneously from the data register and the above devices, requests from these devices will be valid.
*2: Commands are possible even for devices in the Remarks field.
*3: Unusable when performing SV22 advanced synchronous control.
*4: Do not use as a user device. This will be a command signal spare area, and therefore can be used as a device to perform automatic refresh.

4.3.3 Data register (monitor device/control change register)

There are 19824 data registers in the Q17nDSCPU, from D0 to D19823. Of these, 800 points from D0 to D799 are used for positioning control, and 9584 points from D10240 to D19823 are used for advanced synchronous control, and their respective applications are fixed as shown in the following tables.
(1) Axis monitor device list

$\begin{array}{\|c\|} \hline \text { Axis } \\ \text { No. } \\ \hline \end{array}$	Device No.	Signal name				
1	D0~D19	母 Signal name				
2	D20~D39			Refresh cycle	Load cycle	Signal type
3	D40~D59					
4	D60~D79	0	Feed current value	Operation cycle		Monitor device
5	D80~D99	1				
6	D100~D119	2	Real current value			
7	D120~D139	3				
8	D140~D159	4	Deviation counter value			
9	D160~D179	5	Deviation counter value			
10	D180~D199	6	Minor error code	Immediate		
11	D200~D219	7	Major error code			
12	D220~D239	8	Servo error code	Main cycle		
13	D240~D259	9	Zeroing retravel value	Operation cycle		
14	D260~D279	10	Travel value after proximity dog ON			
15	D280~D299	11				
16	D300~D319	12	Execute program No.	When starting		
17	D320~D339	13	M-code	Operation cycle		
18	D340~D359	14	Torque limit value			
19	D360~D379	15	Data set pointer for constant-speed control	When starting/started		
20	D380~D399					
21	D400~D419	16	Unusable *	-	-	-
22	D420~D439	17				
23	D440~D459	18	Real current value at stop input	Operation cycle		Monitor device
24	D460~D479	19				
25	D480~D499					
26	D500~D519					
27	D520~D539					
28	D540~D559					
29	D560~D579					
30	D580~D599					
31	D600~D619					
32	D620~D639					

*1: Can be used as the travel value change register. The travel value change register can be set for the desired device in the servo program.

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(2) Control change register list

Axis No.	Device No.	Signal name				
1	D640, D641		Signal name	Refresh cycle	Load cycle	Signal type
2	D642, D643					
3	D644, D645					
4	D646, D647	0	JOG speed setting		When starting	Command device
5	D648, D649	1				
6	D650, D651					
7	D652, D653					
8	D654, D655					
9	D656, D657					
10	D658, D659					
11	D660, D661					
12	D662, D663					
13	D664, D665					
14	D666, D667					
15	D668, D669					
16	D670, D671					
17	D672, D673					
18	D674, D675					
19	D676, D677					
20	D678, D679					
21	D680, D681					
22	D682, D683					
23	D684, D685					
24	D686, D687					
25	D688, D689					
26	D690, D691					
27	D692, D693					
28	D694, D695					
29	D696, D697					
30	D698, D699					
31	D700, D701					
32	D702, D703					

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(3) Servo input axis monitor device list

Axis No.	Device No.	Signal name					
1	D12280~D12289			Signal name		Load cycle	
2	D12290~D12299			Refresh cycle	Signal type		
3	D12300~D12309						
4	D12310~D12319	0	Md. 300	Servo input axis current value	Operation cycle	\qquad	Monitor device
5	D12320~D12329	1					
6	D12330~D12339	2	Md. 301	Servo input axis speed			
7	D12340~D12349	3					
8	D12350~D12359	4	Md. 302	Servo input axis phase compensation amount			
9	D12360~D12369	5					
10	D12370~D12379	6	Md. 303	Servo input axis rotation direction restriction amount			
11	D12380~D12389	7					
12	D12390~D12399	8	-	Unusable	-	-	-
13	D12400~D12409	9					
14	D12410~D12419						
15	D12420~D12429						
16	D12430~D12439						
17	D12440~D12449						
18	D12450~D12459						
19	D12460~D12469						
20	D12470~D12479						
21	D12480~D12489						
22	D12490~D12499						
23	D12500~D12509						
24	D12510~D12519						
25	D12520~D12529						
26	D12530~D12539						
27	D12540~D12549						
28	D12550~D12559						
29	D12560~D12569						
30	D12570~D12579						
31	D12580~D12589						
32	D12590~D12599						

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(4) Servo input axis control device list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(5) Command generation axis monitor device list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(6) Command generation axis control device list

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(7) Synchronous encoder axis monitor device list

(8) Synchronous encoder axis control device list

(9) Output axis monitor device list

Axis No.	Device No.	Signal name					
1	D13600~D13629						
2	D13630~D13659	Symbol		Signal name	Refresh cycle	Load cycle	Signal type
3	D13660~D13689						
4	D13690~D13719	0	Md. 400	Current value after composite main	Operation cycle		Monitor device
5	D13720~D13749	1	Md. 400	shaft gear			
6	D13750~D13779	2	Md 401	Current value per cycle after main shaft			
7	D13780~D13809	3		gear			
8	D13810~D13839	4	Md. 402	Current value per cycle after auxiliary shaft gear			
9	D13840~D13869	5					
10	D13870~D13899	6	Md. 422	Main shaft clutch slippage (accumulative)			
11	D13900~D13929	7					
12	D13930~D13959	8	Md. 425	Auxiliary shaft clutch slippage (accumulative)			
13	D13960~D13989	9					
14	D13990~D14019	10	Md. 406	Cam axis phase compensation amount			
15	D14020~D14049	11					
16	D14050~D14079	12	Md. 407	Cam axis current value per cycle			
17	D14080~D14109	13					
18	D14110~D14139	14	Md. 408	Cam reference position			
19	D14140~D14169	15					
20	D14170~D14199	16	Md. 409	Cam axis feed current value			
21	D14200~D14229	17					
22	D14230~D14259	18	Md. 410	Execution cam No.			
23	D14260~D14289	19	-	Unusable	-	-	-
24	D14290~D14319	20	Md. 411	Execute cam stroke amount	Operation cycle		Monitor device
25	D14320~D14349	21	Md. 41	Execute cam stroke amount			
26	D14350~D14379	22	Md. 412	Execute Cam axis length per cycle			
27	D14380~D14409	23					
28	D14410~D14439	24	-	Unusable	-	-	-
29	D14440~D14469	25					
30	D14470~D14499	26					
31	D14500~D14529	27					
32	D14530~D14559	28					
		29					

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(10) Output axis control device list

Output axis control device list (cont.)

Output axis control device list (cont.)

Output axis control device list (cont.)

Axis	Device No.	Signal name					
1	D15000~D15149		Symbol	Signal name	Refresh cycle	Load cycle	Signal tvpe
2	D15150~D15299						
3	D15300~D15449						
4	D15450~D15599	125	-	Unusable	-	-	-
5	D15600~D15749	126					
6	D15750~D15899	127					
7	D15900~D16049	128					
8	D16050~D16199	129					
9	D16200~D16349	130	Cd. 407	Synchronous control change		When requesting simultaneous control change	Command device
10	D16350~D16499	131	Cd. 409	Synchronous control change reflection time			
11	D16500~D16649	132	Cd. 408	Synchronous control change value			
12	D16650~D16799	133					
13	D16800~D16949	134	-	Unusable	-	-	-
14	D16950~D17099	135					
15	D17100~D17249	136					
16	D17250~D17399	137					
17	D17400~D17549	138					
18	D17550~D17699	139					
19	D17700~D17849	140					
20	D17850~D17999	141					
21	D18000~D18149	142					
22	D18150~D18299	143					
23	D18300~D18449	144					
24	D18450~D18599	145					
25	D18600~D18749	146					
26	D18750~D18899	147					
27	D18900~D19049	148					
28	D19050~D19199	149					
29	D19200~D19349						
30	D19350~D19499						
31	D19500~D19649						
32	D19650~D19799						

POINT

(1) With the Q172DSCPU, the axis No. 1 to 16 range is valid.
(2) With the Q172DSCPU, device areas of 17 axes or greater can be used as user devices.
However, if a Q172DSCPU project is replaced with a Q173DSCPU project, it will no longer be able to be used as a user device.
(12) Common device list

*1: Unusable with SV22 advanced synchronous control.
${ }^{*}$ 2: With the Q172DSCPU, the axis No. 1 to 16 range is valid
*3: With the Q172DSCPU, devices areas for axis 17 and above are unusable.

4.3.4 Special relays

The Q17nDSCPU has 2256 special relays from SM0 to SM2255.
Nine of these are used for positioning control, and their respective applications are fixed as shown in the following tables.

Device No.	Signal name	Refresh cycle	Signal type
SM500	PCPU READY complete flag		Status signal
SM501	Test mode flag	Main cycle	
SM502	External forced stop input flag	Operation cycle	
SM503	Digital oscilloscope executing flag	Main cycle	
SM506	External forced stop input ON latch flag	Operation cycle	
SM508	Amplifier-less operation status flag	Main cycle	
SM510	TEST mode request error flag		
SM512	PCPU WDT error flag		
SM513	Manual pulse generator axis setting error flag		
SM516	Servo program setting error flag		

4.3.5 Special Registers

There are 2256 special registers in the Q17nDSCPU, from SD0 to SD2255. In addition to special registers used for positioning control, 23 data registers are used as special registers, and their respective applications are fixed as shown in the following tables.

[^1]
4.4 Motion Devices

Motion registers (\#0 to \#12287) and a coasting timer (FT) are used as dedicated motion CPU devices.
These can be used for operation control (F/FS) programs or transition (G) programs.
(Direct access is not possible from PLCs, and therefore motion CPUs should be accesses after substituting the PLC device if using at the PLC side.)

4.4.1 Motion registers (\#0 to \#12287)

	Item	Q173DSCPU/Q172DSCPU
Motion register (\#)	No. of points	12288 points (\#0 to \#12287)
	Data size	16 bits/point
	Latch	Only user devices are latched. (All points are cleared with the latch clear operation.)
	Usable tasks	Normal, event, NMI
	Access	Complete range Read, Write possible

(1) Motion register list

These OS is common for all registers.

Device No.	Application type	Remarks
$\int_{S}^{\# 0}$	User device (8000 points)	Cleared with the latch clear operation.
	Monitor device (640 points)	Cleared only when the power is turned ON or when reset.
\#8640	Motion error history device (96 points)	Cleared with motion error history clear request flag ON. (Retained when power turned ON, or when reset.)
\#8736	Product information list device (16 points)	Set when the power is turned ON or when reset.
	System area (3536 points)	Cleared only when the power is turned ON or when reset.

(2) Monitor devices (\#8000 to \#8639)

Monitor devices store information for each axis. Details of the stored data are as follows.

Axis No.	Device No.	Signal name			
1	\#8000 to \#8019	Signal name		Refresh cycle	Signal type
2	\#8020 to \#8039				
3	\#8040 to \#8059				
4	\#8060 to \#8079	0	Servo amplifier type	When amplifier power turned ON	Monitor device
5	\#8080 to \#8099	1	Motor current	Operation cycle of 1.7 [ms] or shorter: operation cycle Operation cycle of 3.5 [ms] or longer: 3.5 [ms]	
6	\#8100 to \#8119	2	Motor speed		
7	\#8120 to \#8139	3			
8	\#8140 to \#8159	4	Command speed	Operation cycle	
9	\#8160 to \#8179	5			
10	\#8180 to \#8199	6	Zeroing re-travel value	When performing zeroing re-travel	
11	\#8200 to \#8219	7	Zeroing re-travel value		
12	\#8220 to \#8239	8	Servo amplifier display Servo error code	Main cycle	
13	\#8240 to \#8259	9	Parameter error No.		
14	\#8260 to \#8279	10	Servo status 1	Operation cycle of 1.7 [ms] or shorter: operation cycle Operation cycle of 3.5 [ms] or longer: 3.5 [ms]	
15	\#8280 to \#8299	11	Servo status 2		
16	\#8300 to \#8319	12	Servo status 3		
17	\#8320 to \#8339	13	Unusable	- ${ }^{\text {c }}$	-
18	\#8340 to \#8359	14			
19	\#8360 to \#8379	15			
20	\#8380 to \#8399	16			
21	\#8400 to \#8419	17			
22	\#8420 to \#8439	18			
23	\#8440 to \#8459	19			
24	\#8460 to \#8479				
25	\#8480 to \#8499				
26	\#8500 to \#8519				
27	\#8520 to \#8539				
28	\#8540 to \#8559				
29	\#8560 to \#8579				
30	\#8580 to \#8599				
31	\#8600 to \#8619				
32	\#8620 to \#8639				

(3) Motion error history devices (\#8640 to \#8735)

Motion error history devices are shown below.

Device No.	Signal name		Signal direction		Refresh cycle	Load cycle
			Status	Command		
\#8640 to \#8651	Information on past 7 errors (Oldest error information)	Motion error history (8 times) (96 points)	\bigcirc	-	When an error occurs	-
\#8652 to \#8663	Information on past 6 errors					
\#8664 to \#8675	Information on past 5 errors					
\#8676 to \#8687	Information on past 4 errors					
\#8688 to \#8699	Information on past 3 errors					
\#8700 to \#8711	Information on past 2 errors					
\#8712 to \#8723	Information on past 1 errors					
\#8724 to \#8735	Newest error information					

(4) Motion error history device error information

Information for the past eight errors after turning ON the CPU power is stored as history. Numbers \#8724 to \#8735 contain the latest errors.
Errors when performing SFC control, and all existing minor and major errors, servo errors, servo program errors, and mode switching errors, etc. are tabulated in the history.
When an error occurs, "Motion error detection flag M2039" is also set. Error information is as follows.

No.	Signal name	Details	
		If error occurs when performing motion SFC control	If motion control error
+0	Motion SFC Error program No.	$\begin{array}{\|ll} \hline 0 \text { to } 255: & \text { Motion SFC program No. for which } \\ -1: & \text { error occurred } \\ -1 \text { If unrelated to motion SFC program } \end{array}$	-1
+1	Error type	20: When F/FS 21: When G 22: When K or other (when neither F/FS nor G) 23: When motion SFC diagram	2: Minor, major errors (command generation axis) (SV22 advanced synchronous control method) 3: Minor, major errors 4: Minor, major errors (virtual servo motor axis) (SV22 virtual mode switching method) 5: Minor, major errors (synchronous encoder axis) (SV22) 6: Errors detected by servo amplifier (MR-J3-B) 7: Servo program setting errors 8: Mode switching errors (SV22 virtual mode switching method) 9: Manual pulse generator axis setting errors 10: Test mode request errors 11: WDT errors 13: Self-diagnostic errors (error code 10000 and below) 14: System setting errors/motion slot error detection 15: Errors detected by servo amplifier (MR-J4-B) 42: Errors detected by SSCNET III/H head unit 50: Safety monitor errors 51: Safety monitor warnings
+2	Error program No.	$\begin{aligned} & 0 \text { to 4095: F/FS, G, K program No. } \\ & \begin{array}{l} 0 \text { to } 255: \text { GSUB program No. } \\ -1: \quad \text { If unrelated to F/FS, G, K, GSUB } \end{array} \end{aligned}$	- If error type is "2", "3", "4", or "7" 0 to 4095: Servo program No. FFFFH: JOG operation FFFEH: Manual pulse generator FFFDH: Test mode (zeroing, servo diagnosis, servo startup) FFEFH: Synchronous control FFDFH: Speed control FFDEH: Torque control FFDDH: Push control FF00H: All other cases - If error type is other than "2", "3", "4", or "7" -1
+3	Error block No./Motion SFC list/ Line No./Axis No.	$\begin{aligned} & 0 \text { to 8191: If error type is "20"or "21", F/FS or G } \\ & \text { program block No. (line No.) } \\ & \text { Oto 8188: If error type is "23", } \\ & \text { motion SFC list line No. } \\ & -1: \\ & \text { If error type is "22", or error type is } \\ & \\ & \text { "20" or "21" and unrelated to block } \end{aligned}$	1 to 32 : If error type is " 2 " to " 6 ", relevant axis No. 1 to 8: If error type is "42", relevant SSCNET III/ H head unit axis No. -1: All other cases

(Go to next page)
(From previous page)

*1: If command execution fails for motion SFC program synchronous control dedicated functions, a details code is output to both the motion error history device error code and the error setting data.
(5) Motion error detection flag (M2039)

The motion error detection flag (M2039) turns ON when all errors detected by the motion CPU occur.
When an error occurs, set the motion error detection flag (M2039) for the error device with the following procedure.
(a) Set the error code for each axis or each error device.
(b) Turn ON the error detection signal for each axis or each error.
(c) Set the motion error detection flag (M2039) for the above "motion error history devices (\#8640 to \#8735)".
(d) Turn the motion error detection flag (M2039) ON.

After reading error history with the "Motion error detection flag (M2039)" ON, reset the "Motion error detection flag (M2039)" in the user program. The "Motion error detection flag (M2039)" will turn ON again for subsequent new errors.

POINT

- If turning the "Motion error detection flag (M2039)" OFF, check the error content, eliminate the cause of the error, and then turn it OFF at the user side.
Turning M2039 OFF clears self-diagnostic error information other than for stop errors.
- Set clock data and the clock data read request (SM801) in the user program.

(6) Error setting when servo warnings occur

Set whether to output an error to the MT Developer2 motion error history and self-diagnostic errors when a servo warning occurs.
Set in the system basic settings in the system settings.
Refer to the "Q173D(S)CPU/Q172D(S)CPU Motion Controller Programming Manual (Common Edition)" for details.

4.5 Coasting Timer (FT)

Motion device	Item	
Coasting timer (FT) 	No. of points	1 point (FT)
	Data size	32 bits/point (-2147483648 to 2147483647)
	Latch	No latch. The timer is reset to 0 when the power is turned ON, and counting is continued.
	Usable tasks	Normal, event, NMI
	Access	Read only possible
	Timer specifications	888μ s timer (1 is added to the current value (FT) every $888 ~ \mu \mathrm{~s})$.

*1: Use devices SD720 or SD721 for the 444μ s coasting timer.
*2: Use devices SD722 or SD723 for the $222 \mu \mathrm{~s}$ coasting timer.

Chapter 5 Motion SFC Programs

This section describes the configuration and each element of motion SFC programs.
Previously, machine operations were managed at the PLC CPU side, and the starting and stopping of motion SFC programs was controlled at the motion CPU side with start and stop commands from the PLC. Consequently, the time taken from the point command conditions were established until commands were issued was delayed by at most the number of sequences taken to perform a single scan, and the resultant variations in this time restricted applications which demanded responsiveness and short tact time.
With the Q Series motion controller, programs at the motion side are described with an SFC (Sequential Function Chart), enabling the control of machine operations. Furthermore, it is now also possible to control events that require program execution when interrupts are input from external sensors.

5.1 Features

(1) By breaking up machine sequential operations into individual steps, anyone can create easy-to-understand programs in flowchart format, resulting in improved maintenance.
(2) Transition conditions are identified and positioning started at the motion CPU side, meaning no variations in the response time that can be influence sequence scan time.
(3) With the motion SFC step processing method (active steps only executed), high-speed processing, and high-speed response processing can be realized.
(4) In addition to positioning control, numerical operations and device SET/RST, etc. can also be processed at the motion CPU side, leading to reduced tact time without involving the PLC CPU.
(5) Commands can be issued to servo amplifiers when start conditions are established with a transition conditions description unique to motion SFC.
(6) Operation can proceed to the next step without waiting for positioning to be completed after starting with a transition condition description unique to motion SFC.
(7) Motion SFC programs that respond to interrupt inputs from external sources can be executed.
(8) Motion SFC programs can be executed at regular intervals (min. 0.22 ms : when using Q17ロDSCPU) by synchronizing with the motion operation cycle.

5.2 Motion SFC Program Configuration

Motion SFC programs are configured by START, step, transition, and END components and so on as shown below.

Operation for the above motion SFC program when started is as follows.
(1) The step (F0) status becomes active, and the operation specified at the step (F0) is executed (positioning preparation). An active status step is known as an active step.
(2) A check is carried out to determine whether the conditions specified at the transition (GO) have been established (whether the positioning program can be started), the active step (FO) becomes inactive when conditions are established, and the next step (K0) becomes active (servo program K0 is started).
(3) A check is carried out at the transition (G1) to ensure that step (K0) operation is complete (servo program K0 positioning complete), and control advances to the next step when operation is complete (conditions established).
(4) As the active step advances as described in (1) to (3) above, control is executed and then completed with END.

POINT

The number of steps that can simultaneously be active steps in all motion SFC programs is 256 or less.
If 256 is exceeded, a Motion SFC error [16120] occurs.
The motion SFC program symbols are as follows.
F/FS: operation control, K: positioning control, G: judgment

5.3 SFC Diagram Symbol List

The parts that form the component elements of the motion SFC program are as follows. The motion SFC program expresses the operation order and transition control by joining these parts with a directed line.

Category	Name	Symbol (Code size (bytes))	List expression	Function
Program Start/end	START	Program name(0)	Program name	- Indicates the program entrance with the program name. - This program name is specified when calling subroutines. - Limited to one per program.
	END	(8)	END	- Indicates the end (exit) of the program. - When a sub-routine is called, operation returns to the program from which the sub-routine was called. - Multiple ENDs can be set within a single program, and can be set even if none.
Steps	Motion control step	(8)	CALL Kn	- Starts servo program Kn (K0 to K4095).
	Single execution type Operation control step	(8)	CALL Fn	- Executes operation control program Fn (F0 to F4095) once.
	Scan execution type operation control step	(8)	CALL FSn	- Executes operation control program FSn (FS0 to FS4095) repeatedly until the next transition condition is established.
	Sub-routine call/start step	Program name	GSUB program name	- If WAIT follows GSUB, a "Sub-routine call" condition occurs, and control advances to the specified program. Control is returned to the program from which the sub-routine is called when END is executed. - If GSUB is followed by other than WAIT, a "Sub-routine start" condition occurs, the specified program is started, and control advances to the next (below) program. The start source program and start destination program are executed simultaneously, and the start destination program is exited when END is executed.
	Clear step	(8)	CLR program name	- Execution of the specified program currently running is stopped, and the program is exited. By restarting the program after exiting, it starts from the initial step (start step). - If the specified program is currently "calling a subroutine", execution of the sub-routine program is also stopped. - If the specified program is at a point after "starting the sub-routine", execution of the sub-routine program is not stopped. - If a clear is performed for the "called sub-routine", execution of the specified sub-routine is stopped, control returns to the program from which the subroutine was called, and then proceeds to the next.

POINT

Comments can be set for each symbol in SFC diagram steps, transitions, etc.

- Program start/end comments cannot be set.
- Step/transition comments: max. 80 half-width (40 full-width) characters, 20 characters displayed in 4 lines
- Jump/pointer comments: max. 64 half-width (32 full-width) characters, 16 characters displayed in 4 lines

Category	Name	Symbol (Code size (bytes))	List expression	Function
Transition	Shift (Read-ahead transition)	Gn	SFT Gn	- If the previous step is a motion control step, processing proceeds to the next step without waiting for the completion of motion operation when transition condition Gn (G0 to G4095) is established. - If the previous step is an operation control step, processing proceeds to the next step following operation execution when the transition condition is established. - If the previous step is a sub-routine call/start step, processing proceeds to the next step without waiting for the completion of sub-routine operation when the transition condition is established.
	WAIT	Gn (8)	WAIT Gn	- If the previous step is a motion control step, processing proceeds to the next step without waiting for the completion of motion operation when transition condition Gn (G0 to G4095) is established. - If the previous step is an operation control step, processing proceeds to the next step following operation execution when the transition condition is established. (Same operation as shift) - If the previous step is a sub-routine call/start step, processing waits for completion of sub-routine operation, and then proceeds to the next when the transition condition is established.
	WAITON		WAITON bit device	- Start preparations are carried out for the next motion control step, and a command is issued immediately when the specified bit device turns ON. - Always set a one-to-one pair with the motion control step.
	WAITOFF	 (14)	WAITOFF bit device	- Start preparations are carried out for the next motion control step, and a command is issued immediately when the specified bit device turns OFF. - Always set a one-to-one pair with the motion control step.
	Shift Y/N			- If the previous step is a motion control step, processing proceeds to the step below without waiting for the completion of motion operation when transition condition Gn (G0 to G4095) is established, and when the condition is not established, processing proceeds to the step connected from the right. - If the previous step is an operation control step, processing proceeds to the step below following operation execution when the transition condition is established, and when the condition is not established, processing proceeds to the step connected from the right. - If the previous step is a sub-routine call/start step, processing proceeds to the step below without waiting for the completion of the sub-routine operation when the transition condition is established, and when the condition is not established, processing proceeds to the step connected from the right.
	WAIT Y/N		IFBm IFT1 WAIT Gn \vdots JMP IFEm IFT2 WAIT Gn+? \vdots JMP IFEm IFEm	- If the previous step is a motion control step, processing waits for completion of motion operation, and proceeds to the next step when transition condition Gn (G0 to G4095) is established, and when the condition is not established, processing proceeds to the step connected from the right. - If the previous step is an operation control step, processing proceeds to the step below following operation execution when the transition condition is established, and when the condition is not established, processing proceeds to the step connected from the right. (Same operation as shift) - If the previous step is a sub-routine call/start step, control waits for completion of the sub-routine, and proceeds to the step below when the transition condition is established, and when the condition is not established, processing proceeds to the step connected from the right.
Jump	Jump	(14)	JMP Pn	- Controls jumps to specified pointer Pn (P0 to P16383) inside the self program.
Pointer	Pointer	(8)	Pn	- Indicates the jump destination pointer (label). - Pointers can be set for steps, transitions, branch points, and nodes. - P0 to P16383 can be set for a single program. Numbers may overlap with those in other programs.

5.4 Branch and Node Diagram List

SFC diagrams show branch and node patterns used to specify the flow of steps and transitions.

	Name (code size) (bytes))	SFC	bol	List expression	Function
$\begin{aligned} & 0.0 \\ & \stackrel{0}{0} \\ & \frac{0}{\omega} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	Series transitions (Size of each symbol)			Based on list expression corresponding to SFC diagram symbols shown in 5.2.	- Processes each step, transition connected in series in order from the top. - Steps and transitions do not have to be aligned alternately. - If transitions are omitted, unconditional shift transition processing is performed.
	Selection branches ((No. of branches + 2) $\times 10$)			$$	- After executing the step or branch immediately before the branch, the route for which transition conditions are established first is executed. - The start of the branch destination name for the selection branch must be a transition, is limited to all SHIFTs or all WAITs. (If SHIFTs and WAITs are mixed, the branch will be a parallel branch.)
	Selection nodes (8)			$\begin{gathered} \text { CALL Fn' } \\ \vdots \\ \text { (JMP IFEm) } \\ \text { IFEm } \\ \text { CALL Fn" } \end{gathered}$	- Following processing of the branched route with the selection branch, processing proceeds to the node. - Either steps or transitions may be used immediately before or after nodes.
	Parallel branches (No. of branches \times $22+$ No. of nodes \times $2+12)$			SFT Gn PABm PAT1 CALL Fn SFT Gn	- Multiple routes (steps) connected in parallel are executed simultaneously. - The start of the branch destination name for the parallel branch may be either a step or a transition.
	Parallel node (8)			$\begin{gathered} \text { PAT2 } \\ \text { CALL Fn' } \\ \text { SFT Gn" } \\ \vdots \\ \left(\begin{array}{l} \text { (MP PAEm }) \\ \text { PAEm } \\ \text { CALL Fn" } \end{array}\right. \end{gathered}$	- Completion of execution of each branched route with a parallel branch waits at a node, and processing proceeds to the next step when execution is complete for all routes. - Either steps or transitions may be used immediately before or after nodes. - If the step immediately before the node is an FS step, scanning is performed even while waiting. Scanning is not performed after waiting is complete.
	Jump transition (Size of each symbol)			$\begin{aligned} & \text { CALL Fn } \\ & \text { JMP Pn } \end{aligned}$	(1) Normal jump - After executing the previous step or transition, control jumps to execution of the specified pointer Pn inside the self program. - It is possible to jump to either a step or a transition. - Even if jumping from an FS step to a transition, scanning is performed while the jump destination transition condition is established. (2) Node jump - If jumping to another route within a parallel branch after a parallel branch, a "node jump" is made, and the system awaits execution at the jump destination.
				$\begin{array}{ll} & \text { CALL Fn' } \\ & \text { Pn } \\ \text { CALL Kn } \end{array}$	

5.5 Motion SFC Program Name

The "motion SFC program name" is set individually for motion SFC program No. 0 to No. 255.
The motion SFC program name is set within 16 half-width characters (8 fullwidth characters). Specify this motion SFC program name in "sub-routine call/ start steps (GSUB)", and "clear steps (CLR)".

POINT

(1) The motion SFC program can be set to a random number between 0 and 255.
(2) "\$ (half-width)" cannot be set for the first character of the motion SFC program name.
(3) " $\ /: ;,$. * ? " < > | (half-width)" cannot be set in the motion SFC program name.

5.6 Steps

5.6.1 Motion control steps

Motion control steps are used to start servo program Kn.

Name	Symbol	Function		
Motion control step	Kn			Motion control steps are used to start
:---				
servo program Kn.				
Specification range: K0 to K4095				

(1) Operation description

(a) The start accept flag for the axis specified in the specified servo program Kn turns ON.
(b) The specified servo program Kn is started.

(2) Error

A Motion SFC error [16200] occurs when the specified servo program Kn does not exist, and execution of the motion SFC program is stopped the moment this error is detected.

(3) Precautions

(a) If changes are made to the current values in the motion SFC program, specify the CHGA command in the servo program, and then call it with the motion control step.
(b) Even if a minor error/major error occurs and an error stop condition occurs at the servo program when the servo program specified with the motion control step is started or while starting, execution of the motion SFC program continues. If wishing to stop the motion SFC program when an error is detected, insert an error detection condition in the transition (transition condition).

5.6.2 Operation control steps

Operation control steps are used to execute operation control program Fn/FSn.

Name	Symbol	Function
Operation control step	Fn/FSn	Operation control steps are used to execute operation control program Fn/FSn. Specification range: F0 to F4095/FS0 to FS4095

(1) Operation description
(a) One-time execution type operation control step Fn

Executes the specified operation control program Fn (n = F0 to F4095) once.
(b) Scan execution type operation control step FSn

Executes the specified operation control program FSn ($\mathrm{n}=0$ to 4095) repeatedly until the next transition condition is established.
(2) Error

A Motion SFC error [16201] occurs when the specified operation control program $\mathrm{Fn} / \mathrm{FSn}$ does not exist, and execution of the motion SFC program is stopped the moment this error is detected.

(3) Precautions

(a) Even if an operation error, etc. occurs during operation control program execution, execution of the motion SFC program continues.

5.6.3 Sub-routine call/start steps

Sub-routine call/start steps are used to call or start motion SFC programs for the specified program name.

Name	Symbol			
Sub-routine Call/start step	Function			
	Program name			Sub-routine call/start steps are used to
:---:				
call motion SFC programs for the				
specified program name.				

(1) Operation description
(a) Sub-routine call/start steps are used to call or start motion SFC programs for the specified program name.
(b) Control differs depending on the type of the transition linked after the sub-routine call/start step.

- If WAIT: The sub-routine is called.
- If other than WAIT: The sub-routine is started.

(2) Errors

An error occurs in the following cases and execution of the motion SFC program is stopped.
(a) A Motion SFC error [16005] occurs if the specified motion SFC program does not exist when a sub-routine is called/started, and execution of the motion SFC program from which the call/start originated is stopped the moment this error is detected.
(b) A Motion SFC error [16006] occurs if the called/started motion SFC program has already been started when a sub-routine is called/started, and execution of the motion SFC program from which the call/start originated is stopped the moment this error is detected.
(c) A Motion SFC error [16110] occurs if a self program is called/started when a sub-routine is called/started, and execution of the motion SFC program from which the call/start originated is stopped the moment this error is detected.
(d) When the sub-routine called/started when calling/starting a sub-routine is motion SFC program 1 (called/start program) in motion SFC program 2 called/started from motion SFC program 1, Motion SFC error [16111] occurs, and motion SFC program 2 from which the called/started originated is stopped the moment this error is detected.
(3) Precautions
(a) There are no restrictions on sub-routine call/start nesting depth.
(b) With sub-routine starting, processing of the motion SFC program from which the start originated continues even if an error stop occurs for the start destination motion SFC program.
(c) With sub-routine calling, when an error stop occurs for the call destination motion SFC program, execution of the motion SFC program from which the call originated is also stopped at the same time.

5.6.4 Clear Steps

Clear steps are used to stop execution of motion SFC programs for the specified program name.

Name	Symbol	Function			
Clear step	CLR Program name				Clear steps are used to stop execution of motion SFC programs for the specified program name.

(1) Operation description

(a) Execution of the specified program currently running is stopped.
(b) Even if the motion SFC program for which the clear step is specified is set to start automatically, it will not automatically start again after stopping.
(c) The specified program can also be a self program.
(d) If the specified program is currently calling a sub-routine, execution of the sub- routine program being called is also stopped.

END
(e) If the specified program is at a point after starting the sub-routine, processing of the started sub-routine program continues.

(f) If the servo program started from the specified program is currently being started, processing of the servo program continues.
(g) If waiting for conditions to be established at the WAITON/WAITOFF+ motion control step, the system waits for conditions to be established and then executes the servo program. If the servo program is not executed, enter a stop command separately for the relevant axis.

(2) Error

If the motion SFC program specified in the clear step does not exist, a Motion SFC error [16203] occurs.

(3) Precautions

(a) When the motion SFC program specified in the clear step has not been started, no error occurs and the condition is ignored.
(b) Even if execution of the motion SFC program is stopped with the clear step, output is maintained.
(c) If stopping the axis that is currently operating in conjunction with execution of the clear step, enter a stop command for the relevant axis separately.

5.7 Transition

Conditional expressions and operational expressions can be described in transitions. The operational expression described here is executed repeatedly until the transitional condition is established.
(1) Operation description
(a) Motion control step + SHIFT

- Processing proceeds to the next step when transition condition Gn is established without waiting for the completion of operation of servo program Kn started with the motion control step.
(b) Motion control step + WAIT
- Processing waits for the completion of operation of servo program Kn started with the motion control step, and then proceeds to the next step
 when transition condition Gn is established.
- No condition for the completion of operation of servo program Kn is required in transition condition Gn .
- Even if an error stop occurs when the started servo program Kn is started or while it is starting, the system deems that operation is complete.
(c) WAITON/WAITOFF + motion control step

- Processing starts immediately when the specified bit device for WAITON/WAITOFF turns ON/OFF.
(d) Combination with operation control step
- The same operation is performed for both WAIT and SHIFT, and after executing operation control
 program Fn, processing proceeds to the next step when transition condition Gn is established.
- In the case of operation control steps, the same operation is performed for both WAIT and SHIFT, and after executing operation control program Fn, processing proceeds to the next step when transition condition Gn is established.

(2) Precautions

(a) Always set a one-to-one pair with the motion control step. If the step after WAITON/WAITOFF is not a motion control step, execution of the motion SFC program is stopped the moment an error is detected.
(b) When the jump destination immediately after WAITON/WAITOFF is a motion control step, no error occurs. (See lower left diagram.)
(c) It is possible for a pointer to exist immediately after WAITON/WAITOFF. (See lower right diagram.)

(d) If a minor/major error occurs when starting the servo program specified in the motion control step, preventing the program being started, execution of the motion SFC program continues regardless of the WAITON/WAITOFF bit device status, and processing proceeds to the next step. If wishing to stop the motion SFC program when an error is detected, insert an error detection condition in the next transition (transition condition).
(e) The following commands can be used with motion control steps used in combination with WAITON/WAITOFF.
(Linear interpolation control, circular interpolation control, helical interpolation control, speed switching control, fixed-pitch feed control, constant speed control, high-speed oscillating, fixed position stop speed control)

5.8 Jumps and Pointers

$\longrightarrow \underset{\text { Jump }}{\longrightarrow \mathrm{Pn}}$

(1) Operation description

(a) Jumps are used to jump to specified pointer Pn inside the self program.
(b) Pointers can be set for steps, transitions, branch points, and nodes.
(c) Pointer Pn can be set from P0 to P16383 for a single program.

(2) Precautions

(a) It is not possible to set the kind of jumps that break from inside parallel branches to parallel nodes.
(Bad example 1 below)
(b) It is not possible to set jumps inside parallel branches to parallel nodes from outside parallel branches to parallel nodes. (Bad example 2 below)
(c) Labels and jumps cannot be set consecutively. (Bad example 3 below)

5.9 END

(1) Operation description
(a) END is used to exit the program.
(b) When a sub-routine is called, processing returns to the motion SFC program from which the sub-routine was called.

(2) Precautions

(a) Multiple ENDs can be set within a single program.
(b) An END cannot be set between a parallel branch and node.
(c) Output is maintained even after exiting a motion SFC program with END.

5.10 Branches and Nodes

5.10.1 Series transitions

Series transitions are used to execute steps or transitions directly below those connected in series.
(1) If wishing to start a servo program or sub-routine, and proceed to the next step without waiting for the completion of operation:
Set a SHIFT in the transition.
In such cases, the transition (SHIFT) can be omitted.
If transitions are omitted, unconditional shift transition processing is performed.

(2) If wishing to start servo program or sub-routine, and proceed to the next step upon the completion of operation:
Set a WAIT in the transition.

Servo program K1 is started.

Proceeds to the next step when the start axis in servo program K1 stops (start accept flag OFF), and condition set in transition G1 is established.

K2 Servo program K2 is started.

5.10.2 Selection branches and selection nodes

(1) Selection branches

Selection branches are used to judge the conditions for multiple transitions connected in series, and execute only the route for which conditions are established quickest.
Transitions are restricted to all SHIFT or all WAIT.
(Example) If WAIT

The start axis in servo program K1 stops (start accept flag OFF), the conditions set in transition G1 to G255 are judged, and then processing proceeds to the established route.

POINT

(1) The judgment of transition conditions is not necessarily performed in order from left to right.

(2) Selection nodes

Selection nodes are used after selection branches if connecting to a single route again after completing the processing of each route, however, it is also possible to set not to be joined as shown below.

5.10.3 Parallel branches and parallel nodes

(1) Parallel branches

Multiple steps connected in parallel are executed simultaneously. The start of the parallel branch destination may be either a step or a transition.

POINT

A "SHIFT" or "WAIT" may also be set for transitions immediately before parallel branches. Neither "WAITON" nor "WAITOFF" can be set.

(2) Parallel nodes

If using parallel branches, always connect them to parallel nodes.
Jumps to other branch routes can be set between parallel branches and parallel nodes.
In such cases, the jump destination is a midway parallel node point (node jump).
It is not possible to set jumps that break from between parallel branches and parallel nodes.

5.11 Y/N Transitions

If branching a route when transition conditions have or have not been established, it is helpful to use a "SHIFT Y/N transition" or "WAIT Y/N transition"

Name	Symbol	Function
SHIFT Y/N transition		- Processing proceeds to the step below when the transition condition set in Gn is established, and when the condition is not established, processing proceeds to the step connected from the right. - The difference between "SHIFT Y/N" and "WAIT Y/N" is the same as the difference between "SHIFT" and "WAIT".
WAIT Y/N transition		

In this example, it has been made easy to describe a selection branch program for two routes as follows.

(2) Precautions

(a) If linking immediately before "SHIFT Y/N" or "WAIT Y/N", place a "consecutive node - branch" in between.

- It is not possible link directly to "SHIFT Y/N" or "WAIT Y/N".

- Place a "consecutive node branch" in between.

5.12 Task Operation

The timing at which motion SFC programs are executed can be set for each program in the program parameters with a single task. Tasks are largely divided into three types as shown in the following table.

Task type	Details
Normal tasks	Executed during motion CPU main cycle (spare time).
Event tasks	1. Executed at fixed cycles (0.22 $\mathrm{ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, 1.77 \mathrm{~ms}, 3.55 \mathrm{~ms}, 7.11 \mathrm{~ms}$, 2. Execus). $(16$ in QI60) is thened ON. 3. Executed with interrupt from PLC.
NMI tasks (Non-Maskable Interrupt)	Executed when the input set for the NMI task factor from among external interrupts (16 for QI60) is turned ON.

POINT

If executing event tasks in 0.22 ms fixed cycles, set " 0.2 ms " for the operation cycle time in the MT Developer2 system basic settings.
(1) Normal tasks
[Operation description]
Motion SFC programs are executed during motion CPU processing main cycles (spare time). The following is an overview of processing.

* Example of motion SFC parameter "No. of consecutive transitions setting 2"

[Point]
(a) Set motion SFC programs containing motion control steps for normal tasks.
(b) Execution of normal tasks is aborted while executing event tasks and NMI tasks.
However, with normal tasks, event task prohibition commands (DI) can be specified in operation control steps, and therefore event task interrupts can be prohibited in parts enclosed with an event task prohibition command (DI) and event task enable command (EI).

(2) Event tasks

Event tasks trigger the execution of motion SFC programs when events occur. There are three types of events as follows.
(a) Fixed cycle

Fixed cycle events regularly trigger the execution of motion SFC programs in a $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, 1.77 \mathrm{~ms}, 3.55 \mathrm{~ms}, 7.11 \mathrm{~ms}$, or 14.2 ms cycle.
(b) External interrupt (16 points from IO to I15)

A motion SFC program is executed when the input set for the event task from the 16 points of the Q160 (16 point interrupt unit) installed in the motion slot turns ON.
(c) Sequence interrupt

A motion SFC program is executed when a GINT command is executed for a sequence program for another Q PLC CPU.

POINT

(1) Multiple events can be set for a single motion SFC program. However, it is not possible to set multiple fixed cycles.
(2) It is also possible to execute multiple motion SFC programs with a single event.
(3) Motion control steps cannot be executed inside event tasks.
(4) If event tasks are prohibited with a normal task, it will not be possible to execute event tasks. If an event occurs while event tasks are prohibited, they are executed the moment event tasks are enabled.
(3) NMI tasks

Motion SFC programs are executed when the input set for the NMI task factor from among external interrupts (16 for Q160) is turned ON.

POINT

(1) NMI tasks are given the highest priority among normal tasks, event tasks, and NMI tasks.
(2) Even if event tasks are prohibited (DI) in a normal task, NMI task interrupts are performed without masking.
(4) Execution status example

The following diagram displays an example of the execution status for each motion SFC program when motion SFC programs are executed with multiple tasks.

If there is a program executed with an NMI task, program executed with a 3.55 ms fixed cycle event task, and a program executed with a normal task, as shown in the above diagram,
(a) 3.55 ms fixed cycle event tasks are executed every 3.55 ms ,
(b) If an NMI interrupt is entered, priority is given to execution of the NMI task,
(c) And the normal task is executed during spare time.

5.13 SFC Parameters

There are two types of SFC parameters, "task parameters" used to control tasks (normal tasks, event tasks, NMI tasks), and "program parameters" set for each motion SFC program.

5.13.1 Task parameters

No.		Item	Setting range	Default value	Remarks
1	No. of consecutive transitions	Normal tasks (Common to normal tasks)	1 to 30	3	This parameter reads values when the PLC ready flag (M2000) turns from OFF to ON, and then performs control. If setting or changing this parameter, turn the PLC ready flag (M2000) OFF.
2	Interrupt setting		Sets an event task or NMI task for external interrupt input (I0 to I15).	Event task	
3	Repeat control restriction count	Normal task	1 to 100000	1000	
		Event task	1 to 10000	100	
		NMI task	1 to 10000	100	

5.13.2 Program parameters

The following parameters are set for each motion SFC program.

No.	Item	Setting range	Default value	Remarks
1	Start setting	Sets whether to Start/Not start automatically.	Not start	This parameter reads values when the PLC ready flag (M2000) is ON, and then performs control. If setting or changing this parameter, turn the PLC ready flag (M2000) OFF.
2	Execution task	Only one from normal task, event task, NMI task	Normal task	
		If an event task is set, set another event to be enabled. One of the follow 1 to 3 must be set. 1. Fixed cycle One from $0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}, 0.88 \mathrm{~ms}, 1.77 \mathrm{~ms}, 3.55 \mathrm{~ms}, 7.11 \mathrm{~ms}$, or 14.2 ms , or none. 2. External interrupt (selected from those set for event task) Multiple interrupts can be set from IO to I15. 3. PLC interrupt Multiple interrupts can be set from IO to 115. Multiple tasks can be set from 1 to 3 . This is possible even if the same event is shared with multiple motion SFC programs.	None	
		If an NMI task is set, set another interrupt input to be enabled. 1. External interrupt (selected from those set for NMI task) Multiple interrupts can be set from I0 to I15.		
3	No. of consecutive transitions	1 to 10 Set the No. of consecutive transitions for programs set for event tasks or NMI tasks.	1	
4	END operation	End/continue Set the END step operation mode for programs set for event tasks or NMI tasks.	End	
5	Executing flag	None/bit device Set the bit device to be turned ON during motion SFC program execution. The following devices can be used. X0 to X1FFF ${ }^{* 1}$ Y0 to Y1FFF M0 to M8191 B0 to B1FFF UalG10000.0 to UD\G(10000+p-1).F (self CPUs only) ${ }^{*}$	None	

5.14 Motion SFC Program Start Method

Motion SFC programs run while PLC ready flag M2000 is ON.
There are three ways of starting motion SFC programs as follows.
(1) Automatic start
(2) Start from motion SFC program
(3) Start from PLC

The start method is set in the program parameters for each motion SFC program.
(1) Automatic start

Motion SFC programs are started automatically by turning the PLC ready flag M2000 ON.
(2) Start from motion SFC program

Motion SFC programs are started by executing a sub-routine call/start step in the motion SFC program.

(3) Start from PLC

Motion SFC programs are started by executing a D(P).SFCS command with a PLC program.

5.15 Motion SFC Program Exit Method

There are three ways of exiting motion SFC programs as follows.
(1) Motion SFC programs are exited by executing an END set in the motion SFC program.
(2) Motion SFC programs are stopped by turning PLC ready flag M2000 OFF.
(3) Motion SFC programs are exited with a clear step.

Point

(1) Multiple ENDs can be set for a single motion SFC program.
(2) Motion SFC programs are exited even if set to start automatically.

Memo

Chapter 6 SV22 Servo Programs

6.1 Servo Programs

A servo program is used to specify the type of positioning control required to control positioning, as well as positioning data. This section describes the servo program configuration and specification method.

SV13 and SV22 control servo motors with this servo program, and the lapplicable servo commands are shown in the "Servo command lists".

6.1.1 Servo program configuration

A single servo program consists of the following (1) to (3).
(1) Program No. 0 to 4095
\qquad This number is used to specify start requests in the sequence program, and a random number can be set from 0 to 4095.
(2) Servo command \qquad Indicates the positioning control type.
(3) Positioning data \qquad This is data required to execute servo commands. The data required to execute the commands is fixed in each servo command.

(4) Servo program area

1) The positioning CPU internal memory used to store servo programs created with peripheral equipment has a capacity of 14,334 steps (14 k steps), and the servo program area is used as a backup for the SRAM battery.

6.1.2 Servo command lists

Lists of servo commands used in servo programs are shown on the following pages.

(1) Viewing the command lists

(2) Servo command lists

Lists of servo commands that can be used with servo programs and positioning data set with servo commands are shown on the following table.

\circ : Items that must be set, Δ : Items set when required *1: Only when reference axis speed specified
2: (B) indicates bit device.

Positioning data																								No. of steps
Parameter block															Other									
苍									Advanced S-curve acceleration/deceleration									$\begin{aligned} & \overline{\mathbb{U}} \\ & \stackrel{0}{\widetilde{N}} \\ & \hline \end{aligned}$	$\frac{\stackrel{\circ}{5}}{\omega}$					
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-								
1	2	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	2	2	2	1	2	1	1	
1	2	1	1	1	1	1	2	1	1	1	1	1	1	2	$\begin{array}{\|c\|} \hline * 2 \\ 1 / \\ 1(\mathrm{~B}) \\ \hline \end{array}$	-	2	$\begin{gathered} * 2 \\ 1(\mathrm{~B}) \end{gathered}$	$\begin{gathered} * 2 \\ 1(\mathrm{~B}) \end{gathered}$	1	$\begin{gathered} * 2 \\ 1 \text { (B) } \end{gathered}$	1	$\begin{gathered} * 2 \\ 1 \text { (B) } \end{gathered}$	
	\triangle		\triangle	\triangle	\triangle	\triangle		\triangle				\triangle				\bigcirc	\bigcirc							
	\triangle		\triangle	\triangle	\triangle	\triangle		\triangle				\triangle				\bigcirc	\bigcirc							
	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle		\triangle				\triangle						$4 \sim 16$						
	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle		\triangle				\triangle		\triangle				$3 \sim 15$						
\triangle				\triangle		\triangle				$3 \sim 17$														
\triangle				\triangle		\triangle																		
\triangle				\triangle		\triangle																		
																	\triangle		\triangle		\triangle			$2 \sim 10$
																	\triangle		\triangle		\triangle			$3 \sim 11$
																	\triangle		\triangle		\triangle			$4 \sim 12$
																	\triangle		\triangle		\triangle			$5 \sim 13$
																	\triangle		\triangle		\triangle			$5 \sim 14$
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			$9 \sim 14$
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			$8 \sim 13$
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			
																	\triangle		\triangle		\triangle			$9 \sim 14$

\circ : Items that must be set, Δ : Items set when required *1: Only when reference axis speed specified *2: (B) indicates bit device.

०: Items that must be set, Δ : Items set when required *1: Only when reference axis speed specified
*2: (B) indicates bit device.

6.1.3 Linear control

Control of 1 to 4 axes with ABS-1 to ABS-4 (absolute method)

(1) Controls positioning from the current stop address (address prior to positioning) with home position as reference to the specified address.
(2) The movement direction is determined based on the current stop address and specified address.

Linear control of 1 to 4 axes with INC-1 to INC-4 (incremental method)

(1) Controls positioning by the specified travel value from the current stop position address.
(2) The movement direction is determined based on the movement symbol (+/-).

1) When the movement direction is positive:

Forward direction (address increase direction) positioning
2) When the movement direction is negative:

Reverse direction (address decrease direction) positioning

Speed designation (speed type) when performing linear 2 axis, 3 axis, and 4 axis interpolation control

1. Composite speed

This is the speed designation for moving with interpolation.
2. Major axis speed

This the speed for the interpolation axis with longest movement.
(Major axes are judged and processed automatically.)
3. Reference axis speed

Major axis speed Reference axis speed among interpolation axes.

6.1.4 Circular interpolation control for interpolation point designation

Control of 2 axes with ABS \cdots (absolute method)

(1) Performs circular interpolation from the current stop address (address prior to positioning) with home position as reference to the end point address via the specified auxiliary point address.
(2) This is an arc produced with point the start address (current stop address) and auxiliary point address intersects the auxiliary point address and end point address perpendicular bisector as the center point.

Control of 2 axes with INC ${ }^{\cdots}$ (incremental method)

(1) Performs circular interpolation from the current stop address to the end point via the specified auxiliary point.
(2) This is an arc produced with the point the start point (current stop position) and auxiliary point intersect the auxiliary point and end point perpendicular bisector as the center point.

6.1.5 Circular interpolation control for radius designation

Control of 2 axes with ABS \subset, ABS \sim, ABS $\subset \mathcal{A}$, and
 ABS (absolute method)

(1) Performs circular interpolation from the current stop address (address prior to positioning) with home position as reference to the specified end point address at the specified radius.
(2) This is an arc produced with the point that the start address (current stop address) and end point address perpendicular bisector intersects the specified radius as the center point.

Control of 2 axes with INC \subset, INC \varnothing, INC \subset, and
INC \circlearrowleft (incremental method)
(1) Performs circular interpolation to the end point specified at the specified radius with the current stop address as the start point (0,0).
(2) This is an arc produced with the point that the start address (current stop address) and end point address perpendicular bisector intersects the specified radius as the center point.

6.1.6 Circular interpolation control for center point designation

Control of 2 axes with ABS $\cdot \bullet$, ABS $\ominus_{\text {(absolute method) }}$
(1) Performs circular interpolation with the current stop address (address prior to positioning) with home position as reference as the start point address to the end point address with arc with radius of distance to the center point.

Control of 2 axes with INC \bullet, INC $\bullet_{\text {(incremental method) }}$

(1) Performs circular interpolation with the current stop address as the start point $(0,0)$ with travel value to the end point with arc with radius of distance to the center point.

6.1.7 Fixed feeding

Control of 1 to 3 axes with FEED-1, FEED-2, FEED-3 (incremental method)

(1) Controls positioning by the specified travel value with the current stop position as 0 .
(2) The movement direction is determined based on the movement symbol.
(a) When the movement direction is positive:

Forward direction (address increase direction) positioning
(b) When the movement direction is negative:

Reverse direction (address decrease direction) positioning

6.1.8 Speed control

Control of 1 axis with VF, VR, VVF, VVR

(1) Performs control at a specified speed from the moment the servo motor starts until a stop command is input.
(a) VF: Starts moving in forward direction.
(b) VR: Starts moving in reverse direction.
(c) VVF: Starts moving in forward direction
(d) VVR: Starts moving in reverse direction.

Servo amplifier control contains a position loop.

Servo amplifier control involves speed control that does not contain a position loop.
Consequently, this can be used for contact positioning control and so on to prevent excessive error.
(2) The current value does not change with 0 .

6.1.9 Speed, position switching control

Control of 1 axis with VPF, VPR (incremental method)

(1) Speed control is performed after the servo motor starts, switches to position control with an external CHANGE (speed, position switching) signal when the speed/position switching enable signal (M3205/axis 1) turns ON, and then performs positioning with the specified travel value.
(a) VPF: Starts moving in forward direction (address increase direction).
(b) VPR: Starts moving in reverse direction (address decrease direction).
(2) The specified positioning is performed with the incremental method the moment an external CHANGE signal is input.

Remarks

There is no response delay after the external CHANGE signal is input.

6.1.10 Constant speed control

Control of 1 to 4 axes with CPSTART1 to CPSTART4 and CPEND

(1) Performs positioning control at a constant speed to the end point address while relaying the pass point with a single start.

The absolute or incremental method is determined based on whether the pass point command is ABS or INC, and a mix of both is possible.

6.1.11 Repeat control (for speed switching control and constant speed control)

Control of 1 to 4 axes with FOR-TIMES, FOR-ON, FOR-OFF/NEXT

(1) Repeats speed switching control speed switching point VABS and VINC commands.
(2) Repeats constant speed control pass point ABS and INC commands.
(3) Repeat count specification method

FOR-TIMES specifies the repeat count with a numerical value from K 1 to K32767, or indirectly with D, W, or \#.
FOR-ON specifies repeat bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{L}, \mathrm{B}$, or F until the command turns ON .
FOR-OFF specifies repeat bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{L}, \mathrm{B}$, or F until the command turns OFF

6.1.12 Simultaneous start

Simultaneous start control with START

(1) Starts two to three types of servo program (exc. START command) simultaneously.
(2) Up to 12 axes can be started simultaneously if three servo programs are controlling four axes.
(3) Servo program Nos. specified with a START command cannot be specified indirectly.

1 axis zeroing with ZERO

(1) Zeroing is performed from the current stop position based on the zeroing data return method.
(2) If the proximity dog method or count method, the axis advances in the zeroing data return direction.
(3) If the data set method, the stop address is the home position, and the axis does not move.
(4) The axis No. cannot be specified indirectly.

Only 1 axis can be specified.
A separate servo program is required to perform zeroing for other axes.

Remarks

The simultaneous starting of zeroing is performed with a START command, and ZERO command servo programs are started simultaneously.

6.1.14 Fixed-pitch feed control

Control of 1 axis with PFSTART (absolute method)

(1) The axis is positioned at the address word device (even number for D, W, \#) specified in the servo program with a single start.
(Fixed-pitch feeding is performed if the content of D, W, \# changes midway through.)

(2) The movement when the content of the word device changes midway through is as follows.

Change in same direction \qquad

Change in return direction

(3) Fixed-pitch feed control continues until a stop command is input.

6.1.15 Current value change

CHGA Servo motor/virtual servo motor axis current value change control

(1) Changes current values for the specified axis when in real mode.
(2) Changes current values for the specified virtual servo motor axis when in virtual mode.

CHGA-E Synchronous encoder axis current value change control
(1) Changes the current value for the specified synchronous encoder axis to the specified address.

CHGA-C Control of changes in current values within single cam axis rotation

(1) Executing a CHGA-C command changes the current values within a single rotation for the specified cam axis to the specified address.
(2) Cam axes may be in the middle of movement.

Chapter 7 Operation Control Programs

Substitute operational expressions, dedicated motion functions, and bit device control commands can be set in operation control programs. Multiple blocks can be set in a single operation control program, however, only transition programs can be set for transition conditions.
This section describes operation control programs, and operational expressions that can be described in transition programs.

7.1 Operator, function priority order

The priority order for operators and functions is as follows.
By using parentheses, the operation order can be specified freely.

Priority order	Item (operator, function)
High	Calculation inside parentheses ((...))
	Standard function (SIN, COS, etc.), type conversion (USHORT, LONG, etc.)
	Bit inversion ($\left.{ }^{(}\right)$, logical negation (!), sign inversion (-)
	Multiplication (*), division (/), remainder (\%)
	Addition (+), subtraction (-)
	Bit left shift (<<), , bit right shift (>>)
	Comparison operator: less than (<), less than or equal to (<=), greater than ($>$), greater than or equal to ($>=$)
	Comparison operator: match (==), mismatch (!=)
	Bit logical product (\&)
Low	Bit exclusive logical sum (\wedge)
	Bit logical sum (I)
	Logical product (*)
	Logical sum (+)
	Substitution (=)

7.2 Operational control, transition command list

Refer to Appendix 9 for details on the shaded parts in the following table.

Category	Symbol	Function	Format	No. of basic steps	Usable program		Usable expression			
					F/FS	G				
Binary operation	=	Substitution	(D) $=(\mathrm{S})$	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	+	Addition	(S1)+(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	-	Subtraction	(S1)-(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	*	Multiplication	(S1)*(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	1	Division	(S1)/(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\%	Remainder	(S1)\%(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Bit operation	-	Bit inversion (complement)	- (S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\&	Bit logical product	(S1)\&(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	1	Bit logical sum	(S1)\|(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\wedge	Bit exclusive logical sum	$(\mathrm{S} 1)^{\wedge}(\mathrm{S} 2)$	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	>>	Bit right shift	(S1)>>(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	<<	Bit left shift	(S1)<<(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Sign	${ }^{-}$	Sign inversion (complement of 2)	-(S)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Standard function	SIN	Sine	SIN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	COS	Cosine	COS(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	TAN	Tangent	TAN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ASIN	Arc sine	ASIN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ACOS	Arc cosine	ACOS(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ATAN	Arc tangent	ATAN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	SQRT	Square root	SQRT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	LN	Natural logarithm	LN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	EXP	Exponent operation	EXP(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ABS	Absolute value	ABS(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	RND	Round-off	RND(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FIX	Omission of fractions	FIX(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FUP	Round-up	FUP(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	BIN	BCD \rightarrow BIN conversion	$\operatorname{BIN}(\mathrm{S})$	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	BCD	$\mathrm{BIN} \rightarrow$ BCD conversion	BCD(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
Type conversion	SHORT	Conversion to 16 bit integer type (with sign)	SHORT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	USHORT	Conversion to 16 bit integer type (without sign)	USHORT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	LONG	Conversion to 32 bit integer type (with sign)	LONG(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ULONG	Conversion to 32 bit integer type (without sign)	ULONG(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FLOAT	Deem as data with sign, convert to 64 bit floating decimal type	FLOAT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	UFLOAT	Deem as data without sign, convert to 64 bit floating decimal type	UFLOAT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	DFLT	Floating decimal type 32 $\rightarrow 64$ bit conversion	DFLT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	SFLT	Floating decimal type 64 $\rightarrow 32$ bit conversion	SFLT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
Bit device status	(None)	ON (A contact)	(bit conditional expression)	2	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc
	!	OFF (B contact)	! (bit conditional expression)	2	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc

Category	Symbol	Function	Format	No. of basic steps	Usable program		Usable expression			
					F/FS	G				
Bit device control	SET	Device set	SET(D)	3	\bigcirc	\bigcirc	-	\bigcirc	-	-
			SET(D) = (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
	RST	Device reset	RST(D)	3	\bigcirc	0	-	0	-	-
			SET(D) = (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
	DOUT	Device output	DOUT(D),(S)	4	\bigcirc	\bigcirc	-	\bigcirc	-	-
	DIN	Device input	DIN(D),(S)	4	\bigcirc	0	-	\bigcirc	-	-
	OUT	Bit device output	$\begin{aligned} & \text { OUT(D) = (conditional } \\ & \text { expression) } \end{aligned}$	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
Logical operation	(None)	Logical affirmation	(Conditional expression)	0	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	!	Logical negation	! (conditional expression)	2	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	*	Logical product	(Conditional expression) * (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	+	Logical sum	(Conditional expression) + (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
Comparison operation	==	Match	$\begin{aligned} & (\text { Calculation formula) }== \\ & \text { (calculation formula) } \end{aligned}$	4	\bigcirc	O	-	-	\bigcirc	\bigcirc
	!=	Mismatch	$\begin{aligned} & \text { (Calculation formula) != } \\ & \text { (calculation formula) } \end{aligned}$	4	\bigcirc	0	-	-	\bigcirc	\bigcirc
	<	Less than	(Calculation formula) < (calculation formula)	4	\bigcirc	O	-	-	\bigcirc	\bigcirc
	<=	Less than or equal to	(Calculation formula) <= (calculation formula)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	>	Greater than	(Calculation formula) > (calculation formula)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	>=	Greater than or equal to	$\begin{aligned} & \text { (Calculation formula) }>= \\ & \text { (calculation formula) } \end{aligned}$	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
Dedicated motion function	CHGV	Speed change request	CHGV((S1),(S2))	4	\bigcirc	\bigcirc	-	-	-	-
	CHGT	Torque limit value change request	CHGT((S1),(S2))	4	\bigcirc	\bigcirc	-	-	-	-
	CHGT2	Torque limit value individual change request	CHGT2((S1),(S2),(S3))	5	\bigcirc	O	(S1) only not possible	-	-	-
	CHGP	Target pos. change request	CHGP((S1),(S2),(S3))	6	\bigcirc	\bigcirc	-	-	-	-
Other	El	Event task authorized	EI	1	\bigcirc	\bigcirc	-	-	-	-
	DI	Event task prohibited	DI	1	\bigcirc	\bigcirc	-	-	-	-
	NOP	No processing	NOP	1	\bigcirc	\bigcirc	-	-	-	-
	FMOV	Same data block transfer	FMOV(D),(S),(n)	6	\bigcirc	\bigcirc	-	-	-	-
	BMOV	Block transfer	BMOV(D),(S),(n)	7	\bigcirc	\bigcirc	-	-	-	-
	TIME	Time wait	TIME(S)	7	-	\bigcirc	-	-	-	-
	MULTW	Data write to self CPU shared memory	MULTW(D),(S),(n),(D1)	8	\bigcirc	\bigcirc	-	-	-	-
	MULTR	Data read to other CPU shared memory	MULTR(D),(S1),(S2),(n)	7	\bigcirc	O	-	-	-	-
	TO	Word data write to intelligent function module/special module	TO(D1),(D2),(S),(n)	7	\bigcirc	\bigcirc	-	-	-	-
	FROM	Word data read to intelligent function module/special module	FROM(D),(S1),(S2),(n)	7	\bigcirc	\bigcirc	-	-	-	-
	TIME	Time wait	TIME(S)	7	-	\bigcirc	-	-	-	-

Category	Symbol	Function	Format	No. of basic steps	Usable program		Usable expression			
					F/FS	G				
Dedicated vision system function	MVOPEN	Line open	MVOPEN(S1),(S2)	4	\bigcirc	\bigcirc	-	-	-	-
	MVLOAD	Vision program load	MVLOAD(S1),(S2)	4	\bigcirc	\bigcirc	-	-	-	-
	MVTRG	Trigger issue	MVTRG(S1),(S2)	4	\bigcirc	\bigcirc	-	-	-	-
	MVPST	Vision program start	MVPST(S1),(S2)	4	\bigcirc	\bigcirc	-	-	-	-
	MVIN	Data input	MVIN(S1),(S2),(D),(S3)	8 or higher	\bigcirc	\bigcirc	-	-	-	-
	MVOUT	Data output	$\begin{aligned} & \text { MVOUT(S1),(S2),(S3), } \\ & \text { (S4) } \end{aligned}$	$\begin{gathered} \hline 8 \text { or } \\ \text { higher } \end{gathered}$	\bigcirc	\bigcirc	-	-	-	-
	MVFIN	Status storage device reset	MVFIN(S)	2	\bigcirc	\bigcirc	-	-	-	-
	mVCLOSE	Line close	MVCLOSE(S)	2	\bigcirc	\bigcirc	-	-	-	-
	MVCOM	Random native mode command transmission	$\begin{aligned} & \text { MVCOM(S1),(S2),(D), } \\ & \text { (S3),(S4) } \end{aligned}$	9 or higher	\bigcirc	\bigcirc	-	-	-	-
Data control	SCL	16-bit integer type scaling	SCL(S1),(S2),(S3),(D)	8	\bigcirc	\bigcirc	-	-	-	-
	DSCL	32-bit integer type scaling	DSCL(S1),(S2),(S3),(D)	8	\bigcirc	\bigcirc	-	-	-	-
Program control	$\begin{aligned} & \text { IF~ } ~ \\ & \text { ELSE } \sim \\ & \text { IEND } \end{aligned}$	Conditional branch control	$\begin{array}{\|l} \hline \text { IF(S) } \\ \vdots \\ \text { ELSE } \\ \vdots \\ \text { IEND } \\ \hline \end{array}$	$\begin{gathered} \text { IF : } 4 \\ \text { ELSE:3 } \\ \text { IEND:1 } \end{gathered}$	\bigcirc	\bigcirc	-	-	-	-
	SELECT ~ CASE ~ SEND	32-bit integer type scaling	SELECT CASE(S1) CEND CASE(Sn) CEND CLELSE : CEND SEND	$\begin{gathered} \text { SELECT } \\ : 1 \\ \text { CASE:4 } \\ \text { CEND:3 } \\ \text { CLELSE } \\ : 1 \\ \text { SEND:1 } \end{gathered}$	\bigcirc	\bigcirc	-	-	-	-
	$\begin{aligned} & \text { FOR~ } \\ & \text { NEXT } \end{aligned}$	No. of times designation repeat control	$\begin{array}{\|l} \hline \text { FOR(D) }=(\mathrm{S} 1) \text { TO } \\ \text { (S2) } \\ \text { STEP (S3) } \\ \vdots \\ \text { NEXT } \end{array}$	FOR:9 NEXT:8	\bigcirc	\bigcirc	-	-	-	-
	BREAK	Repeat control forced exit	BREAK	3	\bigcirc	\bigcirc	-	-	-	-

1 program code for operation control program, transition program Size approximate expression

```
2 + (1 + total no. of basic steps in 1 block)
    + 32 bit constant qty/1 block \times 1
    +64 bit constant qty/1 block \times 3) }\times\mathrm{ no. of blocks (steps)
                                    (1 step = 2 bytes)
```


POINT

- A transition condition must be set in the final block of the transition program.

Chapter 8 Windows Computer Operation

8.1 Data Creation Flow for Motion Controller Operation

8.2 Q PLC CPU Settings

8.2.1 Opening a project

(1) Click the Windows [start] button, and then select [All Programs] \rightarrow [MELSOFT Application] \rightarrow [GX Works2] \rightarrow [GX Works2].

芸- MELSOFT Series GX Works2

Project	Ect Edit	Eind/Replace	Compile	Yiew
\square	New...		$\mathrm{Ctrl}+\mathrm{N}$	
B	Open...		Ctrl+O	
	Close			
1	Save			
	Save As...			

(3) A dialog box prompting the user to open a project appears. Select the project to read.

By clicking the Open button, the sequence program and computer parameters are read.

8.2.2 Multiple CPU settings

Navigation
ㅁ \times

Project

- Parameter

PLC Parameter

Network Parameter
Remote Password
Intelligent Function Module

+ Program Setting POU

Program
(16] MAIN

(2) Click the [Multiple CPU setting] tab at the Q Parameter Setting dialog box that appears.
(3) Set "No. of PLC" to "2".

Go to next page
(1) Select [Parameter] in the project window, and then double-click [PLC Parameter].

(4) Click the PLC No. 1 Refresh button in the "Multiple CPU High Speed Transmission Area Setting "tab.
(5) An Auto Refresh Setting dialog box then appears. Specify the auto refresh settings for the PLC No. 1 as follows.
"No. 1 - Points" : "48"
"No. 1 - Start" : "M3072"
"No. 2 - Points" : "64"
"No. 2 - Start" : "D640"
"No. 3 - Points" : "50"
"No. 3 - Start" : "M6000"
"No. 4 - Points" : "800"
"No. 4 - Start" : "D6000"

Go to next page
(6) Click the "PLC No.2" tab, and specify the auto refresh settings for the PLC No. 2 as follows.
"No. 1 - Points" : "66"
"No. 1 - Start" : "M2000"
"No. 2 - Points" : "640"
"No. 2 - Start" : "D0"
"No. 3 - Points" : "50"
"No. 3 - Start" : "M6800"
"No. 4 - Points" : "800"
"No. 4 - Start" : "D6800"
"No. 5 - Points" : "4"
"No. 5 - Start" : "M496"
(7) When settings are complete, click the End button.

(10) At the I/O Module, Intelligent Function Module Detailed Setting dialog box that appears,
Set "Slot 1 (*-1)" - "Control PLC" to "PLC No.1", "Slot 2 (*-2)" - "Control PLC" to "PLC No.1", "Slot 3 (*-3)" - "Control PLC" to "PLC No.2", "Slot 4 (*-4)" - "Control PLC" to "PLC No.2", and "Slot 5 (*-5)" - "Control PLC" to "PLC No.2", and then click the End button.

Go to next page

(11) The display then returns to the Q Parameter Settings dialog box. Click the [End] button.

8.2.3 Writing sequence programs

(1) Double-click "Connection1" at "Connection Destination" in the Project window.

Multiple CPU Setting

Target PLC
PLC No. 1

Go to next page
(2) A Connection Destination Setting dialog box appears. Set the "Multiple CPU Setting" "Target PLC" to "PLC No.1", and then click the OK button.
(3) Click [Write to PLC...] on the [Online] menu.

(4) Click the Parameter + Program button at the Online Data Operation dialog box that appears.
(5) Click the Execute button.
(6) A "PC write: Complete" message appears when writing to the computer is complete. Click the Close button.

(7) Click the Close button at the Online Data Operation dialog box.

8.3 Starting MT Works2

The following is a description of the procedure from MT Works2 startup to new project creation.
(1) Click the Windows [start] button, and then select [All Program] \rightarrow [MELSOFT Application] \rightarrow [MT Works2] \rightarrow [MT Developer2].

\$* MELSOFT Series MT Developer2				
: Project	Et Edit	Find/Replace	Yiew	Check/Con
	New...			Ctrl+N
	Open...			Ctrl+O
	Close			
	Save			Ctrl+5
	Save As...			

(3) Click [New...] on the [Project] menu.

(4) A Create New Project dialog box appears. Select the "CPU Type" and "OS Type", and then click the OK button.

Go to next page
(5) A new project is created, and a Basic Settings dialog box appears.

The content of settings to be specified at each tab screen in the Basic Settings dialog box is as follows.

[Base Setting] tab
Set the number of main base slots and number of expansion base levels and slots.

[Multiple CPU Setting] tab
Specify multiple CPU system settings such as the number of CPUs, operation mode when a CPU stop error occurs, devices used with auto refresh, etc.

[CPU Name Setting] tab Set labels and comments.

[System Basic Setting] tab Set the motion CPU operation cycle, latch range, etc.

[SSCNET Setting] tab
Set the communication type and SSCNET system.

[Built-in Ethernet Port Setting] tab Set the IP address, protocol, etc.

Click the OK button to close the Base Setting dialog box.

(6) Startup and new project creation are now complete.

Go to next page

: Projec	ct Edit	Find/'Replace	Yiew	CheckiCon
$\vdots \square$ -	New...			Ctrl+N
: 8	Open...			Ctrl+O
¢	Close			
	Save			Ctrl+5
Save As...				
	Compress/'Unpack			-
	Delete...			

(7) Click [Save As...] on the [Project] menu, and save the project.

Chapter 9 Basic Practice in SV22 Real Mode

9.1 Practice Content

Basic practice involves initial processing, zeroing, and JOG operation.
Furthermore, this practice will be based on a basic positioning program example using a motion SFC program.

[Point selection]
Select points by numerical input.

Specify an address by numerical input at the demonstration machine operation panel.
You will practice two positioning methods, one of which involves specifying points, and the other which involves specifying with an X, Y address.

9.2 Q172DSCPU Demonstration Machine System Configuration

In this practice, external signals (boundary limits, DOG) are read using the Q172DLX module.

Demonstration machine operation panel

The error display screen is common to all modes.

9.3 System Settings

It is first of all necessary to specify system settings at MT Works2.
(1) System settings

1) Double-click the [System Setting] \rightarrow "Basic Setting" tab in the project window for the new project created at section 8.3.
2) Click the [Import Multiple CPU Parameter] button at the Basic Setting dialog box that appears.

Go to next page

POINT

Import Multiple CPU Parameter
This section introduces the function used to specify settings at the motion CPU side also using the PLC side CPU parameters set at section 8.2.2.
it Setting mistakes will be minimized!
If not using "Import Multiple CPU Parameter"
Click the "Multiple CPU Settings" tab. \Rightarrow Go to page 9-8.

From previous page

3) Click the Browse button at the dialog box used to open a project, and select a project for which PLC side CPU parameters have been set.
4) Click the Open button.

Import Multiple CPU Parameter

When multiple CPU parameters are used improperly, all the following parameters are overwritten.

- Base Setting
- Multiple CPU Setting

No. of CPU
Operation Mode
Multiple CPU Synchronous Startup Setting Multiple CPU High Speed Transmission Area Setting Automatic refresh setting

Execute the multiple CPU parameter diversion?

Go to next page
5) Click the Yes button at the Import Multiple CPU Parameter dialog confirmation message box that appears.
6) Click the "Multiple CPU Setting" tab, and ensure that the "No. of CPU" is " 2 ".
7) Click the CPU No. 2 Refresh button in the "Multiple CPU High Speed Transmission Area Setting" tab.

10) Ensure that "All station stop by stop error of CPU2" is selected at "Operation Mode".
11) Once confirmed, click the "System Basic Setting" tab in the Basic Setting dialog box.
\rightarrow Go to 12) on page 9-10.

* Pages 9-8 to 9-9 describe the setting method when not reusing multiple CPU parameters.

Go to next page
a) Set the "1st row" of the "Extension Base" to "10 Slots/GOT (Bus connection)".
b) Set "No. of CPU" to "2".
c) Click the CPU No. 1 Refresh button at "Multiple CPU High Speed Transmission Area Setting".
d) An Automatic Refresh Setting dialog box then appears. Specify the automatic refresh settings for the CPU1 as follows.
"Setting No. 1 - Points" : "48"
"Setting No. 1 - Start" : "M3072"
"Setting No. 2 - Points" : "64"
"Setting No. 2 - Start" : "D640"
"Setting No. 3 - Points" : "50"
"Setting No. 3 - Start" : "M6000"
"Setting No. 4 - Points" : "800"
"Setting No. 4 - Start" : "D6000"

From previous page

Go to next page
e) Click the "CPU2" tab, and specify the automatic refresh settings for the CPU No. 2 as follows.
"Setting No. 1 - Points" : "66"
"Setting No. 1 - Start" : "M2000"
"Setting No. 2 - Points" : "640"
"Setting No. 2 - Start" : "D0"
"Setting No. 3 - Points" : "50"
"Setting No. 3 - Start" : "M6800"
"Setting No. 4 - Points" : "800"
"Setting No. 4 - Start" : "D6800"
"Setting No. 5 - Points" : "4"
"Setting No. 5 - Start" : "SM496"
f) When settings are complete, click the OK button.
g) The display then returns to the Basic Setting dialog box. Ensure that "All station stop by stop error of CPU2" is selected at "Operation Mode".
h) Once confirmed, click the "System Basic Setting" tab in the Basic Setting dialog box.

12) Ensure that the following settings are as shown.
"Forced Stop"
: Nothing
"Operation Cycle" : Default Setting "Operation at STOP to RUN" : M2000 is turned on by switching from STOP to RUN.
13) Once set, click the $O K$ button at the Basic Setting dialog box.
(14) Basic setting is now complete.

System configuration settings are described at (2) from the following page.
(2) Motion slot settings

1) To specify settings for the slot 4 servo external signal input module, double-click main base slot 4 in the system configuration window.
2) A Motion Slot Setting dialog box then appears. Select "Servo External Signal Module" "Q172DLX" at "Motion Module".
3) When settings are complete, click the Detail Setting button.
4) A Q172DLX Setting dialog box then appears. Ensure that the DOG signal contacts are set as follows.

- DOG1: Normal Open
- DOG2: Normal Open

5) When settings are complete, click the OK button.
The display then returns to the Motion Setting dialog box. Click the OK button.

6) To specify settings for the slot 5 synchronous encoder input module, double-click main base slot 5 in the system settings window.

Go to next page

11) To specify settings for the slot 3 analog input
module, double-click main base slot 3 in the
11) To specify settings for the slot 3 analog input
module, double-click main base slot 3 in the system settings window.
12) A Motion Slot Setting dialog box then appears. Select "Analog Input" at "PLC Module".
13) When settings are complete, click the Detail Setting button.
7) A Motion Slot Setting dialog box then appears. Select "Sync. ENC. Input Module" - "Q172DEX" at "Motion Module".
8) When settings are complete, click the Detail Setting button.
9) A Q172DEX Setting dialog box then appears. Select the "P1" check box at "MAN-PLS/Sync. ENC Setting", and then select "Q171ENC-W8 (ABS 4194304[PLS])" (set "High-speed Read Data Setting" to "Not used", and "Input Response Time (operation mode)" to "0.4".)
10) When settings are complete, click the OK button.
The display then returns to the Motion Setting dialog box. Click the OK button.

Go to next page

14) An Analog Module Setting dialog box then appears. Select "0040" at "First I/O No.", and then specify the following setting.

```
Switch }
"CH1": 0 to 10V
```

15) When settings are complete, click the OK button.
The display then returns to the Motion Setting dialog box. Click the OK button.
16) System configuration settings are now complete.
(3) Amplifier settings

Go to next page

1) Double-click [System Setting] \rightarrow [SSCNET Structure] in the Project window.
2) An SSCNET Structure window appears.
3) To specify settings for the first servo amplifier and servo motor, double-click the first (d01) servo amplifier from the left in the SSCNET Structure window.

4) To then specify settings for the second servo amplifier and servo motor, double-click the second (d02) servo amplifier from the left in the System Setting window.
5) An Amplifier Setting dialog box then appears. Ensure that the "Amplifier Model" is "MR-J4(W)-B".
6) Ensure that the "Axis No." is " 1 ".
7) Once set, click the OK button at the Amplifier Setting dialog box.

Go to next page
(4) Check!

(8) An Amplifier Setting dialog box then appears. Ensure that the "Amplifier Model" is "MR-J4(W)-B".
(9) Ensure that the "Axis No." is "2".
(10) Once set, click the OK button at the Amplifier Setting dialog box.

(11) Settings for the first (d01) and second (d02) servo amplifier and servo motor are now complete.
(4) Relativity check, saving

Output
Checking for Optional Data Monitor...
Checking for Safety Observation Function Parameter..
Converting vision system parameter...
Checking for Head Module...
----- System Setting Relative Check/Convert End Error: 0, Warning : 0 ------

\% ${ }^{*}$ MELSOFT Series MT Developer 2 ...ttings				
Project	Et Edit	Find/Replace		Checkicon
\square New... Open... Close				$\mathrm{Ctrl}+\mathrm{N}$
				Ctrl+O
4	Save			Ctrl+5
Save As... \mathbf{A}Compress'UnpackDelete.. Click!				
				-

1) When motion slot settings and amplifier settings are complete, click [Relative Check/ Convert] on the [Check/Convert] menu.
2) Ensure that there are no errors at the output window.
If any error items are displayed in the output window, edit the setting(s) and retry the relativity check.
3) Click [Save] on the [Project] menu.

System settings are now complete.

9.4 Servo Data Input Operation

After specifying system settings, specify servo data settings.

! Project Edit Find/Replace Yiew Gheck/Convert Onl

Fixed Parameter
Set the fixed parameters for each axis and their data is fixed based on the mechanical system,
etc.
(1) Double-click [Servo Data Setting] \rightarrow [Servo Data] in the project window.
(2) A Servo Data Setting window appears.
(3) Specify the content shown on the left for the Axis 1 Fixed Parameter.

Go to next page

From previous page

Item	Axis 1
Home Position Return Data	Set the data to exect position return.
OPR Direction	0:Reverse Direction
- OPR Method	4:Proximity Dog Type 2
Home Position Address	-5000.0[$\mu \mathrm{m}$]
- OPR Speed	1000.00[mm/min]
--. Creep Speed	100.00[mm/min]
- Travel After Dog	-
. Parameter Block Setting	1
-..- OPR Retry Function	1:Valid
.-. Dwell Time at OPR Retry	0[ms]
Home Position Shift Amount	-5000.0[$\mu \mathrm{m}$]
Speed Set at Home Pos. Shift	0:OPR Speed
Torque Limit Value at Creep Speed	-
Operation for OPR Incompletion	0:Execute Servo Program
OPR Request Setting in Pulse Conversion Unit	-
Standby Time after Clear Signal Output in Pulse C...	-

(4) Specify the content shown on the left for the Axis 1 Home Position Return Data settings.

(5) Specify the content shown on the left for the Axis 1 JOG Operation Data settings.

Item	Axis1	Axis2
$\begin{aligned} & \text { Servo External Signal } \\ & \text { Parameter } \\ & \square \text { FLS Signal } \end{aligned}$	It is the parameter of setting servo external signal (FLS/RLS/STOP/DOG) to... Set the signal type and the signal/cont...	
- \quad Signal Type	1:Q172DLX Signal	1:Q172DLX Signal
Q172DLX Module No.	1	1
. ${ }^{\text {Q172DL }}$ Signal No.	1	2
. Device	-	-
- . Contact	1:Normal Close	1:Normal Close
- RLS Signal	Set the signal type and the signal/cont...	
- Signal Type	1:Q172DLX Signal	1:Q172DLX Signal
- Q172DLX Module No.	1	1
Q172DLX Signal No.	1	2
- Device	-	-
Contact	1:Normal Close	1:Normal Close
- STOP Signal	Set the signal type an	nd signal contact t...
- Signal Type	1:Q172DLX Signal	1:Q172DLX Signal
- ${ }^{\text {Q }}$ - 172 DLX Module No.	1	1
Q172DLX Signal No.	1	2
- Device	-	-
--. Contact	0:Normal Open	0:Normal Open
- DOG Signal	Set the signal type and	nd signal contact t...
- Signal Type	1:Q172DLX Signal	1:Q172DLX Signal
Q172DLX Module No. (DI Signal Name	1	1
Q172DLX Signal No.	1	2
- Device	-	-
- Contact	0:Normal Open	0:Normal Open

(6) Specify the content shown on the left for the Axis 1 Servo External Signal Parameter.

Note: The values set for Axis 1 differ from those for Axis 2, and therefore care should be taken if copying Axis 1 settings to Axis 2.

Go to next page

Item	Axis 1	Axis2
\square Fixed Parameter	Set the fixed parameters for each axis ...	
- Unit Setting	0:mm	0:mm
- Number of Pulses/Rev.	4194304[PLS]	4194304[PLS]
Travel Value/Rev.	2000.0[$\mu \mathrm{mm}$]	$2000.0[\mu \mathrm{~m}]$
Backlash Compensation	$0.0[\mu \mathrm{~m}]$	$0.0[\mu \mathrm{~m}]$
Upper Stroke Limit	145000.0[$\mu \mathrm{m}$]	$145000.0[\mu \mathrm{~m}]$
Lower Stroke Limit	-7000.0[$\mu \mathrm{mm}]$	-7000.0[$\mu \mathrm{m}$]
- Command In-position	10.0[$\mathrm{\mu m}$]	10.0[$\mathrm{\mu m}$]
Sp. Ctrl. 10x Mult, for Deg.	-	-
$\begin{array}{\|l} \text { Home Position Return } \\ \text { Data } \end{array}$	Set the data to execute the home position return.	
OPR Direction	0:Reverse Direction	0:Reverse Direction
- OPR Method	4:Proximity Dog Type 2	4:Proximity Dog Type 2
Home Position Address	-5000.0[$\mu \mathrm{m}$]	-5000.0[$\mu \mathrm{m}$]
- OPR Speed	1000.00[mm/min]	1000.00[mm/min]
- Creep Speed	100.00[mm/min]	100.00[mm/min]
- Travel After Dog	-	-
- Parameter Block Setting	1	1
-- OPR Retry Function	1:Valid	1:Valid
- Dwell Time at OPR Retry	$0[\mathrm{~ms}$]	$0[\mathrm{~ms}]$
Home Position Shift Amount	-5000.0[$\mu \mathrm{m}$]	-5000.0[$\mu \mathrm{mm}$]
Speed Set at Home Pos. Shift	0:OPR Speed	0:OPR Speed
Torque Limit Value at Creep Speed	-	-
Operation for OPR Incompletion	0:Execute Servo Program	0:Execute Servo Program
OPR Request Setting in Pulse Conversion Unit	-	-
Standby Time after Clear Signal Output in Pulse C...	-	-
- JOG Operation Data	Set the data to execute the JOG operati...	
- JOG Speed Limit Value	10000.00[mm/min]	10000.00[mm/min]
- Parameter Block Setting	1	1

(7) Use the same operation to specify the content shown below for the Axis 2 Fixed Parameter, Home Position Return Data, and JOG Operation Data.

POINT

By right-clicking the screen on the left, blocks can be copied and pasted.

(9) MR Configurator2 starts up. MR Configurator2 is software used to set servo amplifier parameters and so on.
(8) Double-click [Servo Data Setting] \rightarrow [Servo Parameter] in the Project window.

Go to next page

(10) Click [Function display] \rightarrow [Component parts] in the Parameter Setting screen display selection tree, and then specify the following settings.

Absolute pos. detection system sel. : Enabled (Used in ABS pos. detect system)

(11) Click the [Update Project] button.

(12) Click the [Yes] button to update the servo parameter changes.

(13) Switch to Axis 2 and set the parameters in the same manner.

Go to next page

(14) Click the [Update Project] button.

(15) Click the [Yes] button to update the servo parameter changes.

(16) Exit MR Configurator2.

(17) Double-click [Servo Data Setting] \rightarrow [Parameter Block] in the Project window.

Go to next page

Item	Block No. 1
\square Parameter Block	Set the data such as th
Interpolation Control Unit	0:mm
Speed Limit Value	10000.00[mm/min]
-.. Acceleration Time	100[ms]
Deceleration Time	150[ms]
Rapid Stop Deceleration Time	50[ms]
S-curve Ratio	50[\%]
- .. Torque Limit Value	300[\%]
Deceleration Process on STOP	1:Rapid Stop
Allowable Error Range for Circular Interpolation	10.0[$\mu \mathrm{mm}]$
Bias Speed at Start	0.00[mm/min]
Acceleration/Deceleration System	0:Trapezoid/S-curve
Advanced S-curve \square Acceleration/Decelerat...	Set the data of adyanci
Accel. Section 1 Ratio	-
- Accel. Section 2 Ratio	-
- Decel. Section 1 Ratio	-
- Decel. Section 2 Ratio	-

(19) Specify Parameter Block No. 1 settings as shown on the left.
(18) The Parameter Block Setting screen appears.

Item	Block No. 2
\square Parameter Block	Set the data such as th
..- Interpolation Control Unit	3:PLS
... Speed Limit Value	13107200[PLS/s]
-.. Acceleration Time	400 [ms]
-.. Deceleration Time	400 [ms]
... Rapid Stop Deceleration Time	$50[\mathrm{~ms}]$
S-curve Ratio	50[\%]
- - Torque Limit Value	300[\%]
Deceleration Process on STOP	1:Rapid Stop
Allowable Error Range for Circular Interpolation	100[PLS]
Bias Speed at Start	0[PLS/s]
Acceleration/Deceleration System	0:Trapezoid/'S-curve
Adyanced S-curve \square Acceleration/Decelerat...	Set the data of adyanc converting the speed s
Accel. Section 1 Ratio	-
Accel. Section 2 Ratio	-
Decel. Section 1 Ratio	-
Decel. Section 2 Ratio	-

(20) Specify Parameter Block No. 2 settings as shown on the left.

(21) When all servo data settings are complete, click [Save] on the [Project] menu. Servo data settings are now complete.

9.5 Practice Motion SFC Programs

These sequence/motion SFC programs have been created for operation purposes on the assumption that MT Works2 (for Q172DSCPU) be used.
An explanatory drawing of the demonstration machine GOT operation panel is shown in item 9.2.

9.5.1 Program list

The sequence program and motion SFC program used for practice are shown in the following list.
Initial processing, operation type selection, JOG operation, zeroing, and motion SFC program startup are performed from the sequence program. Standby point positioning, positioning by selecting positioning points at the GOT operation panel, and positioning by entering positioning addresses at the GOT operation panel are practiced using the motion SFC program. Refer to the respective descriptions of each program in this manual for details.

Motion SFC program parameters

No.	Program name	Automatic start	END operation	No. of transitions	Execution timing
10	Real mode main	No	-	3	Normal
20	Standby point positioning	No	-	3	Normal
30	Point selection	No	-	3	Normal
40	Address indirect designation	No	-	3	Normal

- Start program from sequence program

- Start program from motion SFC program [Real mode main] program No. 10
[Standby point positioning] Program No. 20

[Point selection positioning] Program No. 30

[Address indirect designation] Program No. 40

- Start program from sequence program
[Zeroing program] Servo program K1 and K2 are started directly with an SVST command from the sequence program.
[Jog operation] JOG start devices M3202, M3203, M3222, and M3223 are started by turning them ON directly from the sequence program.

- Q03UD sequence program

****Advanced control*****

9.5.2 Initial processing

The following is an example of a program used to start all motion CPU servo axes.
Both the PLC CPU and motion CPU are set to the RUN status. With the settings for this practice, a servo data and servo parameter check is performed after the motion CPU status changes from STOP to RUN. If there are no errors, the motion CPU turns the PCPU READY complete flag (SM500) ON.
The PLC CPU receives the PCPU READY complete flag (SM500) as M500 through auto refresh. When there are no errors at either the PLC CPU or motion CPU, by turning M1000 ON at the demonstration machine operation panel, an all axis servo ON command is sent from the PLC CPU, and motion CPU startup is completed.
(1) Program example
****Initial processing ${ }^{* * * * *}$

Demonstration machine operation panel

[Timing chart]

9.5.3 JOG Operation

JOG operation is used to perform operation manually only while buttons are held down.
The devices shown in the table below and content (acceleration/deceleration time) of the parameter blocks set in JOG data are used.
By setting the speed in the JOG speed setting register (table below), and turning ON a forward rotation JOG start signal (M3202/axis 1) or reverse rotation JOG start signal (M3203/axis 1), JOG operation starts.
JOG operation stops when the JOG start signal is turned OFF.
(1) JOG operation speed setting register

Axis No.	JOG operation speed setting register		Speed setting range							
			mm		inch		degree		PULSE	
	Upper	Lower	Setting range	Unit						
1	D641	D640	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-2} \\ \mathrm{~mm} \\ / \\ \mathrm{min} \end{gathered}$	$\begin{gathered} 1 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-3} \\ \text { inch } \\ l \\ \mathrm{~min} \end{gathered}$	$\begin{array}{\|c\|} 1 \text { to } \\ 214748364 \\ 7 \end{array}$	$\begin{gathered} \times 10^{-3} \\ / \\ \mathrm{min} \end{gathered}$	$\begin{gathered} 1 \text { to } \\ 10000000 \end{gathered}$	pulse / s
2	D643	D642								
3	D645	D644								
4	D647	D646								
5	D649	D648								
6	D651	D650								
7	D653	D652								
8	D655	D654								

(2) Forward/reverse rotation JOG start signals

Control axis	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8
Forward rotation	M3202	M3222	M3242	M3262	M3282	M3302	M3322	M3342
Reverse rotation	M3203	M3223	M3243	M3263	M3283	$M 3303$	M3323	M3343

(3) Program example

1) JOG operating condition items

Item	Condition	
Control axis	Axis 1	Axis 2
JOG operation command input	Forward rotation (M1010)	Forward rotation (M1012)
	Reverse rotation (M1011)	Reverse rotation (M1013)

2) Example of program in which JOG operation is performed by starting axes 1 and 2 independently
The JOG speed can be set freely from the demonstration machine operation panel.
****JOG operation and home position return ${ }^{* * * * *}$

M1010 : Axis 1 forward rotation JOG command
M1011 : Axis 1 reverse rotation JOG command
M1012 : Axis 2 forward rotation JOG command
M1013 : Axis 2 reverse rotation JOG command
D641, D640 : Axis 1 JOG speed setting register
D643, D642: Axis 2 JOG speed setting register

[Timing chart]

9.5.4 Zeroing

The following is an example of a program in which a servo program is run and zeroing is performed by executing an SVST command from a ladder program.
Actual details of the zeroing operation are determined by the zeroing data at the motion CPU side and the parameter block (acceleration/deceleration time).
The zeroing operation for each axis is as follows.
Zeroing is performed by turning ON the demonstration machine operation panel M1020.

Axis $1 / 2$: Set with proximity dog.
After starting, the motor rotates in the zeroing direction, and the rotation is complete when the home position dog changes from ON to OFF.

[Servo program]

Axis 2 servo program

[Sequence program]

9.5.5 Main routine motion SFC program (real mode operation)

This is a motion SFC program run as the main routine when performing real mode positioning operation (other than manual operation).
Other motion SFC programs used to perform various types of operation when in real mode from this main routine motion SFC program are started as subroutines.
(1) Motion SFC program started from main routine motion SFC program.

Motion SFC program No.	Program name	Reference section
20	Standby point positioning	9.5 .6
30	Point selection	9.5 .7
40	Address indirect designation	9.5 .8

(2) Program example

9.5.6 Standby point positioning

Standby point refers to a work standby position at other than the mechanical home position. (There may be times when the position is the same as the home position.)
In this program example, the axis returns to the standby point by specifying the standby point address and performing positioning.

By running the servo program with a motion SFC program motion control step, operation is performed based on the content of the executed servo program data and the narameter block.

[Real mode main] program

[G4095]
//Program completion \& start accept return wait dummy
NOP

Ensures transition to next step with "WAIT" type transition after completion of current servo program.

9.5.7 Point selection positioning

This is an example of a basic point selection program.
By entering the point No. (servo program No. in this example) at the GOT operation panel and then pressing the START button, the axis is positioned at the address registered beforehand.

Note: There are two "=" symbols in the "D2000==K30", "D2000==K31", and "D2000==K32" commands in [G300], [G301], and [G302].

9.5.8 Address indirect designation positioning

This is an example of positioning at an address other than the previously registered position.
The axis 1 and axis 2 addresses are computed based on the GOT operation panel values, and then stored in D2020.
Positioning is performed by pressing the START button.
Even number addresses in the unused data register D, link register W, and motion device \# can be used for indirect setting.
In addition to addresses, speed, dwell, M-codes, and parameter blocks can also be set indirectly.
[Real mode main] program

[G4095]
//Program completion \& start accept return wait dummy
NOP

9.5.9 Changing the speed (CHGV) [additional practice]

This is an example of a program used to change the speed in three stages at the GOT operation panel and then temporarily stop operation.
Changes to speed are made by executing a speed change command (CHGV command) with a motion SFC program operation control step.
When setting the speed with a CHGV command, operation stops temporarily when setting the speed to " 0 ", and the remainder of the operation is performed when the speed is changed again by setting to a value other than 0 .
(1) CHGV speed change request command

Describes the axis No. for which the speed is to be changed, and the changed speed.

(2) Speed change setting range

Speed change setting range							
mm		inch		degree		pulse	
Setting	Unit	Setting	Unit	Setting	Unit	Setting	Unit
-600000000 to 600000000	$\times 10^{-2}$ $\mathrm{~mm} / \mathrm{min}$	-600000000 to 600000000	$\times 10^{-3}$ inch/min	-2147483648 to 2147483648	$\times 10^{-3}$ degrees $/$ min	-10000000 to 10000000	pulse/s

POINT

If setting the speed with the CHGV command, set a value 100 times (mm) or 1000 times (inch/degrees) the actual speed.

Example
If setting the speed to $10000.00 \mathrm{~mm} / \mathrm{min}$, set a value of " 1000000 ".
(3) Program example

1) Speed change conditions

Item		Condition	
Control axis		Axis 1	Axis 2
Speed change command input	M20	Speed after change: $2000 \mathrm{~mm} / \mathrm{min}$	-
	M21	Speed after change: $1000 \mathrm{~mm} / \mathrm{min}$	-
	M22	Speed after change: $500 \mathrm{~mm} / \mathrm{min}$	-
	M23	Temporary stop $(0 \mathrm{~mm} / \mathrm{min})$	-

2) Speed change program example

[Timing chart]

POINT

- The speed cannot be changed while the start accept flag is OFF.
- The speed cannot be changed during zeroing, circular interpolation, or while decelerating.
- The speed can be changed within the 0 to start speed range.

9.6 Motion SFC Program Creation Procedure

This section describes how to create motion SFC programs used to set motion control operation.

9.6.1 Creating a new motion SFC program

To create a new motion SFC program, begin by specifying the "Program name".

MELSOFT Series MT Developer 2 ...tt

(1) Double-click!

(1) Double-click [Motion SFC Program] \rightarrow [Motion SFC Program Manager] in the Project window.
(2) A Motion SFC Program Manager dialog box appears.

Click the NEW button.
(3) A New dialog box appears. Set the program No. for the motion SFC program being created. Enter "10" for the "Motion SFC program No.", and "Real mode main" for the "Motion SFC program name".
(4) Click the OK button after entering.

Go to next page

From previous page

Program Parameter
No. Program Name
10 Real mode main
20 Standby poin...
30 Point selection
40 Address indir...
(4) The set motion SFC program appears in a list. Press the NEW button again to create a motion SFC program such as the following.

No.	Program name
10	Real mode main
20	Standby point positioning
30	Point selection
40	Address indirect designation

[^2]
9.6.2 SFC diagram creation procedure

Allocate SFC diagram symbols to create an SFC diagram.

(1) Click!


```
Real mode main
```

F0
(2) An Edit Program screen used to create individual motion SFC programs appears.
(1) Select "10 Real mode main" from the motion SFC program list in the Motion SFC Program Management dialog box, and then click the OK button.
individual motion SFC programs appears.
(3) Click the single execution type operation control step tool button ([F]) on the Program Edit screen.
(4) Click on a random position to allocate an SFC diagram symbol pointer.

[^3]Go to next page
(5) Now, click each tool button in the same manner to allocate SFC diagram symbols as shown on the left.

F	F0	(Single execution type operation control step)
$1 \cdot \mathrm{P}$	15	(Pointer)
P	4	(Jump)
0	G0	(Shiff transition)
O	G0	(Wait transition)
@		(Sub-routine call/start step)
EN0	END	(END)

[^4]Go to next page

(7) By moving the mouse cursor over an SFC diagram symbol, the shape of the cursor changes.
Drag to connect the start of the motion SFC program and pointer.
(8) Connect other SFC diagram symbols in the same manner.

Go to next page

(9) Click [Arrange] on the [Edit] menu at the Edit Program window.
Arrange the allocated SFC diagram symbols.
(12) A Pointer Number Setting dialog box appears. Enter " 0 " for the "Pointer Number", and then click the OK button. Pointer Nos. can be set fro 0 to 16383 for each motion SFC program.
("P0" for motion SFC program No. 0 and motion SFC program No. 10 are different.)
(10) Set program Nos. and pointer Nos. for the allocated SFC diagram symbols.
Click the Select/Cut tool button at the Edit Program screen.
(11) Double-click a pointer (P).

Go to next page

(13) Pointer No. " 0 " is set.

Next, double-click a transition (G).

(15) Program No. "G100" is set for the transition. Set operation control steps (F) and transitions (G) in the same manner.

Go to next page

From previous page

(16) Next, double-click a sub-routine call/start step.

(17) A Program Name Setting dialog box appears. Enter "Standby point positioning" for the "Motion SFC Program Name", and then click the OK button.

Go to next page
(18) Program name "Standby point positioning" is set for the sub-routine call/start step. Set program Nos. and pointer Nos. for other SFC diagram symbols in the same manner as shown on the left.

9.6.3 Entering transition and operation control steps

This section describes how to set conditional expressions and operational expressions for transitions and operation control steps allocated to SFC diagrams.

(3) An Edit Operation Control Program/Transition Program dialog box appears.
Enter a comment and press the Enter key to start a new line.
Click the Select Instruction button.
Commands can be set by direct entry.
(4) An Instruction Wizard dialog box appears.

Select as follows, and then press the OK button.
Class : Bit Device Control
Description : SET
Description Example : SET MO

Go to next page

MELSOFT Series MT Developer2 X

Conversion is completed.

OK

[F 100]

1 //Lamp ON
2 SET M9
(5) A "SET MO" command is set. Change "MO" to "M9".
Press the Enter key again to start a new line, and then enter a comment and command. Click the Convert button after entering.
(6) Click the OK button at the conversion complete message that appears.
(7) Click the Close button.
(8) The set command appears on the step Edit Program screen.

Go to next page
(9) Set the operational expression and conditional expression for the following operation control programs and transition programs in the same manner.

[G100]	I/Mode selection switch check !M6801
[G101]	I/Standby point positioning start M0*!M2001*!M2002
[G102]	I/Positioning at selected point start M1*!M2001*(D2000>=K30)*(D2000<=K32)
[G103]	I/Address variable positioning start M2*!M2001*!M2002
[G4095]	I/Program completion \& start accept return wait dummy NOP
[F100]	I/Lamp ON SET M9
[F101]	I/Lamp OFF RST M9

*(Logical product)
!(Logical negation)
eck/Convert Online Debug Iools Window Help
(10) Click! 目 $=$

Go to next page

(11) When conversion is complete, a "Successful completion" message appears in the output window.
(12) Click [Save] on the [Project] menu at the Edit Program window.
Real mode main creation is now complete.

9.6.4 Entering motion control steps

This section describes how to specify motion control steps used to perform positioning control and so on.
Here, a motion SFC program for standby point positioning is created first.

(2) Click!
(1) Double-click [Motion SFC Program] \rightarrow [Motion SFC Program Manager] in the project window.
(2) Select "20 Standby point positioning" from the motion SFC program list in the Motion SFC Program Manager dialog box, and then click the OK button.
(3) Create a motion SFC program for standby point positioning as follows.
(a) Allocate SFC diagram symbols. Use the following tool buttons to allocate SFC diagram symbols.

(Motion control step)
(WAIT transition)
(One-time execution type operation control step)
END: END \qquad (END)
(b) Connect the SFC diagram symbols with the Connect tool button.
(c) Select the servo program No. with the Select/Cut tool button, and then set.
(4) Click motion control step "K20" to select it, and then double-click the Edit Program screen.

Go to next page

(5) A Select Instruction dialog box is displayed at the Servo Program Editor dialog box.
(6) Select "Positioning" for the "Instruction Class", and "ABS-2 (Vector-speed)" for the "Servo Instruction" at the Select Instruction dialog box, and then click the OK button.

(7) Enter "1" and "0.0" in the "Axis" text box.

Press the Enter key again to start a new line, and then enter "2" and "0.0".
Enter "4000.00" for "Vector speed".
Add "Dwell" from the setting items, and then enter "100".

Go to next page

Total Steps:

(8) Click the Convert button. "K20" motion control step settings are now complete.
(9) Use the same procedure now to create steps used at other motion SFC programs from the following page.

Motion control step editing schematic procedure

1) Right-click "Servo program" in the Project window, and then click "New Servo Program...".

Go to next page
4) Enter "1" in the "Axis:" text box, and enter "D 2110" in the "Speed" text box. Add "P.B." from Setting Item, and then enter " 2 ".

5) Click the Convert button.

Positioning
1-axis linear)


```
[K 31 : Real Axis ]
\(1 \mathrm{ABS}-1\) Axis
->Address
speed 80000.1 \(3000.00 \mathrm{~mm} / \mathrm{min}\)
\[
\begin{aligned}
& \text {->Addr } \\
& \text { Speed }
\end{aligned}
\]
\[
\mathrm{mm} / \mathrm{mln}
\]
```

Positioning (1-axis linear)

Positioning (1-axis linear)

$$
\left[\begin{array}{lll}
K & 32 & \text { A Real Axis } \\
\left.1 \begin{array}{l}
\text { ABS-1 } \\
\text { Axis } \\
\\
\\
\\
\\
\\
\\
\text { Speed }
\end{array}\right]
\end{array}\right.
$$

$$
\begin{array}{rr}
1 & \\
120000.0 & \mu \mathrm{~m} \\
1000.00 & \mathrm{~mm}
\end{array}
$$

$$
1000.00 \mathrm{~mm} / \mathrm{min}
$$

Go to next page

9.6.5 Motion SFC program parameter settings, batch conversion

Specify parameter settings and perform batch conversion to motion SFC programs for the created motion SFC programs.
\$ MELSOFT Series MT Developer $2 . .$. th

(3) A Program Parameter Setting dialog box appears.
Ensure that "Start setting" is set to "No automatic start".
Click the OK button after setting.
Task (execution timing) settings

1. Normal tasks

Execution with motion cycle (spare time)
2. Event tasks

- Execution with fixed cycle ($0.22 \mathrm{~ms}, 0.44 \mathrm{~ms}$, $0.8 \mathrm{~ms}, 1.7 \mathrm{~ms}, 3.5 \mathrm{~ms}, 7.1 \mathrm{~ms}, 14.2 \mathrm{~ms}$)
- Execute by entering external interrupts QI60 I0 to I15.
- Execute with interrupts (IO to I15) from the PLC (GINT command).

3. NMI tasks (Non-Maskable Interrupt)

Execute by entering external interrupts Q160
IO to I15
Priority is high with event task internal interrupts, even if interrupts are prohibited (DI).

Go to next page
ttings IPC0561_winXPenDesktopISCH00L reckiConvert Online Debug Iools Window

(4) Batch convert created SFC diagrams to motion SFC programs.
Click the motion SFC program batch conversion tool button at the Program Editor screen.
(5) When conversion is complete, a "Successful completion" message appears in the output window.
Motion SFC program creation is now complete.

[^5]
9.7 Writing to the Motion CPU

Write servo settings data and motion SFC programs to the Q172DSCPU.

Point

Select [Change CPU Operation Method] on the [Online] menu, and if the operation method is "Virtual mode switching method", change to "Advanced synchronous control method", and then reboot.
(1) Set the Q motion CPU to "STOP".

(2) Click [Transfer Setup] on the [Online] menu at the Program Editor window.
(3) Specify the following settings at the Transfer Setup dialog box that appears, and then click the OK button.

- PC side I/F: Serial USB
- CPU side I/F: PLC Module
- Other Station Setting: No Specification
- Target system: Multiple CPU Setting PLC No. 2

(4) Click [Write to CPU] on the [Online] menu at the Program Editor window.

Go to next page

From previous page

(5) Select the "Programs" and "Parameters" check boxes at the CPU Write dialog box that appears, and then click the Execute button.

(6) When a "Complete!" message appears, click the OK button.
(10) Reset the Q PLC CPU.
(11) Run the Q PLC CPU and Q motion CPU.

If the Q03UDCPU RUN lamp and Q172DSCPU RUN and M.RUN lamps light up, writing is successful.

POINT

Signification reduction in program data read/write time
With the Q17ロDSCPU, the time required to read/write program data for servo programs and so on is now approximately one third of the time previously taken, facilitating an improvement in debugging efficiency.

Motion communication time

* Servo program read time

9.8 Test Operation

It is necessary to turn OFF PLC ready (M2000) to perform test operation. Set the Q motion CPU to "STOP", followed by the PLC CPU.

9.8.1 JOG operation

MELSOFT Series MT Developer2

(1) Click the Test tool button at the Program Editor window.
(2) Click Yes at the test mode start request confirmation screen that appears when the Test window appears.

When the motion CPU is in test mode, all test function tool buttons are enabled.
Use the servo ON/OFF tool to turn all servos ON.
(3) Click the Servo ON/OFF tool button.

Go to next page

From previous page

(4) A Servo ON/OFF dialog box appears. Press the All Axes Servo ON button to turn the servo ON for all axes.

- Black: Servo OFF

Blue: Servo ON

- Servo ON if turns blue.
(5) Click the JOG operation tool button.
(6) Set the "Axis No." to "1" at the JOG Operation dialog box that appears.
Click the Forward or Reverse button to perform JOG operation.

Go to next page

From previous page

(7) Set the "Axis No." to "2" to perform JOG operation in the same manner as that for axis 1

(8) Click the End button to close the JOG Operation dialog box.
JOG operation is now complete.

9.8.2 Servo program execution

Run the zeroing and positioning servo programs set for program operation in test mode.

(2) Click the Independent Operation button at the dialog box used to select the program operation type that appears.

(3) Set "1" at the spin box in the Program Operation (Independent) dialog box that appears, and then click the Program No. Setting button.

(4) Click the Setting Complete button at the Program Operation (Independent) dialog box.

Go to next page

From previous page

(5) Click the Start button at the Program Operation dialog box that appears.
(Zeroing is performed for axis 1.)

(6) When a "Program operation complete!" message appears, click the OK button.

The feed current value will be "-5000.0 $\mu \mathrm{m}$ ".

(7) Click the End button at the Program Operation dialog box.
(8) Servo program No. 2 is started using the same operations. (Zeroing is performed for axis 2.)

The feed current value will be "-5000.0 $\mu \mathrm{m}$ ".
(9) Servo program No. 30 is started using the same operations.

5in Test - MT Developer2
Project Iest Online Help

Go to next page

(10) Click the Servo ON/OFF tool button.

From previous page

(11) A Servo ON/OFF dialog box appears.

Press the All Axes Servo OFF button to turn the
(12) Click [Cancel Test Mode] on the [Test] menu at the Test window.
(13) Click the Yes button at the cancel test mode confirmation message box that appears. Program operation using the test function is now complete.

9.9 Demonstration Machine Operation

9.9.1 Operation

Servo motors are run and servo motor operation is monitored with MT Works2. Set the PLC CPU and Q motion CPU RUN/STOP switch to "RUN".
[Servo ON]
Press Servo ON at the demonstration machine
Demonstration machine operation panel
operation panel.
The servo status for axes 1 and 2 changes to ready.

[JOG operation execution]

	Press \square at the Press JOG/Home Pos. at lamp. JOG operation is poss	monstration JOG operatio while the	e operation pa nel to turn ON ration buttons
	Item		
	Control axis	Axis 1	Axis 2
	JOG operation command	Forward rotation (M1010)	Forward rotation (M1012)
		Reverse rotation (M1011)	Reverse rotation (M1013)

[Zeroing execution]

Go to next page
[Standby point positioning]
Press Real at the demonstration machine operation panel.
(1) Press Real Mode Main at the Real Mode screen to turn ON the running lamp.

[Real mode main] program (motion SFC program No.10)

[Standby point positioning] program (motion SFC program No.20)

... Servo program No. 20 executed. (2-axis linear interpolation)

Go to next page
[Real mode main]
[Address indirect designation]
[Point selection]

- By turning \square
Position Select
ON, positioning is performed with the [Point selection] locus.
- By turning

(Y)

Axis

[Speed change]

Speed change/temporary stop during operation

- By turning \square ON, the speed will be $2000 \mathrm{~mm} / \mathrm{min}$.
- By turning 1000 ON, the speed will be $1000 \mathrm{~mm} / \mathrm{min}$.
- By turning \square ON, the speed will be $500 \mathrm{~mm} / \mathrm{min}$.
- By turning \square ON, operation will temporarily stop.
(The speed may be changed multiple times during operation.
However, do not perform operation during zeroing, circular interpolation, or during deceleration. A minor error will occur.)

9.9.2 Monitor operation with monitor screen

Current values and error causes and so on can be checked using the Monitor screen.

(1) Monitor startup

MELSOFT Series MT Developer2

1) Click the monitor icon on the toolbar.
2) The monitor starts up.

(2) Stopping/starting the monitor

1) To stop the monitor, click the "Stop monitor" button on the Monitor screen toolbar.

Axis Monitor Monitor Type: Servo Input Axis
2) To start the monitor again, click the "Start monitor" button on the Monitor screen toolbar.

(3) Motion CPU error batch monitor

Axis Monitor Monitor Type: Servo Input Axis

1) Click the "Motion CPU error batch monitor" button on the Monitor screen toolbar.
2) The Motion CPU error batch monitor appears.

POINT

By using the Motion CPU error batch monitor, all motion CPU error information is displayed on the monitor.

9.9.3 Motion SFC program monitor

This section describes how to display the motion CPU program monitor. The start and stop status of each program, and current device values can be monitored and so on.
(1) Mode change

2) The motion SFC program changes to monitor mode.
臨: Executing
010
Stopped
Q: Taking break
G0 (Blue): Active
G0
(Red): Awaiting parallel connection

3) By clicking the "Edit mode" button at the Edit Program screen, the mode changes to edit mode.

(2) Program batch monitor

Displays the program start and stop statuses in a list.

1) Click the program list monitor button.
2) The program list monitor appears.
[R] : Executing
S : Stopped

(3) Specific step monitor

Values for devices used at selected steps can be monitored.

Specified Step Monitorpo

1) Click the specified step monitor button.
2) Click the step to be monitored.
Specified Step Monitor

| [G102] | Previous Page | Next Page | |
| :--- | :--- | :--- | :--- | :--- |
| Device/Label Value Data Type
 M1 0 Bit | | | |
| M2001 | 0 | Bit | Device |
| D2000 | 30 | Word[Signed] | M1 |

3) Values for devices at specific steps can be monitored.

9.10 Exit Operation

9.10.1 Exiting MT Works2

MELSOFT Series MT Developer2 x

Do you want to save the project?

9.10.2 Exiting GX Works2

(1) Click [Exit] on the [Project] menu.
(2) If any changes have been made to setting data, a message appears to confirm whether to save the project.
Click the Yes button.
(1) Click [Exit] on the GX Works2 [Project] menu.
(2) If the project has not been saved, a message appears to confirm whether to save the project. Click the Yes button.

Chapter 10 SV22 Advanced Synchronous Control Practice

10.1 Synchronous Control Parameters

By starting synchronous control for each output axis, control is synchronized for input axes (servo input axis, command generation axis, synchronous encoder axis).

10.1.1 Synchronous control modules

The modules used with synchronous control are shown below.

10.1.2 Synchronous control module list

The number of modules that can be used with synchronous control is shown below. (Indicates the number of modules for Q172DSCPU.)

Category	Name	Part drawing	No. of usable modules	
			Per unit	Per axis
Input axis module	Servo input axis	-	16	-
	Command generation axis	-	16	-
	Synchronous encoder axis	-	12	-
Main shaft module	Main shaft main input axis	$0 \sqrt{(0)}=$	16	1
	Main shaft sub input axis		16	1
	Composite main shaft gear		16	1
	Main shaft gear		16	1
	Main shaft clutch	$\stackrel{H}{15}$	16	1
Auxiliary axis module	Auxiliary axis		16	1
	Auxiliary axis gear	$e_{0}^{\sqrt{9}}=$	16	1
	Auxiliary shaft clutch	$\underset{\sim}{f}=$	16	1
	Composite auxiliary shaft gear	屈	16	1
Speed change gear module	Speed change gear		32	2
Output axis module	Output axis		16	1
Cam data	Cam data	-	Max. 256	-

10.1.3 Servo input axes

Servo input axes are used to drive input axes based on the position of servo motors controlled with the motion CPU (Q173DSCPU/Q172DSCPU).

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 300	Servo input axis type	Sets the current value type from which the servo input axis input value is generated.	0: Disable 1: Feed current value 2: Real current value 3: Servo command value 4: Feedback value	When power	0	-
Pr. 301	Servo input axis smoothing time constant	Set if performing smoothing processing for input values.	0 to 5000 [ms]		0 [ms]	-
Pr. 302	Servo input axis phase compensation advance time	Sets the time to advance or delay the phase.	$\begin{array}{\|l\|} -2147483648 \\ \text { to } 2147483647[\mu \mathrm{~s}] \end{array}$	Operation cycle	0 [$\mu \mathrm{s}$]	$\begin{aligned} & \text { D14600+2n } \\ & \text { D14601+2n } \end{aligned}$
Pr. 303	Servo input axis phase compensation time constant	Sets the time to reflect phase compensation.	0 to 65535 [ms]		10 [ms]	-
Pr. 304	Servo input axis rotation direction restriction	Set if restricting the input travel value to a single direction.	0: No rotation direction restriction 1: Permit only when current value is increase direction 2: Permit only when current value is decrease direction	When power turned ON	0	-

10.1.4 Command generation axes

Axes used to perform command generation only can be controlled independently of axes connected to servo amps. Command generation axes are used if driving input axes with servo programs or with JOG operation.

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 340	Command generation axis enable setting	Enables/disables the used command generation axis.	0: Disable 1: Enable	When power turned ON	0	-
Pr. 341	Command generation axis unit setting	Sets the command generation axis unit.			3	-
Pr. 342	Command generation axis upper stroke limit	Sets the command generation axis upper stroke limit.	-2147483648 to 2147483647 (when degree: o to 35999999) [Command generation axis position unit] *1 2 (0	-
Pr. 343	Command generation axis lower stroke limit	Sets the command generation axis lower stroke limit.	-2147483648 to 2147483647 (when degree: 0 to 35999999) [Command generation axis position unit] *1		0	-
Pr. 344	Command generation axis command in-position range	Sets the command generation axis command in-position range.	1 to 2147483647 [Command generation axis position unit] *1		100	-
Pr. 345	Command generation axis degree axis speed 10 times designation	Sets whether to perform positioning control at a speed 10 times the command speed setting value when the command generation axis unit is degree.	0: Disable 1: Enable		0	-

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 346	Command generation axis 1 cycle length	Sets the command generation axis 1 cycle length.	$\begin{aligned} & \text { 0: Disable } \\ & 1 \text { to } 2147483647 \\ & \text { [Command generation } \\ & \text { axis position unit] }{ }^{* 1} \\ & \hline \end{aligned}$	When power turned ON	0	-
Pr. 347	Command generation axis JOG speed limit value	Sets the speed limit value when performing JOG operation for a command generation axis.	1 to 2147483647 [Command generation axis speed unit] ${ }^{* 2}$		20000	-
Pr. 348	Command generation axis JOG operation parameter block designation	Sets the No. of the parameter block used when performing JOG operation for a command generation axis.	1 to 64	When starting JOG operation	1	D14682+4n
Pr. 349	Command generation axis acceleration/decel eration time change enable device ${ }^{* 3}$	Sets the bit device used to permit acceleration/decelerati on time changes when requesting a speed change.	Bit device ($\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{B}, \mathrm{F}, \mathrm{U} \square \backslash \mathrm{G}$)	When power turned ON	-	Optional device
Pr. 350	Command generation axis acceleration time change value device ${ }^{* 3}$	Sets the word device used to set the acceleration time change value.	Word device (D, W, \#, U $\square \backslash \mathrm{G}$)		-	Optional device
Pr. 351	Command generation axis deceleration time change value device ${ }^{* 3}$	Sets the word device used to set the deceleration time change value.	Word device (D, W, \#, U口\G)		-	Optional device

*1: Command generation axis position unit
*2: Command generation axis speed unit
*3: This setting can be omitted.

10.1.5 Synchronous encoder axes

Use if driving input axes with input pulses from externally connected synchronous encoders.

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 320	Synchronous encoder axis type	- Sets the type of synchronous encoder axis used. - Sets the master CPU input axis if using as a slave CPU with multiple CPU high speed synchronous control.	0: Disable 1: Synchronous encoder Pn (synchronous encoder axis No.: 1 to 12) 201: Via device 301: Master CPU servo input axis (Axis No.: 1 to 32) 401: Master CPU command generation axis (Axis No.: 1 to 32) 501: Master CPU synchronous encoder axis (Axis No.: 1 to 12)	When power turned ON	0	-
Pr. 321	Synchronous encoder axis unit setting	- Sets the synchronous encoder axis unit. - The position unit is set in the " $\times 1$ to 10^{-9} [control unit]" range. - The speed unit is set in the " $\times 1$ to 10^{-9} [control unit/s, or control unit/min]" range.	Control unit 0: mm 1: inch 2: degree 3: PLS		3	
			No. of position decimal point digits $0 \text { to } 9$		0	-
			Speed time unit $0: \mathrm{sec}$ 1: mm		0	
			No. of speed decimal point digits 0 to 9		0	

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 322	Synchronous encoder axis unit conversion numerator	Sets the numerator for converting synchronous encoder axis encoder pulses to synchronous encoder axis units.	-2147483648 to 2147483647 [Synchronous encoder axis position unit] ${ }^{* 1}$	When power turned ON	1	-
Pr. 323	Synchronous encoder axis unit conversion denominator	Sets the denominator for converting synchronous encoder axis encoder pulses to synchronous encoder axis units.	1 to 2147483647 [PLS]		1 [PLS]	-
Pr. 324	Synchronous encoder axis 1 cycle length	Sets the synchronous encoder axis 1 cycle length.	1 to 2147483647 [Synchronous encoder axis position unit] ${ }^{* 1}$		4000	-
Pr. 325	Synchronous encoder axis smoothing time constant	Set if performing smoothing processing for input values.	0 to 5000 [ms]		0 [ms]	-
Pr. 326	Synchronous encoder axis phase compensation advance time	Sets the time to advance or delay the phase.	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647[\mu \mathrm{~s}] \end{aligned}$	Operation cycle	0 [$\mu \mathrm{s}$]	$\begin{aligned} & \text { D14820+10n } \\ & \text { D14821+10n } \end{aligned}$
Pr. 327	Synchronous encoder axis phase compensation time constant	Sets the time to reflect phase compensation.	0 to 65535 [ms]	When power turned ON	10 [ms]	-
Pr. 328	Synchronous encoder axis rotation direction restriction	Set if restricting the input travel value to a single direction.	0: No rotation direction restriction 1: Permit only when current value is increase direction 2: Permit only when current value is decrease direction		0	-
Pr. 329	Synchronous encoder via device resolution	- Sets the type of synchronous encoder axis using synchronous encoder resolution when the synchronous encoder axis type is synchronous encoder via device. - If 0 is set, processing is performed with the synchronous encoder via device input value as a 32 bit counter.	0 to 2147483647 [PLS]		0 [PLS]	-

*1: Synchronous encoder axis position unit

10.1.6 Main shaft main input axis

This is the input axis at the main shaft module main side. This is the reference for the main shaft position.

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 400	Main input axis No.	Sets the input axis No. at the main shaft input main side.	$\left.\begin{array}{ll}0 & \text { : Disable } \\ 1 \text { to } 32 & \text { : Servo input } \\ \text { axis }{ }^{* 1}\end{array}\right\}$	When starting Synchronous control	0	D15000+150n

*1: With the Q172DSCPU, the 1 to 16 range is valid.
*2: With the Q172DSCPU, the 201 to 216 range is valid.

10.1.7 Main shaft sub input axis

This is the input axis at the main shaft module sub side. This is used if entering a compensation amount for the main shaft main input axis position.

	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 401	Sub input axis No.	Sets the input axis No. at the main shaft input sub side.	0 : Disable 1 to 32 : Servo input axis ${ }^{*}$	When starting Synchronous control	0	D15001+150n

*1: With the Q172DSCPU, the 1 to 16 range is valid.
*2: With the Q172DSCPU, the 201 to 216 range is valid.

10.1.8 Composite main shaft gear

The main shaft main input axis and main shaft sub input axis travel values are compounded and transferred to the main shaft gear.

	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 402	Composite main shaft gear	Selects the input value composition method from main input axis and sub input axis.		Operation cycle	0001h	D15002+150n

10.1.9 Main shaft gear

The gear ratio for which the travel value after the composite main shaft gear is set is converted and transferred.

	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 403	Main shaft gear numerator	Sets the main shaft gear numerator.	$\begin{array}{\|r\|} \hline-2147483648 \text { to } \\ 2147483647 \\ \hline \end{array}$	When starting synchronous control	1	$\begin{aligned} & \text { D15004+150n } \\ & \text { D15005+150n } \end{aligned}$
	Pr. 404	Main shaft gear denominator	Sets the main shaft gear denominator.	1 to 2147483647		1	$\begin{aligned} & \text { D15006+150n } \\ & \text { D15007+150n } \end{aligned}$

10.1.10 Main shaft clutch

The main shaft travel value is turned ON and OFF with the clutch and transferred. This is used if conveying/isolating command pulses from main shaft input to the output axis module side, and controlling servo motor operation/stoppage.

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 405	Main shaft clutch control setting	Sets the clutch control method.		Operation cycle	0000h	D15008+150n
Pr. 406	Main shaft clutch reference address setting	Sets the clutch reference address.	0: Current value after composite main shaft gear 1: Current value per cycle after main shaft gear	When starting Synchronous control	0	D15009+150n
Pr. 407	Main shaft clutch ON address	- Sets the address for turning ON the clutch when in address mode. (The setting is invalid when in other than address mode.) - If other than " 0 to (cam axis 1 cycle length -1)", the clutch is controlled after converting to the " 0 to (cam axis 1 cycle length -1)" range.	-2147483648 to 2147483647 [Main input axis position unit ${ }^{\text {¹ }}$, or cam axis cycle unit ${ }^{* 2}$]	Operation cycle	0	$\begin{array}{\|l} \text { D15010+150n } \\ \text { D15011+150n } \end{array}$
Pr. 408	Travel value before main shaft clutch ON	- Sets the travel value until the clutch is actually turned ON after the clutch ON conditions are established. - Set a positive value for movements in the increase direction, and negative value for movements in the decrease direction.	-2147483648 to 2147483647 [Main input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{* 2}$]	When clutch ON conditions established	0	$\begin{aligned} & \text { D15012+150n } \\ & \text { D15013+150n } \end{aligned}$

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 409	Main shaft clutch OFF address	- Sets the address for turning OFF the clutch when in address mode. (The setting is invalid when in other than address mode.) - If other than " 0 to (cam axis 1 cycle length -1)", the clutch is controlled after converting to the " 0 to (cam axis 1 cycle length -1)" range.	-2147483648 to 2147483647 [Main input axis position unit ** ${ }^{*}$, or cam axis cycle unit ${ }^{*}$]	Operation cycle	0	$\begin{aligned} & \text { D15014+150n } \\ & \text { D15015+150n } \end{aligned}$
Pr. 410	Travel value before main shaft clutch OFF	- Sets the travel value until the clutch is actually turned OFF after the clutch OFF conditions are established. - Set a positive value for movements in the increase direction, and negative value for movements in the decrease direction.	$\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \text { [Main input axis position } \\ & \text { unit } \\ & \text { unit }{ }^{*+} \text {, }{ }^{2} \text {] } \end{aligned}$	When clutch OFF conditions established	0	$\begin{aligned} & \text { D15016+150n } \\ & \text { D15017+150n } \end{aligned}$
Pr. 411	Main shaft clutch smoothing method	Sets the clutch smoothing method.	0: Direct 1: Time constant method (index) 2: Time constant method (linear) 3: Slippage amount method (index) 4: Slippage amount method (linear)	When starting Synchronous control	0	D15018+150n
Pr. 412	Main shaft clutch Smoothing time constant	Sets the smoothing time constant if time constant method smoothing.	0 to 5000 [ms]		0 [ms]	D15019+150n
Pr. 413	Slippage amount at main shaft clutch ON	Sets the slippage amount when the clutch is ON if slippage amount method smoothing.	0 to 2147483647 [Main input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{* 2}$]	When clutch ON starts	0	$\begin{aligned} & \text { D15020+150n } \\ & \text { D15021+150n } \end{aligned}$
Pr. 414	Slippage amount at main shaft clutch OFF	Sets the slippage amount when the clutch is OFF if slippage amount method smoothing.	0 to 2147483647 [Main input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{* 2}$]	When clutch OFF starts	0	$\begin{aligned} & \text { D15022+150n } \\ & \text { D15023+150n } \end{aligned}$

10.1.11 Auxiliary shafts

These are input axes for auxiliary shaft modules. Input values are generated from auxiliary shafts. Furthermore, input values can be converted to values taking the mechanical reduction ratio and rotation direction into consideration with an auxiliary shaft gear.

-	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 418	Auxiliary shaft No.	Sets the auxiliary shaft input axis No.	$\left.\begin{array}{ll}0 & : \text { Disable } \\ 1 \text { to } 32 & \text { : Servo input } \\ \text { axis }{ }^{* 1}\end{array}\right\}$	When starting synchronous control	0	D15024+150n

10.1.12 Auxiliary shaft gear

The auxiliary shaft travel value is converted with the set gear ratio and transferred.

开	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 420	Auxiliary shaft gear numerator	Sets the auxiliary shaft gear numerator.	$\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \end{aligned}$	When starting synchronous control	1	$\begin{aligned} & \text { D15026+150n } \\ & \text { D15027+150n } \end{aligned}$
	Pr. 421	Auxiliary shaft gear denominator	Sets the auxiliary shaft gear denominator.	1 to 2147483647		1	$\begin{aligned} & \text { D15028+150n } \\ & \text { D15029+150n } \end{aligned}$

10.1.13 Auxiliary shaft clutch

The auxiliary shaft travel value is turned ON and OFF with the clutch and transferred.
This is used if conveying/isolating command pulses from auxiliary shaft input to the output axis module side, and controlling servo motor operation/stoppage.

$\vec{V}=$	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 422	Auxiliary shaft clutch control setting	Sets the clutch control method.		Operation cycle	0000h	D15030+150n
	Pr. 423	Auxiliary shaft clutch reference address setting	Sets the clutch reference address.	0 : Auxiliary shaft current value 1: Current value per cycle after auxiliary shaft gear	When starting synchronous control	0	D15031+150n
	Pr. 424	Auxiliary shaft clutch ON address	- Sets the address for turning ON the clutch when in address mode. (The setting is invalid when in other than address mode.) - If other than "0 to (cam axis 1 cycle length -1)", the clutch is controlled after converting to the " 0 to (cam axis 1 cycle length -1)" range.	-2147483648 to 2147483647 [Auxiliary input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{[2]}$	Operation cycle	0	$\begin{aligned} & \text { D15032+150n } \\ & \text { D15033+150n } \end{aligned}$

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 425	Travel value before auxiliary shaft clutch ON	- Sets the travel value until the clutch is actually turned ON after the clutch ON conditions are established. - Set a positive value for movements in the increase direction, and negative value for movements in the decrease direction.	$$	When clutch ON conditions established	0	$\begin{array}{\|l} \text { D15034+150n } \\ \text { D15035+150n } \end{array}$
Pr. 426	Auxiliary shaft clutch OFF address	- Sets the address for turning OFF the clutch when in address mode. (The setting is invalid when in other than address mode.) - If other than "0 to (cam axis 1 cycle length -1)", the clutch is controlled after converting to the " 0 to (cam axis 1 cycle length -1)" range.	$\begin{array}{\|l} -2147483648 \text { to } \\ 2147483647 \\ \text { [Auxiliary input axis } \\ \text { position unit }{ }^{1} \text {, or cam } \\ \text { axis cycle unit }{ }^{2} \text {] } \end{array}$	Operation cycle	0	$\begin{array}{\|l\|l} \text { D15036+150n } \\ \text { D15037+150n } \end{array}$
Pr. 427	Travel value before auxiliary shaft clutch OFF	- Sets the travel value until the clutch is actually turned OFF after the clutch OFF conditions are established. - Set a positive value for movements in the increase direction, and negative value for movements in the decrease direction.	$\begin{array}{\|l} -2147483648 \text { to } \\ 2147483647 \\ \text { [Auxiliary input axis } \\ \text { position unit }{ }^{4} \text {, or cam } \\ \text { axis cycle unit } \left.{ }^{2} \text {] }\right] \end{array}$	When clutch OFF conditions established	0	$\begin{array}{\|l} \text { D15038+150n } \\ \text { D15039+150n } \end{array}$
Pr. 428	Auxiliary shaft clutch smoothing method	Sets the clutch smoothing method.	0: Direct 1: Time constant method (index) 2: Time constant method (linear) 3: Slippage amount method (index) 4: Slippage amount method (linear)	When starting Synchronous control	0	D15040+150n
Pr. 429	Auxiliary shaft clutch smoothing time constant	Sets the smoothing time constant if time constant method smoothing.	0 to 5000 [ms]		0 [ms]	D15041+150n
Pr. 430	Slippage amount at auxiliary shaft clutch ON	Sets the slippage amount when the clutch is OFF if slippage amount method smoothing.	0 to 2147483647 [Auxiliary input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{* 2}$]	When clutch ON starts	0	$\begin{aligned} & \text { D15042+150n } \\ & \text { D15043+150n } \end{aligned}$
Pr. 431	Slippage amount at auxiliary shaft clutch OFF	Sets the slippage amount when the clutch is OFF if slippage amount method smoothing.	0 to 2147483647 [Auxiliary input axis position unit ${ }^{* 1}$, or cam axis cycle unit ${ }^{* 2}$]	When clutch OFF starts	0	$\begin{array}{\|l\|l} \text { D15044+150n } \\ \text { D15045+150n } \end{array}$

*1: Auxiliary shaft position unit
*2: Cam axis cycle unit

10.1.14 Auxiliary shaft clutch

Main shaft and auxiliary shaft travel values are compounded and transferred.

10.1.15 Speed change gear

The speed change gear is used if changing the input speed from the main shaft, auxiliary shaft, or composite auxiliary shaft gear during operation. If not used, set "0: No speed change gear" for [Pr.434] speed change gear 1 allocation (D15046+150n) and [Pr.490] speed change gear 2 allocation (D15052+150n).

	Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
	Pr. 434	Speed change gear 1	Sets the speed change gear 1 allocation.	0 : No speed change gear 1: Main shaft side 2: Auxiliary shaft side 3: After composite auxiliary shaft gear	When starting synchro-	0	D15046+150n
	Pr. 435	Speed change gear 1 smoothing time constant	Sets the speed change gear 1 smoothing time constant.	0 to 5000 [ms]	control	0 [ms]	D15047+150n
	Pr. 436	Speed change ratio 1 numerator	Sets the speed change ratio 1 numerator.	$\begin{array}{\|l} \hline-2147483648 \text { to } \\ 2147483647 \end{array}$		1	$\begin{array}{\|l} \text { D15048+150n } \\ \text { D15049+150n } \end{array}$
	Pr. 437	Speed change ratio 1 denominator	Sets the speed change ratio 1 denominator.	1 to 2147483647	cycle	1	$\begin{array}{\|l} \text { D15050+150n } \\ \text { D15051+150n } \end{array}$
	Pr. 490	Speed change gear 2	Sets the speed change gear 2 allocation.	0 : No speed change gear 1: Main shaft side 2: Auxiliary shaft side 3: After composite auxiliary shaft gear	When starting synchro-	0	D15052+150n
	Pr. 491	Speed change gear 2 smoothing time constant	Sets the speed change gear 2 smoothing time constant.	0 to 5000 [ms]	control	0 [ms]	D15053+150n
	Pr. 492	Speed change ratio 2 numerator	Sets the speed change ratio 2 numerator.	$\begin{array}{\|c\|} \hline-2147483648 \text { to } \\ 2147483647 \\ \hline \end{array}$		1	$\begin{array}{\|l} \text { D15054+150n } \\ \text { D15055+150n } \end{array}$
	Pr. 493	Speed change ratio 2 denominator	Sets the speed change ratio 2 denominator.	1 to 2147483647	cycle	1	$\begin{aligned} & \text { D15056+150n } \\ & \text { D15057+150n } \end{aligned}$

10.1.16 Output axes

Output axes perform cam conversion processing based on the input travel value and set cam data, and outputs the feed current values that serve as commands to the servo amp.

Symbol	Setting item	Setting details	Setting value	Load cycle	Default	Device No.
Pr. 438	Cam axis cycle unit setting	- Sets the cam axis 1 cycle length unit. - This is a parameter for monitor display, and does not affect control.		When starting Synchronous control	0000h	D15058+150n
Pr. 439	Cam axis 1 cycle length	Sets the input amount required for 1 cam cycle.	$\begin{aligned} & 1 \text { to } 2147483647 \\ & \text { [Cam axis cycle unit] }^{* 1} \end{aligned}$	When starting synchronous control, when passing cam data 0 point	4194304	$\begin{array}{\|l} \text { D15060+150n } \\ \text { D15061+150n } \end{array}$
Pr. 440	Cam No.	Sets the cam No.	0 Linear cam (preset) 1 to $256:$User created cams		0	D15062+150n
Pr. 441	Cam stroke amount	- Sets the cam stroke amount relative to a stroke ratio of 100% for stroke ratio data format cams. - Ignored for coordinate data format cams.	$\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \text { [Output axis position }_{\text {unit] }^{2}} \end{aligned}$		4194304	$\begin{array}{\|l} \text { D15064+150n } \\ \text { D15065+150n } \end{array}$
Pr. 442	Cam axis 1 cycle length Change setting	Set if changing the [Pr.439] cam axis 1 cycle length (D15060+150n, D15061+150n) during synchronous control.	$\begin{aligned} & \text { 0: Disable } \\ & \text { 1: Enable } \end{aligned}$	When starting Synchronous control	0	D15059+150n
Pr. 444	Cam axis phase compensation advance time	Sets the time to advance or delay the cam axis phase.	$\begin{array}{\|l} -2147483648 \text { to } \\ 2147483647[\mu \mathrm{~s}] \end{array}$	Operation cycle	0 [$\mu \mathrm{s}$]	$\begin{array}{\|l} \text { D15066+150n } \\ \text { D15067+150n } \end{array}$
Pr. 445	Cam axis phase compensation time constant	Sets the time to reflect cam axis phase compensation.	0 to 65535 [ms]	When starting Synchronous control	10 [ms]	D15068+150n
Pr. 448	Synchronous control parameter block No.	Sets the synchronous control parameter block No.	1 to 64		1	D15069+150n
Pr. 447	Output axis smoothing time constant	Set if performing smoothing processing for output axes.	0 to 5000 [ms]		0 [ms]	D15070+150n

*1: Cam axis cycle unit
*2: Output axis position unit

Synchronous control output axes are moved with cams. Output axis movement patterns (return movements, feed movements) relative to output axis module input travel values are registered in the cam data.
The movement patters are as follows.

- Return movement: Return movement within fixed cam stroke range

- Feed movement: Movement that involves updating the cam reference position every 1 cycle

- Linear movement: Linear movement in which 1 cycle has a stroke ratio of 100% (Cam No. 0)

10.2 Practice Content

By setting "synchronous control parameters" and starting synchronous control for each output axis, control is synchronized for input axes (servo input axis, command generation axis, synchronous encoder axis).

- The X -axis is set to 2 mm per rotation in the basic parameters, and is treated as the Y -axis main shaft.
- The Y-axis (axis 2) ballscrew moves 2 mm per rotation (4194304 pulses/rotation), and therefore the 1 cycle length in the output axis parameters is set to 4194304 pulses (actually 30 mm or 10 mm) in order to make it easier to confirm movements.

10.3 Cam Data Creation

MELSOFT Series MT Developer 2 ...ttingsPP

! Project Edit Eind/Replace Yiew Gheck/Conve

,

${ }^{\circ}$ MELSOFT Series MT Developer 2 ...tt

(1) Right-click "Cam Data" in the Project window, and then click "New Cam Data...".
(2) A New Data screen appears.

Set the Cam No., and then click the OK button.
(3) Cam data is created, and a setting screen appears.

Go to next page

From previous page

(4) Specify the setting screen stroke settings as follows.

Div. No.	Start point	End point	Stroke
1	0.00000	80.00000	30.0000000
2		180.00000	100.0000000
3		0.00000	0.0000000

Stroke setting range
"Min. value": 0.00000, "Max. value": 100.0000000
Set all strokes to "Single Hypot." at the "Cam Curve" selection.

(6) Change the "Display graph" check box selections to change the graph display in order to view the stroke, speed, acceleration, and jerk relative to the movement angle in a chart.

Go to next page

From previous page

(7) To view the stroke ratio, speed, acceleration, and jerk relative to the movement angle in numerical values, click the point data display tool button.

There are tables from No. 1 to 256. Scroll to view all tables.

Point Data Display - Cam No. 001								X
Table No.	Len. per Cycle[degree]	Stroke [\%]	Speed	Accel.	Jerk	Cam Curve	Cam Data	\wedge
1	1.40625	0.0228663	0.07	3.29	-0.1	Single Hypot.	228662	
2	2.81250	0.0913954	0.12	3.26	-0.1	Single Hypot.	913954	
3	4.21875	0.2053785	0.16	3.23	-0.1	Single Hypot.	2053785	
4	5.62500	0.3644680	0.21	3.18	-0.2	Single Hypot.	3644680	
5	7.03125	0.5681789	0.25	3.13	-0.2	Single Hypot.	5681789	
6	8.43750	0.8158901	0.30	3.06	-0.2	Single Hypot.	8158901	
7	9.84375	1.1068464	0.34	2.99	-0.3	Single Hypot.	11068463	
8	11.25000	1.4401606	0.38	2.91	-0.3	Single Hypot.	14401606	
9	12.65625	1.8148166	0.42	2.82	-0.3	Single Hypot.	18148166	
10	14.06250	2.2296721	0.46	2.72	-0.3	Single Hypot.	22296721	
11	15.46875	2.6834623	0.50	2.61	-0.4	Single Hypot.	26834622	
12	16.87500	3.1748036	0.54	2.49	-0.4	Single Hypot.	31748035	
13	18.28125	3.7021980	0.57	2.37	-0.4	Single Hypot.	37021980	
14	19.68750	4.2640376	0.60	2.24	-0.4	Single Hypot.	42640376	
15	21.09375	4.8586094	0.64	2.10	-0.5	Single Hypot.	48586094	
16	22.50000	5.4841007	0.66	1.95	-0.5	Single Hypot.	54841007	
17	23.90625	6.1386045	0.69	1.80	-0.5	Single Hypot.	61386044	
18	25.31250	6.8201252	0.72	1.65	-0.5	Single Hypot.	68201251	
							Close	

After checking, click the Close button.

(8) Create cam data for cam No. 002 using the same procedure as that for cam No. 001.
For cam No. 002, set all strokes to "Const. Speed" at the "Cam Curve" selection.
(All other selections are the same as those for cam No. 001.)

Go to next page

From previous page

(9) Use the same procedure to create data for cam No. 003.
Specify the stroke settings as follows.

Div. No.	Start point	End point	Stroke
1	0.00000	80.00000	30.0000000
2		150.00000	100.0000000
3		220.00000	100.0000000
4		310.00000	0.0000000
5		0.00000	0.0000000
Stroke setting range			
"Min. value": 0.00000 , "Max. value": 100.0000000			

Set all strokes to "Double Hypot." at the "Cam
Curve" selection.

Project

 $\square \times$$\square$ SCHOOL (SV22 Advanced Synchronous (नill System Setting
Servo Data Setting
OD Motion SFC Program
\pm (K) Servo Program
$+4$
Synchronous Control Parameter

Cam Data
\# Cam Data List
No. 001
No. 002
No. 003

+ Label
$+$
5 Structured Data Types
Device Memory
Device Comment
<Cam No. 001 waveform>

-90	180	270	360	90	180	270
-160	90	180	270	360	90	180

<Cam No. 002 waveform>

<Cam No. 003 waveform>

10.4 Advanced Synchronous Control Programs

Motion SFC programs used with advanced synchronous control are shown in the following table.

No.	Program name	Automatic start	END operation	No. of transitions	Execution timing
100	Advanced synchronous control	No			Normal
210	Speed change 2	No			Normal
230	Analog speed change	No			Normal

- Start program from sequence program

- Start program from motion SFC program
[Speed change 2] program No. 210 (Program used to change the speed of command generation axes) Started with No. 100

- Start program from motion SFC program
[Analog speed change] program No. 230 (Program used to change the speed of command generation axes) Started with No. 100

Analog speed change

10.4.1 Creating new advanced synchronous control motion SFC programs

\% MELSOFT Series MT Developer 2 ...ti

(5) Now create the following new motion SFC
"Motion SFC program No.": 110
"Motion SFC program name": Clutch
(1) Double-click [Motion SFC Program] \rightarrow [Motion SFC Program Manager] in the Project window.
(2) A Motion SFC Program Manager dialog box appears.

Click the New button.
(3) A New dialog box appears. Set the program No. for the motion SFC program being created. Enter "100" for the "Motion SFC program No.", and "Advanced synchronous control" for the "Motion SFC program name".
(4) Click the OK button after entering.

program.

From previous page
Program Parameter

No.	Program Name
10	Real mode main
20	Standby point po
30	Point selection
40	Address indirect
110	Clutch

(6) The set motion SFC program appears in a list. Select motion SFC program No.100, and then click the OK button.

No.	Program name
100	Advanced synchronous control
110	Clutch

10.4.2 Entering motion control steps for advanced synchronous control

Sets motion control steps for advanced synchronous control.

MELSOFT Series MT Developer2 ...tt

! Project Edit Find/Replace View Ghec

Project

 $\square \times$$\square$ SCHOOL (SV22 Advanced Synchronous (

+ Fill System Setting
+ Servo Data Setting
-67 Motion SEC Program Motion SFC Program Manager Motion SFC Parameter
Motion SFC Dronram
(1) Double-click!
(3) Create the SFC diagram shown on the left.
(1) Create a servo program motion SFC program.

Double-click [Motion SFC Program] \rightarrow [Motion SFC Program Manager] in the Project window.

Go to next page

(2) Select "100 Advanced synchronous control" from the motion SFC program list in the Motion SFC Program Management dialog box, and then click the OK button.

${ }^{\circ}$ MELSOFT Series MT Developer 2 ...ttingsIPC056

(5) Set "Command Generation Axis Program Allocation" to "Exist" and set the "Command Generation Axis Program" to "100" to "109" at the Command Generation Axis Program Allocation Setting dialog box, and then click the OK button.
(6) Right-click "Servo program" in the Project window, and then click "Create New Servo Program".
(7) Enter the Program No. at the New Servo Program dialog box, and then click the OK button.
(4) Double-click [Command Generation Axis Program Allocation] in the Project window.

Go to next page

(8) Select "Speed" for the "Instruction Class", and "VF" for the "Servo Instruction" at the Select Instruction dialog box, and then click the OK button.

(9) Enter " 1 " in the "Axis" text box, and enter "D 2110" in the "Speed" text box.
Add "P.B." from the setting items, and then enter "2".

(10) Click the Convert button.
(11) After creating motion control steps, click the Close button to close the Servo Program Editor dialog box.

Go to next page

From previous page

100: Advanced synchronous control

Go to next page
(12) Set the following transition programs.

[G500]	M30*M2402*M2415
[G502]	M31*M2402*M2415
[G510]	M2410*M2430
[G511]	!M30
[G512]	//Axis 1\&2_Performing synchronous control M10880*M10881
[G513]	!M31
[G514]	//Axis 1\&2_Performing synchronous control !M10880*!M10881
[G590]	!M2001
[F500]	SET M6810 SET M2042
[F510]	//Axis 1_Synchronous control execution SET M12000 //Axis 2_Synchronous control execution SET M12001
[F511]	//Command generation axis 1_JOG speed //D14600L=1000 //Servo input D14680L=1000 //Command generation axis 1_Forward rotation JOG ON SET M10962
[F512]	//Command generation axis 1_Forward rotation JOG ON RST M10962 //Axis 1_Synchronous control stop RST M12000 //Axis 2_Synchronous control stop RST M12001
[F590]	RST M12000
[F591]	RST M6810

From previous page

110: Clutch

$[F 1100]$	I/Clutch 1 control OUT M11680 $=!$ M32
$[$ F1101 $]$	I/Clutch 2 control OUT M11690 $=!$ M33

Check/Convert		Online	Debug	Tools	Windo
	Servo Program Relative Check				
	Write Motion SFC Chart				
	Servo Program Conversion				
	Motion SFC	Batch Co	version		Alt+F
	Label Conversion				
	Project Bat	Check	Convers	-3hif	(13) C

(13) Batch convert created SFC diagrams to motion SFC programs.
Click [Project Batch Check/Conversion] on the [Check/Convert] menu.
(14) Editing of servo program No. 100 for advanced synchronous control is now complete.

10.5 Editing Command Generation Axis Parameters

(1) Select [Synchronous Control Parameter] \rightarrow [Input Axis Parameter] in the Project window, and then double-click [Command Generation Axis parameter].

10.6 Editing Servo Input Axis Parameters

(1) Select [Synchronous Control Parameter] \rightarrow [Input Axis Parameter] in the Project window, and then double-click [Servo Input Axis Parameter].
(2) A Command Generation Axis Parameter dialog box appears.
Specify the following settings for axis 1 only.
Servo Input Axis Type 1: Feed Current Value

10.7 Editing Synchronous Control Parameters

!Project
$4 \times$ \square

5CHOOL (5V22 Advanced Synchronous Control Method

+ 7 III System Setting
+ 5 Servo Data Setting
+8 Motion SFC Program
- (K Servo Program
- 4 Synchronous Control Parameter
\pm Input Axis Parameter
Axis 1 to Axis 8 Synchronous Parameter

Axis 3
(1) Select [Synchronous Control Parameter] \rightarrow [Axis 1 to Axis 8 Synchronous Parameter] in the Project window, and then double-click [Axis 1].
(2) An Axis 1 Synchronous Parameter dialog box appears. Set the "Main Input Axis" "Type" and "Axis No". as follows.

Go to next page

From previous page
(3) Set the "Main Shaft Clutch Control Setting" "ON Control Mode" as follows.

(4) Set the "Cam Axis Length per Cycle", "Cam Stroke Amount", and "Cam No." as follows. Setting of axis 1 synchronous parameter is now complete.

Go to next page

From previous page

(5) Select [Synchronous Control Parameter] \rightarrow [Axis 1 to Axis 8 Synchronous Parameter] in the Project window, and then double-click [Axis 2].
(6) An Axis 2 Synchronous Parameter dialog box appears. Set the "Main Input Axis" "Type" and "Axis No". as follows.

Go to next page
(7) Set the "Main Shaft Clutch Control Setting" "ON Control Mode" as follows.

(8) Set the "Cam Axis Length per Cycle", "Cam Stroke Amount", and "Cam No." as follows. Setting of axis 2 synchronous parameters is now complete.

Go to next page

Check/Convert		Online	Debug	Iools	Window
気	Relative Check				
	Label Conversion			-1	Click!
鳳 Project Batch CheckjConversion				Shif	+Alt+F4

```
Output
----- Synchronous Control Parameter - Relative Check End Error: 0, Warning:0 -----
-------- Camch Data Conversion Start ------
Converting cam data..
Complete successfully.
------- Cam Data Conversion End Error: 0, Warning: 0 ------
--------- Project Batch Check'Convert End Error: 0, Warning: 0 -------
```


10.8 Writing to the Q Motion CPU

This section describes writing created data (motion SFC programs/synchronous control parameters/cam data) to the Q motion CPU.

(1) Set the Q motion CPU to "STOP".
(2) Click [Write to CPU...] on the [Online] menu.
(3) A CPU Write dialog box appears. Select "Program memory" for the applicable memory, select the "Programs" check box, and then click the Execute button.
(The settings for servo settings data (system settings, servo settings data) are the same as those for real mode described in Chapter 6, and therefore writing is not necessary.

(4) Click the OK button when the "Complete" message appears.
(6) Reset the Q PLC CPU, and then set the Q motion CPU to "RUN". Data writing to the Q motion CPU is now complete.

10.9 Practice Programs

The sequence program and motion SFC program used for practice are shown in the following list.
Refer to the respective descriptions of each program in this manual for details.

Constant execution				Started with sequence program
				\rightarrow • [Advanced synchronous control] Motion SFC program No. 100

Motion SFC program parameters

No.	Program name	Automatic start	END operation	No. of transitions	Execution timing
100	Advanced synchronous control	No			Normal

[Advanced synchronous control] program No. 100
This is an example of a program used to perform positioning after switching to advanced synchronous control.
Output modules operate by starting and stopping command generation axes.

Sequence programs

Conditions are determined based on the type of output module used with the advanced synchronous control program, however, in this program example, the current value when switching becomes the cam bottom dead center position.
****Advanced control ${ }^{* * * * *}$

Caution when creating advanced synchronous control programs

If using cams, advanced synchronous control switching setting M3075 is turned ON when the cam reference value (bottom dead center) setting M3234/axis 2 is ON.
There is no need to turn M3234/axis 2 ON and OFF each time if the reference value has been determined. If turned ON and OFF recklessly, the reference value will change, leading to potential trouble, and therefore caution is advised.

If the axis stops at point A or B on the solid line during movement, by turning M3234/axis 2 ON and OFF, the cam reference value (bottom dead center) will change to a stopped position, and the axis movement will change to that of the broken line when the next movement is made.

10.10 Demonstration Machine Operation

Demonstration machine operation panel

(2) The monitor window axis monitor appears.

Go to next page

From previous page

Set the Q PLC CPU and Q motion CPU to "RUN".

[Zeroing execution

and positioning at standby point]
Press AOMANGED at the demonstration machine operation panel.
Press the zeroing $\underset{\substack{\text { ZERONO } \\ \text { M30 }}}{\substack{\text { an }}}$ button: Movement starts in the zeroing direction, and positioning is performed at the standby point P address (0.0).

The feed current value will be $10000.0 \mu \mathrm{~m}$ for both axes 1 and 2 .
[Switching to advanced synchronous control and clutch operation]

Go to next page
[Changing the stroke amount]

- Set the stroke amount in the 1.0 to 120.0 mm range at the demonstration machine operation panel.
- Ensure that the stroke amount is changed.
[Speed change]

[Set the cam No. to "2".]
- Set the cam No. to "2" at the demonstration machine operation panel.
- "2" displays for the "Execute cam No."
[Content to be checked (cam No.2)]
- Watch the stop status.
- Check the details monitor at each module.
- Change the stroke amount.
- Watch the movement when the speed is changed ($2000 \mathrm{~mm} / \mathrm{min}, 1000 \mathrm{~mm} / \mathrm{min}, 500 \mathrm{~mm} / \mathrm{min}$, temporary stop).
- Watch the movement when the clutch is turned OFF.
[Set the cam No. to "3".]
- Set the cam No. to "3" at the demonstration machine operation panel.
- "3" displays for the "Execute cam No."
[Content to be checked (cam No.3)]
- Watch the stop status.
- Check the details monitor at each module.
- Change the stroke amount.
- Watch the movement when the speed is changed ($2000 \mathrm{~mm} / \mathrm{min}, 1000 \mathrm{~mm} / \mathrm{min}, 500 \mathrm{~mm} / \mathrm{min}$, temporary stop).
- Watch the movement when the clutch is turned OFF.
[Cycle length setting]
- Press ADANCED to end advanced startup.
- Press $\begin{gathered}\text { AOVANCED } \\ \text { NB6O2 } \\ \text { and }\end{gathered}$ to end all operations.
- Set the cycle length again at the demonstration machine operation panel.

- Set in the same manner for cam No. 2 and No. 3.

Practice is complete when all of these operations are finished.

Point

If the cycle length < the stroke amount, a 31.1353 2-axis alarm may occur at the servo amp.

Appendices

Appendix 1 Application Practice in SV22 Real Mode

Appendix 1.1 Practice Content

Perform continuous positioning at multiple points.
SV13 operation is the same as that for SV22 in real mode, and therefore this practice applies to both.

Continuous positioning (1) operation diagram

Continuous positioning (2) operation diagram

Appendix 1.2 Practice Motion SFC Programs

These sequence/motion SFC programs have been created for operation purposes on the assumption that MT Works2 (for Q172DSCPU) be used.
Refer to section 9.2 for an explanatory drawing of the demonstration machine operation panel.
Refer to section 9.5 for details on initial processing, JOG operation, zeroing, standby point positioning, point selection positioning, and address indirect designation positioning.

Appendix 1.2.1 Program list

The sequence program and motion SFC program used for practice are shown in the following list.
Refer to the respective descriptions of each program in this manual for details.

Constant execution	Started with sequence program	Started with motion SFC program
	[Real mode main] Motion SFC program No. 10 \square [Teaching] Motion SFC program No. 210	[Standby positioning] Motion SFC program No. 20 \rightarrow - [Point selection] Motion SFC program No. 30 - [Address designation] Motion SFC program No. 40 \rightarrow - [Continuous positioning (1)] Motion SFC program No. 50 \rightarrow - [Continuous positioning (2)] Motion SFC program No. 60 \rightarrow [Teaching playback] Motion SFC program No. 70 \rightarrow - [Fixed feed] Motion SFC program No. 80 " [Fixed feed advance] Motion SFC program No. 220 \rightarrow [Speed change] Motion SFC program No. 200

Motion SFC program parameters

No.	Program name	Automatic start	END operation	No. of transitions	Execution timing
10	Real mode main	No	-	3	Normal
20	Standby point positioning	No	-	3	Normal
30	Point selection	No	-	3	Normal
40	Address indirect designation	No	-	3	Normal
50	Continuous positioning (1)	No	-	3	Normal
60	Continuous positioning (2)	No	-	3	Normal
70	Teaching playback	No	-	3	Normal
80	Fixed feed	No	-	3	Normal
200	Speed change	No	-	3	Normal
210	Teaching	No	-	3	Normal
220	Fixed feed advance	No	Continuous	2	Event $(0.8 \mathrm{~ms})$

- Q03UD sequence program

Appendix 1.2.2 Main routine motion SFC program (real mode operation)

This is the main executed motion SFC program when performing operation in real mode.
Other motion SFC programs used to perform various types of operation when in real mode from this main routine motion SFC program are started as subroutines.
(1) Motion SFC program started from main routine motion SFC program

Motion SFC program No.	Program name	Reference section
20	Standby point positioning	9.9
30	Point selection	9.9
40	Address indirect designation	9.9
50	Continuous positioning (1)	Appendix 1.2.3
60	Continuous positioning (2)	Appendix 1.2.4
70	Teaching playback	Appendix 1.2.5
80	Fixed feed	Appendix 1.2.6
200	Speed change	Appendix 1.2.7

210	Teaching	Appendix 1.2.5

220	Fixed feed advance	Appendix 1.2.6

(2) Program example

Appendix 1.2.3 Continuous positioning (1)

This is an example of a program used to perform positioning at multiple points based on respective conditions.
The standby method if the flow is branched, and M-codes that can be used to control auxiliary machinery with sequence programs are set.
(1) Multiple servo program execution order control

To execute servo programs in the order $50 \rightarrow 51,52 \rightarrow 53 \rightarrow 54 \rightarrow 56,57$, by using a "WAIT" type transition after the motion control step (servo program), the system waits until the servo program currently running is complete before proceeding to the next motion control step (servo program). Furthermore, if the program is interrupted during consecutive execution, execution is resumed from the interrupted servo program.
(2) Example of servo program with M-code

M-codes 0 to 255 are added to servo programs, and by running these programs, M-code Nos. are entered in the M-code monitor register.
Data is also sent to the PLC CPU by setting auto refresh (user setting), and therefore if monitored with the sequence program comparison command, the M-code No. is known, allowing the operation determined beforehand to be performed.

```
[K 50 : Real Axis ]
    1 ABS-1
        Axis
        ->Address
        Speed
        M-code
100000.0 % \mum
1000.00 [mm/min
M-code 1 is added.
```


(3) Motion SFC program

[Real mode main] program

(From previous page)

Appendix 1.2.4 Continuous positioning (2)

This is an example of a program used to perform continuous interpolation between multiple points with 2 -axis constant speed control.
Even with independent servo programs, multiple operations are possible if the operation pattern is fixed.
[Motion SFC program]

Appendix 1.2.5 Teaching, teaching playback

Teaching programs are used to register positions (with push button operation) to which axes are moved to manually with JOG operation and so on, and teaching playback programs are used to perform position at registered addresses.

Motion SFC program No. 210 [teaching]
Register the current address by pressing the [Load Position] button on the demonstration machine operation panel.

Motion SFC program No. 70 [teaching playback]
Perform positioning at the address registered with teaching.

Appendix 1.2.6 Fixed feed, fixed feed advance

Operations in which workpieces of fixed length are fed at fixed timing such as when inputting signals are known as fixed feed.
If there are many fixed feed, and the interval between signals is short, there may be times when it is necessary to shorten the start time between signal input and the start of operation.
With this program example, the following effective functions are used in such a case.

- WAIT-ON(WAIT-OFF) command: Performs start preparations for the next motion control step beforehand.
- Event tasks: Periodically runs a motion SFC program at a fixed cycle (0.8 ms).

(Go to next page)
(From previous page)

The task type and operating conditions for each program are set in the "Program Parameters".
"Program Parameters" are located in the peripheral tool "Options" \rightarrow "SFC Parameter Settings" \rightarrow "Program Parameters".

Appendix 1.3 Demonstration Machine Operation

Appendix 1.3.1 Operation

Servo motors are run, and servo motor operation is monitored with MT Works2.

(1) Click the monitor tool button.

(2) The monitor window Current Value Expansion Monitor appears.

Go to next page

- Teaching

Press JOG at the demonstration machine operation panel.
Enable the JOG operation screen Jooshmome Pos. button.
 buttons.

- Turn ON "Teaching" position load, and register the position moved to with JOG operation.
[Teaching] program (motion SFC program No.210)

With "Position Load" ON, start motion SFC program [Teaching].
Substitute the axis 1 and 2 current values (D0, D20) for \#70 and \#72.

- Teaching playback

Change to the Real screen.

- Press Real Mode Main to turn ON the running lamp.
- By pressing on the screen, positioning is performed at the registered address.
[Teaching playback] program (motion SFC program No.70)

Go to next page

From previous page

[Mid-operation check details]
Speed change/temporary stop during operation (operation during continuous positioning, constant speed control, speed control)

- By turning ON the 2000 touch panel speed change switch, the speed changes to 2000 $\mathrm{mm} / \mathrm{min}$.
- By turning ON the 1000 touch panel speed change switch, the speed changes to 1000 mm/min.
- By turning ON the 500 touch panel speed change switch, the speed changes to 500 $\mathrm{mm} / \mathrm{min}$.
- By turning ON the 0
- By turning ON the Analog
touch panel speed change switch, movement stops temporarily touch panel speed change switch, speed changes to analog speed.
(The speed may be changed multiple times during operation. However, do not perform operation during zeroing or during deceleration. A minor error will occur.)
[Speed change] program (motion SFC program No.200)

Go to next page

From previous page

[Fixed feed, fixed feed advance]

- Fixed feed, fixed feed advance

Change to the Real screen.

- Press Real Mode Main to turn ON the running lamp.
- Set the fixed feed amount to "10" at the touch panel.
- Press the "Fixed Feed" Permit fixed button to permit fixed feed operation. \rightarrow Operation will not start yet.
- Fixed feed is performed once each time the "Fixed Feed" Execute fixed button is pressed, and stops after ten times.
- Fixed feed operation is performed with the fixed feed and fixed feed advance motion SFC program.
[Fixed feed] program (motion SFC program No.80)

D2080<K10

Start motion SFC program No. 220 [fixed feed advance].

Terminate motion SFC program No. 220 [fixed feed advance].

[Fixed feed advance] program (motion SFC program No.220)

Operation complete

Appendix 2 Digital Oscilloscope

Position commands, position droop, motor speed, motor current, and speed commands and so on can be traced with the MT Works2 digital oscilloscope.

Refer to the performance specifications (digital oscilloscope) in the MT Developer2 Help.
(1) Communication settings

(1) Click the Windows [start] button, and then select [All Programs] \rightarrow [MELSOFT Application] \rightarrow [MT Works2] \rightarrow [Digital Oscilloscope].

Go to next page

From previous page

(2) A Digital Oscilloscope window appears.

No.	Item	Details
1)	Menu bar	This menu is used to perform each function.
2)	Toolbar	Displays tool buttons used to perform each function.
3)	Waveform display area	Displays word data and bit data waveforms.
4)	X-axis cursors [1], [2], [T]	Displays X-axis cursors [1] and [2], and trigger cursor[T].
5)	X-axis cursor position display field	Displays X -axis cursor [1] and [2] and trigger cursor[T] position (time), and the time between cursors. (Unit: msec)
6)	Y-axis cursors [A], [B]	Displays Y-axis cursors [A] and [B]
7)	Word waveform selection button	Selects the word waveform subject to operation.
8)	Word waveform item name display field	Displays the probe name for the word waveform selected with the word waveform selection button.
9)	Word waveform item unit display field	Displays the data unit for the word waveform selected with the word waveform selection button.
10)	Word waveform selection item scale display field	Displays the data scale value for the word waveform selected with the word waveform selection button.
11)	GND level button	Displays the GND(0) existence, and changes between the word waveform and GND level display.
12)	X-axis 1 Division setting field (Displays only in FIXED grid mode.)	Changes the X -axis 1 Division setting.
13)	Y-axis scale optimization button (Displays only in FIXED grid mode.)	Automatically adjusts Y-axis divisions so that the selected word waveform can be displayed inside a single screen.
14)	Bit waveform selection button	Selects the bit waveform subject to operation.
15)	Bit waveform selection item display field	Displays the probe name for the bit waveform selected with the word waveform selection button.
16)	Y-axis waveform scrollbar	Scrolls the word waveform selected with the word waveform selection button in the Y-axis direction.
17)	Vertical waveform enlarge button (Cr^{-1})	Enlarges the scale of the word waveform selected with the word waveform selection button.
18)	Vertical waveform reduce button ($\mathrm{C}_{4}^{\text {a }}$)	Reduces the scale of the word waveform selected with the word waveform selection button.

Go to next page

From previous page

> (3) Click!
(3) Click [Communication Setting...] on the digital oscilloscope [Online] menu to specify communication settings.

Go to next page

(4) A Communication Settings dialog box appears. Select "Motion buffering method" (select the check box to display waveforms in real time) for the "Sampling method", and select "ONLINE" for the "Operation mode". When settings are complete, click the Transfer Setup button.
(5) Specify the following settings at the Transfer Setup dialog box that appears, and then click the OK button.

- Computer I/F: Serial USB
- CPU I/F: CPU module
- Other station designation: No other station designation
- Applicable system: Multiple CPU designation No. 2 CPU
(6) The display then returns to the Communication Setting dialog box. Click the OK button.
(2) Waveform measurement

(2) Click the Optional device button at the PROBE screen that appears.
(1) Select the item to be probed.

Click [Probe] on the [Edit] menu at the Digital Oscilloscope window.

Go to next page

(3) Select the check box and use the ten-key pad to enter "M1" at the DEVICE screen, and then click the OK button.
(4) The display then returns to the PROBE screen.

Select the item to be set, and then click to register.
Register the "Motor current", "Motor speed", and "Feed current value" here.
Click the Next button.
(5) Set the trigger at the TRIGGER screen that appears.
Specify the default settings as follows.

- Sampling Rate: 0.444×10 (msec)
- Sampling Size: 8192
- Trigger Type: Select "One shot".
(6) Click the "Trigger Setting" tab.
(7) Specify the trigger settings as follows.
- Trigger Mode: Bit OR
- Pattern: \qquad (OFF \rightarrow ON (startup))

Click the Complete button.

Go to next page

(8) Click [RUN] on the [Action] menu at the Digital Oscilloscope window.
Sampling is started.
(9) The system waits for the trigger, and "Sampling before trigger" appears in the display area MAP.
(10) Press Standby Point at the demonstration machine operation panel to perform positioning to the standby point.
(11) Align the digital switch to " 30 " and press Position Movement to perform point positioning. The trace monitor is executed.
(12) Once buffering is complete when the trigger is established, a buffering data read progress bar is displayed.
(13) The waveform displays once buffering data reading is complete.

Appendix 3 Windows Computer Operation

Appendix 3.1 MELSOFT MT Works2 Installation Procedure

This section describes the installation and uninstallation procedures for MT Developer2.

- Product configuration

Model name	Software name	Qty
SW1DNC-MTW2-J (Japanese edition package)	MELSOFT MT Works2 (MT Developer2) (1 licensed product) CD-ROM	1
	Installation procedure manual	1
	Software usage agreement	1
	Software registration guidance	1
	License agreement	1
	Information	1

■ Operating environment

Item	Software name
Computer	Personal computer running Windows ${ }^{\text {® }}$
CPU	Desktop computer: Intel ${ }^{(8)}$ Celeron ${ }^{(8)}$ processor 2.8 GHz or faster recommended Notebook computer: Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR} \mathrm{M}$ processor 1.7 GHz or faster recommended
Required memory	1 GB or more recommended
Video card	
Available hard disk space	When installing MT Developer2: available HDD space of 1 GB or more When running MT Developer2: available virtual memory of 512 MB or more
Disk drive	3.5 inch (1.44 MB) floppy disk drive ${ }^{\times 1}$ CD-ROM compatible disk drive
Display	Resolution: 1024×768 or higher
Communication interface	RS-232 port USB port SSC I/F card (A30CD-PCF) * ${ }^{*}$ SSC I/F board (A10BD-PCF) *4 Ethernet port

*1: Required if installing this OS software with a floppy disk.
*2: Compatible with 32-bit edition.
*3: Compatible with 64-bit edition.
*4: A30CD-PCF and A10BD-PCF are not compatible with the 64 -bit edition of Windows ${ }^{\circledR} 7$.
(1) Installation procedure

Install MT Developer2 on the computer.

1) Insert the CD-ROM in the CD-ROM drive. Double-click "Setup.exe" (may also appear as "Setup") in the CD-ROM.
2) Follow the screen instructions to select or enter the required items.

CAUTION

The following message may appear before the product installation is complete. The driver must be installed.
When using Windows® XP

Select "Continue" and install the driver.
（2）USB driver installation procedure
It is necessary to install a USB driver to perform USB communication with the motion CPU．
（When using Windows ${ }^{\circledR}$ XP）

1）Connect the computer and PLC CPU，and then turn ON the PLC CPU．

2）A＂New hardware search wizard start＂dialog box appears．Select＂Install from list or specific location（details）＂．

3）A＂Select search and install options＂dialog box appears．Select＂Search for best driver in following location＂．Select the＂Include following location＂check box，and then set＂Easysocket USBdrivers＂ in the folder in which MT Developer2 was installed．If multiple MELSOFT products have been installed，browse the installation direction for the first product．（＂IMelseclEasysocketlUSBDrivers＂or ＂$\[$ installation folder specified when installing］\EasysocketlUSBDrivers＂）

POINT

If unable to install the USB driver，check the following settings．
－If＂Block－Do not install unsigned driver software＂is selected in［Control Panel］－［System］－［Hardware］
－［Driver Signature］，it may not be possible to install the USB driver．
－Select＂Ignore－Install software and do not check＂，or＂Warning－Select operation each time＂，and then install the USB driver．

Appendix 4 Q173DCPU and Q172DCPU Comparison

Item				Q173DSCPU	Q172DSCPU	Q173DCPU	Q172DCPU
Number of control axes				32 axes	16 axes	32 axes	8 axes
Operation cycle (default)			SV13	$0.22 \mathrm{~ms} / 1$ to 4 axes $0.44 \mathrm{~ms} / 5$ to 10 axes $0.88 \mathrm{~ms} / 11$ to 24 axes 1. $77 \mathrm{~ms} / 25$ to 32 axes	$0.22 \mathrm{~ms} / 1$ to 4 axes $0.44 \mathrm{~ms} / 5$ to 10 axes $0.88 \mathrm{~ms} / 11$ to 16 axes	$0.44 \mathrm{~ms} / 1$ to 6 axes $0.88 \mathrm{~ms} / 7$ to 8 axes	$0.44 \mathrm{~ms} / 1$ to 3 axes $0.88 \mathrm{~ms} / 4$ to 8 axes
			SV22	$0.44 \mathrm{~ms} / 1$ to 6 axes $0.88 \mathrm{~ms} / 7$ to 16 axes 1. $77 \mathrm{~ms} / 17$ to 32 axes	$0.44 \mathrm{~ms} / 1$ to 6 axes $0.88 \mathrm{~ms} / 7$ to 16 axes	$0.44 \mathrm{~ms} / 1$ to 4 axes $0.88 \mathrm{~ms} / 5$ to 8 axes	$0.88 \mathrm{~ms} / 1$ to 5 axes $1.77 \mathrm{~ms} / 6$ to 8 axes
OS software media				CD-ROM		FD (2)	
OS software model (SV13/SV22)				SWDDNC-SVDQロ			
Peripheral device I/F				USB/RS-232/Ethernet (via PLC CPU), peripheral I/F (motion CPU control)			
Main base unit				$\begin{gathered} \text { Main base unit } \\ \text { (Q35B/Q38B/Q312B) } \end{gathered}$			
Attachment to panel				Tightening with unit securing screw			
DIN rail				Unusable			
No. 1 CPU module				Universal model (QnUD(E)(H)CPU)			
Attachment order for CPU modules from No. 2				No restriction			
Empty CPU slots				Can be set between CPU modules.			
PLC CPU module				Universal model (QnUD(E)(H)CPU)			
Motion CPU module				Q173DSCPU/Q172DSCPU		Q173DCPU(-S1)/Q172DCPU(-S1)	
Motion CPU module combination				Combination withQ173DCPU(-S1)/Q172DCPU(-S1) possible		Combination withQ173DSCPU/Q172DSCPU possible	
Attachment on main base unit				Tightening with motion CPU module securing screw			
Function selection switch				Rotary switch 1, rotary switch 2			
RESET/L.CLR switch				None			
LED display				7-segment LED status display			
External battery				Add Q6BAT if continuous power outage continues for 1 month or more.			
Battery holder unit				Required			
External forced stop input				- Uses motion CPU module EMI terminal. - Uses device specified with external forced stop input in system settings.			
External forced stop input cable				Required			
Motion module				Q172DLX/Q172DEX/Q173DPX/Q173DSXY*1			
Attachment on main base unit				Q172DLX/Q172DEX/Q173DPX: Installation not possible in I/O slots 0 to 2.			
Multiple CPU high speed transmission memory for CPU high speed transfer				Equipped			
$\begin{aligned} & 0 \\ & \stackrel{U}{\lambda} \\ & 0 \\ & 0 \end{aligned}$	Number of internal relays (M)			12288			
	No. of latch relays (L)			None (M latch possible with latch setting)			
	Number of special relays (M)			-			
	Number of special relays (SM)			2256			
	Number of special registers (D)			-			
	Number of special registers (SD)			2256			
	Number of motion registers (\#)			12288			
	Multiple CPU shared devices (U■\G)			Max. 14336			
Dedicated motion sequence commands			13/SV22	D(P).DDRD, D(P).DDWR, D(P).SFCS, D(P).SVST, $D(P)$.CHGT, $D(P)$.CHGT2, $D(P)$.CHGV, $D(P)$.CHGA, $D(P) . G I N T$		$\begin{aligned} & \text { D(P).DDRD, D(P).DDWR, D(P).SFCS, } \\ & \text { D(P).SVST, } \\ & \text { D(P).CHGT, D(P).CHGV, D(P).CHGA, } \\ & \text { D(P).GINT } \\ & \hline \end{aligned}$	
			43	-		$\begin{aligned} & \hline \text { D(P).DDRD, D(P).DDWR, D(P).SFCS, } \\ & \text { D(P).SVST, } \\ & \text { D(P).CHGT, D(P).CHGV, D(P).CHGA } \\ & \hline \end{aligned}$	
Interlock conditions				Multiple commands can be executed in succession with no interlock conditions due to high speed interrupt accept flag from CPU \square to self CPU. \square : CPU No.			

Item		Q173DSCPU	Q172DSCPU	Q173DCPU	Q172DCPU
Motion module	SV13	Q172DLX, Q173DPX, Q173DSXY		Q172DLX, Q173DPX, Q173DSXY*1	
	SV22	Q172DLX, Q172DEX, Q173DPX, Q173DSXY		Q172DLX, Q172DEX, Q173DPX, Q173DSXY*1	
	SV43	-		Q172DLX, Q173DPX	
System settings		- QnUD(E)(H)CPU is No. 1 CPU. - The only main base units that can be used are multiple CPU high speed main base units (Q35DB/Q38DB/Q312DB). - Q172DLX, Q172DEX, Q173DPX cannot be installed in I/O slots 0 to 2.			
Latch clear		Remote operation			
RUN/STOP		Remote operation, RUN/STOP switch			
Boot operation from ROM		- ROM writing is performed in RAM operation mode/ROM operation mode. - MT Developera data can be written to the ROM.			
CPU shared memory	Multiple CPU high speed transmission area	Yes			
	Access with multiple CPU shared memory	Possible			
Auto refresh	Shared memory	CPU shared memory multiple CPU high speed transmission area			
	Auto refresh settings	32 range setting possible			
	Multiple CPU high speed refresh function	Yes			
Latch range setting	Latch (1)	Clearing possible with remote latch clear latch clear (1), latch clear (1) (2).			
	Latch (2)	Clearing possible with remote latch clear latch clear (1) (2).			
All clear function		Executed in install mode.			
Multiple CPU related error clearance		Turn M2039 OFF.			

*1: Q173DCPU-S1/Q172DCPU-S1 only

Appendix 5 OS Software Installation Procedure

It is necessary to install OS software for the motion CPU module using MT Works2.
The installation procedure is as follows.

*: Follow the MT Works2 screen instructions to install. Refer to MT Works2 Help for details.

POINT

(1) The motion CPU module product condition is as follows when shipped.

- Q173DSCPU/Q172DSCPU

The OS software (SV22) has already been installed when the product is shipped.
The latest OS software can be downloaded from MELFANSweb.

- Q173DCPU(-S1)/Q172DCPU(-S1)

The OS software has not been installed when the product is shipped.
It is necessary to install the OS software before starting the system.
(2) If changing the rotary switch setting, always turn the power OFF beforehand.
(3) Even if the software is installed, programs, parameters, and absolute position data written to the motion CPU module is not rewritten.
However, if using the software security key function with the Q173DSCPU/Q172DSCPU, if the software security key embedded in the OS software already installed in the motion CPU differs from that in the OS software to be installed, an all clear is performed at the same time as the installation. A backup using MT Developer2 is recommended beforehand.
(4) Do not perform the following during installation. The motion CPU module may malfunction.

- Do not turn the multiple CPU system power OFF.
- Do not set the PLC CPU module "RUN/STOP/RESET" switch to "RESET".
- Do not turn the computer power OFF.
- Do not disconnect the cable connected to the computer.
(5) If installing multiple motion CPU modules on which the OS software has not been installed on the same base unit, and then installing the OS software, set all motion CPU modules on which the software has not been installed to install mode (set rotary switch 1 (SW1) to "A"), and then perform the installation.
Note: If the power is turned ON for motion CPU modules on which the OS software has not been installed, the system will not function normally.
It is necessary to install the OS software before starting the system.

OS software version check

The motion CPU OS software version can be checked at the GX Works2 system monitor.
Click [Diagnosis] - [System Monitor] at GX Works2 to display the System Monitor screen, and then click the [Product information list device] button.

Remarks

The "Motion CPU module serial No." and "OS software version" displayed at the GX Works2 system monitor (Product information list device) applies to those motion CPU modules manufactured from the beginning of October, 2007.

Appendix 6 Dedicated Motion Sequence Commands

This section describes SFCS commands and GINT commands used to issue servo program start requests, DDRD commands, and DDWR commands.

Appendix 6.1 GINT Interrupt Commands to Other CPUs

This is a command used to trigger an interrupt for Q motion CPUs.

*1: This command can be omitted if both (D1) and (D2) are omitted.
(1) GINT command program example

This program used to trigger an interrupt pointer No. 10 interrupt for the motion CPU (No.2) when MO turns ON.
<Example 1> Program if completion device, completion status omitted

<Example 2> Program if completion device, completion status used

(2) Execution timing

The following is an overview of operation between CPUs when executing the DP.GINT command.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (D2).
If the completion status storage device (D2) is omitted, no error is detected and processing is not performed, and therefore caution is advised.

Completion status * (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	Check the
program, and		
then change to		
the correct		
sequence		
program.		

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code*	Error cause	Remedy
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16(\mathrm{n} 1)$ lies outside the 3E0H to 3E3H range.	Check the program, and then change to the correct
sequence		
program.		

*: 0 (normal)

Appendix 6.2 Read Command from DDRD Q Motion CPU Device

This command is used to read device data inside the Q motion CPU directly from the Q PLC CPU.

(1) DDRD command program example

This program is used to store a 10 word piece of data from the No. 2 CPU D0 to the self CPU W10 and onward when X0 is ON.

(2) Execution timing

The following is an overview of operation between CPUs when executing the DP.DDRD command.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (S1 +0).

Completion status * (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	
2001	The specified device cannot be used with the motion CPU. Or it lies outside the device range.	Check the program, and then change to the correct sequence program.
2081	The number of read data items set with the D(P).DDRD command is illegal.	The number of command (D(P).DDRD/D(P).DDWR combined) requests issued from the PLC CPU to the motion CPU simultaneously is 65 or more, and therefore the motion CPU is unable to process.

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code ${ }^{\text {* }}$	Error cause	Remedy
4101	The number of read data items lies outside the read data storage device range.	Check the program, and then change to the correct sequence program.
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16$ (n1) lies outside the 3 E 0 H to 3 E 3 H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	
4352	The number of specified command devices is incorrect.	
4353	A device that cannot be used with the specified command has been specified.	
4354	A character string that cannot be handled with the specified command has been specified.	
4355	The number of read data items lies outside the 1 to 20 range.	

*: 0 (normal)

Appendix 6.3 Read Command from DDWR Q Motion CPU Device

This command is used to write device data inside the Q motion CPU directly from the Q PLC CPU.

(1) DDWR command program example

This program is used to store a 10 word piece of data from the self CPU D0 to the No. 2 CPU W10 and onward when X0 is ON.

(2) Execution timing

The following is an overview of operation between CPUs when executing the DP.DDWR command.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (S1 +0).

Completion status * (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	
2001	The specified device cannot be used with the motion CPU. Or it lies outside the device range.	Check the program, and then change to the correct sequence program.
2080	The number of write data items set with the D(P).DDWR command is illegal.	The number of command (D(P).DDRD/D(P).DDWR combined) requests issued from the PLC CPU to the motion CPU simultaneously is 65 or more, and therefore the motion CPU is unable to process.

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code *	Error cause	Remedy
4101	The number of write data items lies outside the write data storage device range.	Check the program, and then change to the correct sequence program.
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16$ (n1) lies outside the 3 E 0 H to 3 E 3 H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	
4352	The number of specified command devices is incorrect.	
4353	A device that cannot be used with the specified command has been specified.	
4354	A character string that cannot be handled with the specified command has been specified.	
4355	The number of write data items lies outside the 1 to 20 range.	

*: 0: Normal

Appendix 6.4 CHGT Torque Limit Value Change Request Command

This command is used to change the torque limit values when in real mode, regardless of whether the machine is running or is stopped.

(1) CHGT command program example

This program is used to change the motion CPU (No.2) axis 1 torque limit value to 10% when MO turns ON.
<Example 1> Program if completion device, completion status omitted

<Example 2> Program if completion device, completion status used

(2) Execution timing

The following is an overview of operation between CPUs when executing the DP.CHGT command.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (D2).
If the completion status storage device (D2) is omitted, no error is detected and processing is not performed, and therefore caution is advised.

Completion status (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	Check the program, and then change to the correct sequence program.
2205	The axis No. specified with the D(P).CHGT command is illegal.	

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SM0) turns ON, and the error code is stored in the diagnostic error register (SD0).

Error code *	Error cause	Remedy
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16(\mathrm{n} 1)$ lies outside the 3EOH to 3E3H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	Check the program, and then change to the correct sequence program.
4352	The number of specified command devices is incorrect.	
4353	A device that cannot be used with the specified command has been specified.	
4354	A character string that cannot be handled with the specified command has been specified.	

*: 0 (normal)

Appendix 6.5 CHGA Current Value Change Command

This command is used to change the current value of the stopped axis.

*1: This command can be omitted if both (D1) and (D2) are omitted.

(1) CHGA command program example

This program is used to change the motion CPU (No.2) axis 1 current value to 10 when MO turns ON.
<Example 1> Program if completion device, completion status omitted

<Example 2> Program if completion device, completion status used

(2) Execution timing

The current value for the specified axis is changed when the CHGA command execution command turns ON.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (D2).
If the completion status storage device (D2) is omitted, no error is detected and processing is not performed, and therefore caution is advised.

Completion status (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	Check the program,
2100	The number of command (D(P).SVST/D(P).CHGA combined) requests issued from the PLC CPU to the motion CPU simultaneously is 65 or more, and therefore the motion CPU is unable to process.	and then change to the correct sequence program.
2203	The axis No. specified with the D(P).CHGA command is illegal.	

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code*	Error cause	Remedy
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16(\mathrm{n} 1)$ lies outside the 3EOH to 3E3H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	Check the program, and then change to the correct sequence program.
4352	The number of specified command devices is incorrect.	
4353	A device that cannot be used with the specified command has been specified.	
4354	A character string that cannot be handled with the specified command has been specified.	

*: 0 (normal)

Appendix 6.6 CHGV Speed Change Command

This command is used to change the speed during positioning or during JOG operation.

(1) CHGA command program example

This program is used to change the motion CPU (No.2) axis 1 positioning speed to 20000 when M0 turns ON.
<Example 1> Program if completion device, completion status omitted

<Example 2> Program if completion device, completion status used

(2) Execution timing

The speed for the specified axis is changed when the CHGV command execution command turns ON.

(3) Error content

In the following cases, an abnormal termination occurs, and an error code is stored in the device specified at the completion status storage device (D2).
If the completion status storage device (D2) is omitted, no error is detected and processing is not performed, and therefore caution is advised.

Completion status (Error code) (H)	Error cause	Remedy
0010	The command request from the PLC CPU to the motion CPU exceeds the permissible value.	Check the program, and then change to the correct sequence program.
2204	The axis No. specified with the D(P).CHGV command is illegal.	

*: 0000H (normal)
In the following cases, an operation error occurs, the diagnostic error flag (SMO) turns ON, and the error code is stored in the diagnostic error register (SDO).

Error code ${ }^{*}$	Error cause	Remedy
4350	The specified applicable CPU module is incorrect. (1) A reserved CPU No. was specified. (2) An uninstalled CPU No. was specified. (3) The applicable CPU module first No. I/O No. $\div 16(\mathrm{n} 1)$ lies outside the 3EOH to 3E3H range.	
4351	Cannot be executed at the specified applicable CPU module. (1) The command name is incorrect. (2) An unsupported command was specified at the applicable CPU module.	Check the program, and then change to the correct sequence program.
4352	The number of specified command devices is incorrect.	
4353	A device that cannot be used with the specified command has been specified.	
4354	A character string that cannot be handled with the specified command has been specified.	

*: 0 (normal)

Appendix 7 Operation Control Programs（Details）

Appendix 7．1 Device Descriptions

Word devices and bit devices are described below．
（1）Word device description

	Device description			Device No．（ n ）designation range
	16－bit integer type	32－bit integer type （ n is even number）	64－bit Floating－poi nt type （ n is even number）	
Data register	Dn	DnL	DnF	0 to 8191
Link register	Wn	WnL	Wn：F	0 to 1FFF
Special register	SDn	SDnL	SDnF	0 to $2255{ }^{* 1}$
Motion register	\＃n	\＃nL	\＃nF	0 to 12287
Multiple CPU area devices	Uロ\Gn	Uロ\GnL	UD\GnF	10000 to $(10000+\mathrm{p}-1)^{* 2}$ $\left(\begin{array}{l}\text { 口：CPU No．} \\ \text {（No．} 1 \mathrm{CPU}: 3 \mathrm{BEO} \text { No．} 2 \text { CPU：3E1 } \\ \text { 3E2 No．} 4 \mathrm{CPU} \text { ：3E3）} \\ \text { It is not possible to specify a CPU No．greater } \\ \text { than the number of multiple CPUs．}\end{array}\right)$
Coasting timer	－	FT	－	－

＊1：Indirect designation is not possible for the 2000 to 2255 range．
＊2：p is the number of multiple CPU high speed transmission area user setting areas for each CPU．
（a）An L is added to 32－bit integer type，and an F（for link registers：F）to 64－bit floating－point type to distinguish them．
（b）The device number is specified with an even number for 32－bit integer type and 64－bit floating－point type．（Device numbers cannot be specified with an odd number．）
（c）Coasting timer FT counts up every 888 ［us］．（The coasting timer is a 32－bit integer type．）

（2）Bit device description

	Device description	Device No．（n）designation range
Input relay	$\mathrm{Xn} / \mathrm{PXn}$	0 to 1FFF ${ }^{\text {¹ }}$
Output relay	Yn／PYn	0 to 1FFF
Internal relay	Mn	0 to 12287
Multiple CPU area devices	Uप\Gn	$10000.0 \text { to }(10000+p-1) \cdot F^{* 2}$ ㅁ：CPU No． （No． 1 CPU：3EO No． 2 CPU：3E1 No． 3 CPU： 3E2 No． 4 CPU：3E3） It is not possible to specify a CPU No．greater than the number of multiple CPUs．
Link relay	Bn	0 to 1FFF
Annunciator	Fn	0 to 2047
Special relay	SMn	0 to $2255{ }^{* 3}$

＊1：With input devices $(P X n+0$ to $P X n+F)$ assigned to the motion CPU built－in interface（DI），the PXn +4 to $P X n+F$ range is fixed at 0 and cannot be used．（ $\mathrm{n}=$ first input number）
＊2：p is the number of multiple CPU high speed transmission area user setting areas for each CPU．
＊3：Indirect designation is not possible for the 2000 to 2255 range．
（a）If used as batch bit data with DIN and DOUT， n is specified with a multiple of 16 ．
（b）If using multiple CPU area devices as batch bit data，specify as word devices without specifying bits．
(3) Device No. indirect designation

Device Nos. (n) can be designated indirectly for the above word device and bit device descriptions.
(a) Device No. (n) indirect designation with word device

- Word devices for which device Nos. are designated indirectly cannot be used.
- Indirect designation is possible with 16-bit integer type and 32-bit integer type word devices. The 64-bit floating-point type cannot be used.

<Description example>

Good example	Bad example
$\#(\mathrm{D} 10)$	$\#(\mathrm{D}(\mathrm{D} 5))$
$\mathrm{D}(\# 10 \mathrm{~L}) \mathrm{F}$	$\mathrm{D}(\# 4 \mathrm{~F})$

(b) Device No. (n) indirect designation with operational expression

- Indirect designation is possible with a calculation method using the following data and operators.

Usable data	16-bit integer type word devices
	32-bit integer type word devices
	16-bit integer type constants
	32-bit integer type constants
Usable operators	Addition: +
	Subtraction: -
	Multiplication: *
	Division: /
	Remainder: \%
	Sign inversion: -

- Word devices for which device Nos. are designated indirectly cannot be used.
- Only a single operator can be used.

<Description example>

Good example	Bad example
$\#(\mathrm{D} 10-\mathrm{K} 5)$	\#(D(D5)F+K20)
$\mathrm{D}(\# 10 \mathrm{~L} \% \mathrm{H} 6 \mathrm{~L}) \mathrm{F}$	$\mathrm{D}(\# 4 \mathrm{~L} \ll \mathrm{~K} 2)$

*: If performing device No. indirect designation using the results obtained with other than the above calculations, describe by separating into two blocks as shown below.

```
D0 = SHORT(ASIN(#OF))
W0 = #(DO)
```


POINT

For details on the multiple CPU high speed transmission area user setting points, refer to Chapter 2 of the "Q173D(S)CPU/Q172D(S) CPU Motion Controller Programming Manual (Common Edition)".

Appendix 7.2 Constant Description

16-bit integer type, 32-bit integer type, and 64-bit floating-point type constants are described below.

	16-bit integer type	32-bit integer type	64-bit floating-point type
Decimal notation	K-32768 to K32767	K-2147483648L to K2147483647L	K-1.79E+308 to K-2.23E-308, K0.0, K2.23E-308 to K1.79E +308
Hexadecimal notation	H0000 to HFFFF	H00000000L to HFFFFFFFFL	-

(1) L is added to 32 -bit integer type constants, 64-bit floating-point type constants contain a decimal point and added index portion (E) in order to clearly identify the data type.
(2) If the data type is omitted, the values will be regarded as the minimum type.
(3) K is added at the beginning if expressed in decimal notation, and H is added if expressed in hexadecimal notation. K can be omitted.
(4) 64-bit floating-point type constants cannot be expressed in hexadecimal notation.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3 Binary Operation

Appendix 7.3.1 Substitution: =

Format	$(D)=(S)$	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	$\begin{array}{\|c\|} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \\ \hline \end{array}$			
(S)	-	\bigcirc	-	-							
(D)	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-

\bigcirc : Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S)	Word device/constant/calculation method for which substitution performed	(D) data type
(D)	Word device for which the operation result is stored	

[Function]

(1) The data value specified with (S) is substituted for the word device specified with (D).
(2) If the (S) and (D) data types differ, the (S) data type is converted to (D) and then substituted. (If (D) is a 16-bit integer type or 32-bit integer type constant, and (S) is a 64-bit floating-point type constant, the decimal portion of (S) is cut.)

[Error]

(1) An operation error occurs in the following cases.

- When the (S) data lies outside the (D) data range.
- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the D0 value is substituted for \#0

\#0 = D0				
\#0	123	D0	123	

(2) Program in which K123456.789 is substituted for DOL

DOL = K123456.789

64-bit floating-point type constants are converted to 32-bit integer type constants and then substituted.
(3) Program in which the result of adding K123 and \#0 is substituted for W0

$$
\mathrm{W} 0=\mathrm{K} 123+\# 0
$$

\square
wo

\#0 \qquad

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3.2 Addition: +

Format	$(\mathrm{S} 1)+(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S1)	Augend data	Larger data type
(S2)	Addition data	of (S1) and (S2)

[Function]

(1) Data specified with (S2) is added to data specified with (S1).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the result of adding K123 and \#0 is substituted for W0

(2) Program in which the result of adding \#0F and \#10 is substituted for DOL

Addition is performed with the 64-bit floating-point type, the result is converted to a 32-bit integer type constant and then substituted.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3.3 Subtraction: -

Format	$(\mathrm{S} 1)-(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Minuend data	Larger data type of (S1) and (S2)
(S2)	Subtraction data	of

[Function]

(1) Data specified with (S2) is subtracted from data specified with (S1).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the result of subtracting \#0 from K123 is substituted for W0

(2) Program in which the result of subtracting \#10 from \#0F is substituted for D0L
DOL = \#0F - \#10

Subtraction is performed with the 64-bit floating-point type, the result is converted to a 32-bit integer type constant and then substituted.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3.4 Multiplication: *

Format	$(\mathrm{S} 1)^{*}(\mathrm{~S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(S1)	Factor data	Larger data type of (S1) and (S2) (S2)\quad Multiplication data

[Function]

(1) Data specified with (S1) is multiplied by data specified with (S2).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed.
(3) The motion SFC program processed the multiplication result with the type specified at (2). An overflow occurs if the multiplication result exceeds the range for numerical values processed with each type, however, an operational error does not occur.
By converting setting data with a type conversion command, overflows can sometimes be prevented. (See program examples (3), (4).)
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the result of multiplying \#0 by K123 is substituted for W0

(2) Program in which the result of multiplying \#10 by \#0F is substituted for DOL

Multiplication is performed with the 64-bit floating-point type, the result is converted to a 32-bit integer type constant and then substituted.
(3) Program in which the result of multiplying \#10 by \#0 is substituted for W0L

Both setting data items are 16-bit integer type, and therefore the multiplication result is processed as 16-bit integer type.
An overflow occurs, and the operation result is the latter 16 bits of the multiplication result.
(4) Program in which \#0 and \#10 are converted to 32-bit integer type, and the multiplication result is substituted for WOL

Even if the device value is the same as program example (3), the multiplication result is processed as a 32-bit integer type with the type conversion command, and therefore no overflow occurs.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3.5 Division: /

Format	$(\mathrm{S} 1) /(\mathrm{S} 2)$	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Divisor data	Larger data type of (S1) and (S2)
$(\mathrm{S} 2)$	Division data	

[Function]
(1) Data specified with (S1) is divided by data specified with (S2) to obtain the quotient.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed.
[Error]
(1) An operation error occurs in the following cases.

- When (S2) is 0
- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which K456 is divided by \#0, and the quotient is substituted for W0

(2) Program in which \#0F is divided by \#10, and the quotient is substituted for DOL
DOL = \#0F / \#10

Division is performed with the 64-bit floating-point type, the quotient is converted to a 32 -bit integer type constant and then substituted.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.3.6 Remainder: \%

Format	$(\mathrm{S} 1) \%(\mathrm{~S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Divisor data	Larger data type of (S1)
$(\mathrm{S} 2)$	Division data	and (S2) (integer type)

[Function]
(1) Data specified with (S1)is divided by (S2) to obtain the remainder
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed.
[Error]
(1) An operation error occurs in the following cases.

- When (S2) is 0
- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which K456 is divided by \#0, and the remainder is substituted for W0
W0 = K456 \% \#0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4 Bit Operation

Appendix 7.4.1 Bit inversion (complement): ~

Format	$\sim(S)$

No. of basic steps	2

[Usable data]

$\begin{aligned} & \text { 哥 } \\ & \text { त्र } \\ & \text { O } \\ & \text { = } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(S)	Data for which bit inversion is performed	(S) data type (integer type)

[Function]

(1) Obtains the bit inversion value for data specified with (S).

[Error]

(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the \#0 bit inversion value is obtained, and then substituted for D0

$$
\text { D0 }=\sim \# 0
$$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4.2 Bit logical product: \&

Format	$(S 1) \&(S 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type		
$(\mathrm{S} 1)$	Data for which a logical product operation is performed for			
each bit				Larger data type of (S1)
:---:				
and (S2) (integer type)				

[Function]

(1) Obtains the logical product for each bit for data specified with (S1) and data specified with (S2).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed. When doing so, conversion is performed with symbols, and therefore caution is advised.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the logical product of \#0 and \#1 is obtained, and then substituted for D0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4.3 Bit logical sum: |

Format	$(\mathrm{S} 1) \mid(\mathrm{S} 2)$	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which a logical sum operation is performed for each bit	Larger data type of (S1) and (S2) (integer type)

[Function]

(1) Obtains the logical sum for each bit for data specified with (S1) and data specified with (S2).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed. When doing so, conversion is performed with symbols, and therefore caution is advised.

[Error]

(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the logical sum of \#0 and \#1 is obtained, and then substituted for D0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4.4 Bit exclusive logical sum: ^

Format	$(\mathrm{S} 1)^{\wedge}(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S1)	Data for which an exclusive logical sum operation is performed for each bit	Larger data type of (S1) and (S2) (integer type)
$y n n n$		

[Function]

(1) Obtains the exclusive logical sum for each bit for data specified with (S1) and data specified with (S2).
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the operation is performed. When doing so, conversion is performed with symbols, and therefore caution is advised.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which the exclusive logical sum of \#0 and \#1 is obtained, and then substituted for D0
D0 $=$ \#0 ^ \#1
\square
bo 0000111000001000
D0 $\widehat{000001110000000100000}$ $0|0| 10001001100111010100$
b15.
\#1 $\lcm{00010011000100010001100}$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4.5 Bit right shift:

Format	$(\mathrm{S} 1) \gg(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which a right shift is performed	(S1) data type (integer type)
$(\mathrm{S} 2)$	Number of right shifts	

[Function]

(1) Data specified with (S1) is shifted to the right by the number of times in the data specified with (S2).
(2) If the uppermost bit of (S1) is 1,1 is entered for the uppermost bit in the right shift result. If the uppermost bit of (S1) is 0,0 is entered for the uppermost bit in the right shift result.
(3) The result is 0 when (S1) is a 16-bit integer type, and (S2) is negative number or 16 or higher.
(4) The result is 0 when (S1) is a 32-bit integer type, and (S2) is negative number or 32 or higher.

[Error]

(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which \#0 is shifted two bits to the right, and then substituted for D0

$$
\begin{aligned}
& \text { D0 = \#0 >> K2 }
\end{aligned}
$$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.4.6 Bit left shift: <<

| Format | $(\mathrm{S} 1) \ll(\mathrm{S} 2)$ | No. of basic
 steps 4 \mathbf{c} |
| :---: | :---: | :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which a left shift is performed	(S1) data (integer type)
$(\mathrm{S} 2)$	Number of left shifts	

[Function]

(1) Data specified with (S1) is shifted to the left by the number of times in the data specified with (S2).
(2) 0 is entered for the lowermost bit in the left shift result.
(3) The result is 0 when (S1) is a 16-bit integer type, and (S2) is negative number or 16 or higher.
(4) The result is 0 when (S1) is a 32-bit integer type, and (S2) is negative number or 32 or higher.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which \#0 is shifted one bit to the left, and then substituted for D0

$$
\begin{aligned}
& \text { D0 = \#0 << K1 }
\end{aligned}
$$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.5 Bit Device Status

Appendix 7.5.1 ON (contact A): (none)

Format	(S)	No. of basic steps	2

[Usable data]

$\begin{aligned} & \text { 哥 } \\ & \text { त } \\ & \text { O } \\ & \text { E } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

\bigcirc : Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S)	Bit device used for bit conditional expression	Logical type (true/false)

[Function]

(1) When the bit device specified with (S) with the bit conditional expression is $O N(1)$, true is returned, and when $\operatorname{OFF}(0)$, false is returned.
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when either M0 or $\mathrm{X0}$ is $\mathrm{ON}(1)$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.5.2 OFF (contact B): !

Format	$!(S)$	No. of basic steps	2

[Usable data]

$\begin{aligned} & \text { 颜 } \\ & \text { O } \\ & \text { O } \\ & \text { E } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S)	Bit device used for bit conditional expression	Logical type (true/false)

[Function]

(1) When the bit device specified with (S) with the bit conditional expression is OFF(0), true is returned, and when $\mathrm{ON}(1)$, false is returned.
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is reset when M0 is OFF(0)

RST M100 = ! M0

M100 $\quad 0 \quad$! M0 $\quad 0 \quad$ (True)

F/FS	G
\bigcirc	\bigcirc

Appendix 7.6 Bit Device Control

Appendix 7.6.1 Device set: SET

| Format | $\operatorname{SET}(\mathrm{D})=(\mathrm{S})$ | No. of basic
 steps 4 $\mathbf{~}$ |
| :---: | :---: | :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

*1: Writing is not possible for PX, and therefore cannot be used for (D).
\bigcirc : Setting possible
*2: M2001 to M2032 cannot be used for (D).

[Setting data]

Setting data	Details	Resultant data type
(D)	Bit data for which device setting is performed	Bit logical type
(true/false)		

[Function]

(1) Sets bit data specified with (D) when the data specified with (S) is true.
(2) (S) can be omitted. The format is "SET(D)" at this time, and device setting is performed unconditionally.
(3) If set as a transition condition in the last block of the transition program, the data true/false specified with (S) is returned as logical type data. In this case, (S) cannot be omitted.
[Error]
(1) An operation error occurs in the following cases.

- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when either M 0 or X 0 is 1

SET M100 = M0 + X0

(2) Program in which M100 is set when \#0 and D0 match

(3) Program in which YO is set unconditionally

SET Y0

Y0 \square

F/FS	G
\bigcirc	\bigcirc

Appendix 7.6.2 Device reset: RST

Format	$\operatorname{RST}(\mathrm{D})=(\mathrm{S})$

No. of basic steps	4

[Usable data]

$\begin{aligned} & \text { 颜 } \\ & \text { O } \\ & \text { O } \\ & \text { E } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

*1: Writing is not possible for PX, and therefore cannot be used for (D).
O: Setting possible
*2: M2001 to M2032 cannot be used for (D).

[Setting data]

Setting data	Details	Resultant data type
(D)	Bit data for which device resetting is performed	Bit logical type (true/false)
(S)	Condition data which determines whether device resetting is performed	

[Function]

(1) Resets bit data specified with (D) when the data specified with (S) is true.
(2) (S) can be omitted. The format is "RST(D)" at this time, and device resetting is performed unconditionally.
(3) If set as a transition condition in the last block of the transition program, the data true/false specified with (S) is returned as logical type data. In this case, (S) cannot be omitted.
[Error]
(1) An operation error occurs in the following cases.

- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is reset when either M 0 or X 0 is 1
RST M100 = M0 + X0

(2) Program in which M100 is reset when \#0 and D0 do not match

RST M100 = \#0 != D0

(3) Program in which YO is reset unconditionally

RST Y0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.6.3 Device output: DOUT

Format	DOUT (D),(S)

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

*1: PX and special relays cannot be used for (D).
: Setting possible
*2: The range including M2000 to M2127 cannot be used for (D).

[Setting data]

Setting data	Details	Resultant data type
(D)	Output destination bit data	Batch bit
(S)	Output source data	

[Function]
(1) Outputs bit data specified with (S) to bit data specified with (D).
(2) Device Nos. for bit data specified with (D) are specified in multiples of 16.
(3) If the (S) type is 16-bit integer type, (S) data is output sequentially from the lowermost bit in 16 points beginning with the bit device specified with (D).
(4) If the (S) type is 32-bit integer type, (S) data is output sequentially from the lowermost bit in 32 points beginning with the bit device specified with (D).
[Error]
(1) An operation error occurs in the following cases.

- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.
- When (D) is an indirect designation device, and the device No. is not a multiple of 16.

[Program example]

(1) Program in which D0 data is output to Y0 to YF.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.6.4 Device input: DIN

| Format | $\operatorname{DIN}(\mathrm{D}),(\mathrm{S})$ | No. of basic
 steps 4 c |
| :---: | :---: | :---: | :---: |

[Usable data]

$\begin{aligned} & \text { 婩 } \\ & \text { N } \\ & \text { ס } \\ & \text { = } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D)	Input destination data	(D) data type
(S)	Input origin bit data	(integer type)

[Function]
(1) Inputs bit data specified with (S) to data specified with (D).
(2) Device Nos. for bit data specified with (S) are specified in multiples of 16.
(3) If the (D) type is 16-bit integer type, (D) data is input sequentially from the lowermost bit in 16 points beginning with the bit device specified with (S).
(4) If the (D) type is 32-bit integer type, (D) data is input sequentially from the lowermost bit in 32 points beginning with the bit device specified with (S).
[Error]
(1) An operation error occurs in the following cases.

- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.
- When (S) is an indirect designation device, and the device No. is not a multiple of 16.

[Program example]

(1) Program in which XO to XF data is input to D 0 .

F/FS	G
\bigcirc	\bigcirc

Appendix 7.6.5 Bit device output: OUT

Format	OUT (D) $=(S)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D)	Bit device for which device output is performed	Bit
(S)	Device output conditions data	

[Function]

(1) Bit devices specified with (D) are set when the data specified with (S) is true, and bit devices specified with (D) are reset when the data specified with (S) is false.
(2) If set as a transition condition in the last block of the transition program, the data true/false specified with (S) is returned as logical type data.
(3) (S) cannot be omitted.
[Error]
(1) An operation error occurs in the following cases.

- When either (D) or (S) is an indirect designation device, and the device No. lies outside the range.
[Program example]
(1) Program in which M100 turns ON when M0 is ON, and turns OFF when M0 is OFF.

OUT M100 = M0

(2) Program in which M100 turns ON when both M0 and M1 are ON, and turns OFF in all other cases.
OUT M100 = M0 * M1
(3) M100 turns ON when the D0 and D2000 values match, and turns OFF when they do not.
OUT M100 = (D0 == D2000)

F/FS	G
\bigcirc	\bigcirc

Appendix 7.7 Logical Operations

Appendix 7.7.1 Logical affirmation: (none)

Format	(S)	No. of basic steps	-

[Usable data]

哥त्0OE©©	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

\bigcirc : Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S)	Data for which logical affirmation is performed	Logical type (true/false)

[Function]
(1) Returns logical type data true/false specified with (S) as is. (Logical affirmation)
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when either M 0 or X 0 is $\mathrm{ON}(1)$

F/FS	G
\bigcirc	\bigcirc

Appendix 7.7.2 Logical negation: !

Format	$!(S)$

No. of basic steps	2

[Usable data]

$\begin{aligned} & \text { 颜 } \\ & \text { O } \\ & \text { O } \\ & \text { E } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

\bigcirc : Setting possible
[Setting data]

Setting data	Details	Resultant data type
(S)	Data for which logical negation is performed	Logical type (true/false)

[Function]

(1) Performs logical negation for data specified with (S).
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when "either M0 or XO is $\mathrm{ON}(1)$ " (when both M0 and XO are OFF(0))
SET M100 = ! (M0 + X0)

F/FS	G
\bigcirc	\bigcirc

Appendix 7.7.3 Logical product: *

| Format | $(\mathrm{S} 1)^{*}(\mathrm{~S} 2)$ |
| :---: | :--- | :--- | :--- | | No. of basic
 steps | 4 |
| :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating- point type (K)			
(S1)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc
(S2)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which logical product operation is performed	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]

(1) Obtains the logical product for data specified with (S1) and data specified with (S2).
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when both M 0 and X 0 are 1

F/FS	G
\bigcirc	\bigcirc

Appendix 7.7.4 Logical sum: +

Format	$(\mathrm{S} 1)+(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc
(S2)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which logical sum operation is performed	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]

(1) Obtains the logical sum for data specified with (S1) and data specified with (S2).
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which M100 is set when either M0 or X 0 is 1

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8 Comparison Operations

Appendix 7.8.1 Match: ==

Format	$(\mathrm{S} 1)==(\mathrm{S} 2)$	No. of basic steps

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

\bigcirc : Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
Sn 2$)$		

[Function]

(1) Data specified with (S1) is compared with data specified with (S2), and the result is true if they match.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made when \#0 and D0 match

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8.2 Mismatch !=

Format	(S1)!=(S2)	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]
(1) Data specified with (S1) is compared with data specified with (S2), and the result is true if they do not match.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made when \#0 and D0 do not match

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8.3 Less than: <

Format	$(\mathrm{S} 1)<(\mathrm{S} 2)$	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
y		

[Function]

(1) If the data specified with (S1) is less than the data specified with (S2), the result is true.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made to determine whether \#0 is less than D0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8.4 Less than or equal to: <=

| Format | $(\mathrm{S} 1)<=(\mathrm{S} 2)$ | No. of basic
 steps 4 \mathbf{c} |
| :---: | :---: | :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]
(1) If the data specified with (S1) is less than or equal to the data specified with (S2), the result is true.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made to determine whether \#0 is less than or equal to D0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8.5 Greater than: >

Format	$(\mathrm{S} 1)>(\mathrm{S} 2)$	No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]

(1) If the data specified with (S1) is greater than the data specified with (S2), the result is true.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made to determine whether \#0 is greater than D0

\#0 > D0		
	\#0	400
(True)		>
	D0	20

F/FS	G
\bigcirc	\bigcirc

Appendix 7.8.6 Greater than or equal to: $>=$

Format	$(\mathrm{S} 1)>=(\mathrm{S} 2)$

No. of basic steps	4

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Data for which comparison is made	Logical type (true/false)
$(\mathrm{S} 2)$		

[Function]
(1) If the data specified with (S1) is greater than or equal to the data specified with (S2), the result is true.
(2) If the (S1) and (S2) data types differ, conversion is made to the larger of the two and then the comparison is made.
[Error]
(1) An operation error occurs in the following cases.

- Either (S1) or (S2) is an indirect designation device, and the device No. lies outside the range.

[Program example]

(1) Program in which a comparison is made to determine whether \#0 is greater than or equal to D0

F/FS	G
\bigcirc	\bigcirc

Appendix 7.9 Dedicated Motion Functions (CHGV/CHGT)

Appendix 7.9.1 Speed change request: CHGV

| Format | $\operatorname{CHGV}((\mathrm{S} 1),(\mathrm{S} 2))$ |
| :---: | :---: | :---: | :---: | | No. of basic
 steps | 4 |
| :---: | :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-

\bigcirc : Setting possible
[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Axis No. for which speed change request is made	-
$(\mathrm{S} 2)$	Specified speed	

[Function]

(1) Speed change is performed using the following procedure.
(a) The speed change accepting flag (M2061 to M2092) corresponding to the axis specified with (S1) is turned ON.
(b) The speed of the axis specified with (S1) is changed to the speed specified with (S2).
(c) The speed change accepting flag is turned OFF.
(2) The range of axis Nos. that can be set for (S1) is as follows.

Q172DSCPU	Q173DSCPU
1 to 16	1 to 32

When performing interpolation control, set one of the interpolation axes. If performing linear interpolation control, speed change is performed based on the positioning speed designation method set in the servo program.

Positioning speed designation method	Operation
Composite speed designation	The speed is changed so that the composite speed becomes the speed specified with (S2).
Major axis reference	The speed is changed so that the major axis speed becomes the speed specified with (S2).
Reference axis speed designation	The speed is changed so that the reference axis speed becomes the speed specified with (S2).

(3) Operation is performed as follows based on the designated speed symbol set for (S2).

Designated speed symbols	Operation
Positive	Speed change
0	Temporary stop
Negative	Reversal

(4) The range for the designated speed that can be set for (S2) is as follows.
(a) Real mode

	mm		inch		degree		PLS	
	Setting range	Unit						
Speed change request	$\begin{gathered} 0 \text { to } \\ 600000000 \end{gathered}$	$\times 10^{-2}$ $\mathrm{mm} / \mathrm{min}$	$\begin{gathered} 0 \text { to } \\ 600000000 \end{gathered}$	$\times 10^{-3}$ inch/min	$\begin{gathered} 0 \text { to } \\ 2147483647 \end{gathered}$	$\begin{gathered} \times 10^{-3}{ }^{* 1} \\ \text { degrees } / \mathrm{mi} \\ \mathrm{n} \end{gathered}$	$\begin{gathered} 0 \text { to } \\ 2147483647 \end{gathered}$	PLS/s
Reversal request	$\begin{gathered} -1 \text { to } \\ -600000000 \end{gathered}$	$\times 10^{-2}$ $\mathrm{mm} / \mathrm{min}$	$\begin{gathered} -1 \text { to } \\ -600000000 \end{gathered}$	$\times 10^{-3}$ inch/min	$\begin{gathered} -1 \text { to } \\ -2147483647 \end{gathered}$	$\begin{gathered} \times 10^{-3}{ }^{* 1} \\ \text { degrees } / \mathrm{mi} \\ \mathrm{n} \end{gathered}$	$\begin{gathered} -1 \text { to } \\ -2147483647 \end{gathered}$	PLS/s

*1: If the degree axis speed 10 times designation is enabled in the fixed parameters, the unit will be $\times 10^{-2}$ [degrees $/ \mathrm{min}$].
(b) Virtual mode

	PLS	
	Setting range	Unit
Speed change request	0 to 2147483647	PLS/s
Reversal request	-1 to -2147483647	PLS/s

(5) The speed changed with the CHGV command is valid only for servo programs that have been started.
(6) Speed change is not performed when deceleration of the axis specified with (S1) is stopped.
(7) Speed change is not performed if the axis specified with (S1) is currently subject to speed/torque control.
(8) By specifying a negative speed during startup and then issuing a speed change request, the axis starts to decelerate from that point onward, and is able to return in the reverse direction when deceleration is complete. The following operations are performed with servo commands.

Control mode	Servo command	Operation
Linear control	ABS-1 INC-1 ABS-2 INC-2 ABS-3 INC-3 ABS-4 INC-4	The travel direction is reversed when deceleration is complete, the axis returns to the positioning start point at the specified absolute value for speed, and then stops (standby). When performing circular interpolation, the axis returns in a circular locus.
Circular interpolation control	ABS CIRCULAR INC CIRCULAR	
Fixed feed	$\begin{aligned} & \text { FEED-1 FEED-2 } \\ & \text { FEED-3 } \end{aligned}$	
Constant speed control	CPSTART1 CPSTART2 CPSTART3 CPSTART4	The travel direction is reversed when deceleration is complete, the axis returns to the previous point at the specified absolute value for speed, and then stops (standby).
Speed control (I)	VF VR	The travel direction at the specified absolute value for speed when deceleration is complete is reversed. The axis does not stop until a stop command is input.
Speed control (II)	VVF VVR	
Speed/position control	VPF VPR VPSTART	Reversal is not possible. The request is deemed to be a normal speed change request. A minor error [305]* occurs, and speed is controlled at the speed limit value.
Fixed-pitch feed control	PFSTART	
Fixed position stop speed control	PVF PVR	
Speed switching control	VSTART	
JOG operation		
High-speed oscillation	OSC	The speed cannot be changed. A minor error [310]* occurs.
Zeroing	ZERO	The speed cannot be changed. A minor error [301]* occurs.

*: Minor error [301]: Speed change was performed during zeroing.
Minor error [305]: The set speed lies outside the 0 to speed limit value range. Minor error [310]: Speed change was performed during high-speed oscillation.

[Control details]

(a) If the speed is changed to a negative speed, the control indicated in the above table is performed based on the control mode during startup.
(b) The command speed when returning is the change speed absolute value.
(c) The status when the axis is standing by at the return position is as follows.

1) Signal status

- Start accept (M2001+n)
- Positioning start complete (M2400+20n)
- Positioning complete (M2401+20n)
- In-position (M2402+20n)
- Command in-position (M2403+20n)
- Speed change "0" accepting flag (M2240+n)

ON (no change to before CHGV execution)
ON (no change to before CHGV execution)
OFF
ON
OFF
ON
2) If starting again, change the speed to a positive speed.
3) If terminating positioning, turn the stop command ON.
4) If a negative speed change is performed again, it is ignored.
(d) Operation is as follows if during reversal in speed control mode.

1) If returning the travel direction again, change the speed to a positive speed.
2) If stopping, turn the stop command ON.
3) If a negative speed change is performed again, speed change is performed in the reversal direction.
(e) Changes to negative speeds are not performed for axes for which the stroke limit is disabled.

[Error]

(1) An operation error occurs in the following cases, and speed change is not performed.

- When the (S1) designated axis No. lies outside the range.
- When (S2) is an indirect designation device, and the device No. lies outside the range.
(2) A minor error occurs in the following cases, and speed change is not performed.
- When zeroing is performed for the axis specified with (S1). (Minor error: 301)
- When changes to negative speeds are performed for axes for which the stroke limit is disabled. (Minor error: 310)

POINT

Speed changes are ignored even if performed when the axis specified with (S1) is decelerating.
No error occurs at this time.
(3) A minor error occurs in the following case, and control is performed at the speed limit value. - When the absolute value for the speed specified with (S2) is greater than the speed limit value. (Minor error: 305)

POINT

If the negative change speed absolute value exceeds the speed specified in the servo program during constant speed control, reversal control is performed at the speed specified in the program (speed clamp control for speed change during constant speed control). No error occurs at this time.

[Program example]

(1) Program in which the axis 2 positioning speed is changed
CHGV(K2,K10)
(2) Reversal program in which the axis 1 positioning speed is changed to a negative value CHGV(K1,K-1000)

The operation when a reversal request is made when performing constant speed control is as follows.

By changing the speed to a negative value while performing positioning at P 2 as shown above, the axis returns to P1 along the locus specified in the program and stands by at P1.

POINT

- Speed change precautions
(1) If speed change is performed during the period up until the "Positioning start complete signal" status turns ON when issuing a servo program start request, the speed change may be invalid. If the speed change is performed around the same time as the program is started, create the program in such a way that the speed change is always performed after the "Positioning start complete signal" status turns ON.
(2) If the M-code FIN signal wait function is used when performing constant speed control, and a reversal request is made while the axis is stopped and waiting for FIN , the request is ignored.
(3) If a reversal request is made immediately before P 2 and P 2 is passed while decelerating as in the example on the previous page, the axis returns to P2.
(4) The response time from the point the CHGV command is executed until the speed actually starts to change is delayed by a maximum of the length of the operation cycle.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.9.2 Torque limit value change request: CHGT

| Format | $\operatorname{CHGT}((\mathrm{S} 1),(\mathrm{S} 2))$ | No. of basic
 steps 4 \mathbf{y}. |
| :---: | :---: | :---: | :---: |

[Usable data]

आ\%\%O末©©	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Axis No. for which torque limit value change request made	-
$(\mathrm{S} 2)$	Specified torque limit value	

[Function]

(1) The axis torque limit value specified with (S1) is changed to the torque limit value specified with (S2).
(2) When in real mode, if servo startup is complete for the axis in question, the torque limit value is changed at any time regardless of whether the servo is starting, stopped, ON, or OFF.
(3) The range for the axis No. that can be set for (S1) is as follows.

Q172DSCPU	Q173DSCPU
1 to 16	1 to 32

(4) The range for the torque limit value that can be set for (S2) is 1 to 1000 [\%].
(5) The relationship with the torque limit value specified in the servo program is as follows.

When started

When the servo starts normally, a command is issued specifying the torque limit value for the starting axis servo based based either on "P.torque" set in the servo program, or the "Torque limit value" in the specified parameter block. This torque limit value is applied to the travel amount for the interpolating axis when starting interpolation.
\downarrow
By executing the CHGT command, a command is issued specifying the torque limit value set only for the designated axis.

Subsequently, the torque limit value specified for the servo when starting the servo program or when starting JOG operation is valid only if it is lower than the torque limit value changed with the CHGT command. Clamp processing for this torque limit value is performed for each axis.

When starting

(a) Even if the following settings are specified, the torque limit value is not changed to a value higher than that changed with the CHGT command.

- Torque limit value at midway point when performing constant speed control or speed switching control
- Torque limit value at the moment position control switching is performed when performing speed/position switching control
- Torque limit value when performing speed control
(b) With the CHGT command, it is also possible to change to a torque limit value higher than that set in the servo program or in the parameter block.
(6) The torque limit value changed with the CHGT command is valid only while the servo amp control power is ON.

[Error]

(1) An operation error occurs in the following cases, and the torque limit value is not changed.

- When the (S 1) designated axis No. lies outside the range.
- When (S2) is an indirect designation device, and the device No. lies outside the range.
(2) A minor error occurs in the following cases, and the torque limit value is not changed.
- When the torque limit value specified with (S2) lies outside the 1 to 1000 [\%] range. (Minor error: 311)
- When the CHGT command is issued for axes that have not been started (Minor error: 312)

[Program example]

(1) Program in which the axis 2 torque limit value is changed to 10 [\%]

CHGT(K2, K10)

POINT

(1) The CHGT command has no effect (is ignored) if issued while in virtual mode. If the torque limit value is changed during operation in virtual mode, perform after setting the "Torque limit value setting device" in the output module parameters for the mechanical system program.
(2) The time from the point the CHGT command is executed until the torque limit value is actually transferred to the servo amp is delayed by a maximum of the length of the operation cycle.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.9.3 Torque limit value individual change request: CHGT2

Format	CHGT2((S1),(S2),(S3))

No. of basic steps	5

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S3)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Axis No. for which torque limit value change request made	
$(\mathrm{S} 2)$	Plus direction torque limit value $(\times 0.1[\%]$	
$(\mathrm{S} 3)$	Minus direction torque limit value $(\times 0.1[\%]$	

[Function]

(1) The axis torque limit value specified with (S1) is changed to the plus direction torque limit value specified with (S2) and minus direction torque limit value specified with (S3).
The plus direction torque limit value is used to power the servo motor forward rotation (CW) and control the reverse rotation (CCW) regenerative torque, and the minus direction torque limit value is used to power the servo motor reverse rotation (CCW) and control the forward rotation (CCW) regenerative torque.
(2) If servo startup is complete for the axis in question, the torque limit value is changed at any time regardless of whether the servo is starting, stopped, ON, or OFF.
(3) If a CHGT2 command is executed for the mechanical system output module in virtual mode, set 300 [\%] for the output module torque limit value. If the torque limit value for the output module is set by indirect designation with a device, a minor error (error code: 6260) occurs, and the torque limit value is not changed individually.
(4) The range for the axis No. that can be set for (S1) is as follows.

Q172DSCPU	Q173DSCPU
1 to 16	1 to 32

(5) (S2) and (S3) cannot be omitted. If changing only one of the torque limit values, set -1 for the setting data for which no change is required.
(6) The range for the torque limit value that can be set for (S2) and (S3) is 1 to 10000 (x 0.1 [\%]).
(7) For details on the relationship between the torque limit value specified in the servo program and the torque limit value change request command, refer to the "Q173D(S)CPU/Q172D(S) CPU Motion Controller (SV13/SV22) Programming Manual (Real Mode Edition)". Operation when the CHGT2 and CHGT commands are combined is as follows.

*1: The torque limit value specified in the servo program is clamped with the minus direction torque limit value changed with CHGT2.
*2: -1 is set for the CHGT2 plus direction torque limit value, and therefore there is no change.
(8) When performing speed/torque control, it is not possible to change to the speed set in the servo data, the speed set in the torque control data, or to a torque limit value higher than the value used when performing torque control. If either the (S2) or (S3) value specified with the CHGT2 command is greater than the torque limit value used when performing speed and torque control, a minor error (error code: 319) occurs, and the torque limit value is not changed individually.
(9) By setting a plus direction torque limit value monitor device and minus direction torque limit value monitor device in the servo data settings extended parameters, the plus and minus direction torque limit values can be monitored.
[Error]
(1) An operation error occurs in the following cases, and the torque limit value is not changed.

- When the (S1) designated axis No. lies outside the range.
- Either (S2) or (S3) is an indirect designation device, and the device No. lies outside the range.
(2) A minor error occurs in the following cases, and the torque limit value is not changed.
- When the torque limit value specified with (S2) or (S3) lies outside the 0.1 to 1000.0 [\%] range.
(Minor error: 311)
- When the CHGT2 command is issued for axes that have not been started (Minor error: 312)
- When the (S2) or (S3) value is greater than the torque limit value when performing speed/torque control if a CHGT2 command is executed for an axis for which speed/torque control is being performed. (Minor error: 319)
- When a CHGT2 command is executed for an axis for which the torque limit value is designated indirectly with a device at the output module when in virtual mode. (Minor error: 6260)

[Program example]

(1) Program in which the axis 2 torque limit value is changed individually to 20.0 [\%] for the plus direction and 10.0 [\%] for the minus direction.
CHGT2(K2, K200, K100)

POINT

The time from the point the CHGT2 command is executed until the torque limit value is actually transferred to the servo amp is delayed by a maximum of the length of the operation cycle.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.9.4 Target position change request: CHGP

Format	$\operatorname{CHGP}((\mathrm{S} 1),(\mathrm{S} 2),(\mathrm{S} 3))$

No. of basic steps	6

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(S3)	-	\bigcirc	-	-	-	-	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
$(\mathrm{S} 1)$	Axis No. for which target position change request is made	
$(\mathrm{S} 2)$	Change address designation method 0: Address designation 1: Travel amount designation	
$(\mathrm{S} 3)$	First number of device for which target position change value is stored	

[Overview]

When a target position change request is issued, the target position is changed while executing positioning commands. The new target position can be specified with an absolute address, or with the relative travel amount from the feed current value when executing the target position change request.
If a request for a target position change to $(X, Y)=(400.0 \mu \mathrm{~m}, 500.0 \mu \mathrm{~m})$ by specifying an absolute address while performing linear interpolation from the positioning start position (X, Y) $=(0.0 \mathrm{um}, 0.0 \mathrm{um})$ to $(\mathrm{X}, \mathrm{Y})=(800.0 \mu \mathrm{~m}, 600.0 \mu \mathrm{~m})$, operation is as follows.

[Function]

(1) The target position is changed for the axis specified with (S1). Depending on the method specified with (S2), the target position after the change is calculated with the value stored in the device specified with (S3).

POINT

(1) The CHGP command is valid only for axes that have been started.
(2) Target position change is not performed when deceleration of the specified axis is stopped.
(3) The time from the point the CHGP command is executed until the target position is actually changed is delayed by a maximum of the length of the operation cycle.
(4) By executing the CHGP command when making a servo program start request (when positioning start complete signal (M2400+20n) is OFF), the target position change is invalid. If the target position change is performed around the same time as the servo program is started, create the program in such a way that the target position change is performed after the "Positioning start complete signal" status turns ON.
(2) The range of axis Nos. that can be set for (S1) is as follows.

When performing interpolation control, set one of the interpolation axes.

Q172DSCPU	Q173DSCPU
1 to 16	1 to 32

(3) By setting (S2), the target position is as follows.
(a) When (S2) is set to 0 (address designation method), the target position value stored in the device specified with (S3) is set as the target position.
(b) When (S2) is set to 1 (travel value designation method), the position from the feed current value when executing the CHGP command to the position following travel of the target position change amount stored in the device specified with (S3) is set as the target position.

Point

By setting (S2) to 1 (travel value designation method) and executing the CHGP command with a normal task, variations in the changed target position may occur as a result of variations in the command accept timing. By executing with the same fixed cycle task as the operation cycle, variations can be controlled.
(4) The first device in which the target position change value is stored is specified in (S3). Set an even number for the first device, and set the target position change value as follows.

Offset	Name	Setting range				
		mm	inch	PLS	degrees	
					Address designation	Travel value designation
+0	Target pos. change value 1	$\begin{gathered} -2147483648 \\ \text { to } \\ 2147483647 \\ \left(\times 10^{-1}[\mu \mathrm{~m}]\right) \end{gathered}$	$\begin{aligned} & -2147483648 \text { to } \\ & 2147483647 \\ & \left(\times 10^{-5}[\text { inch }]\right) \end{aligned}$	$\begin{gathered} -2147483648 \\ \text { to } \\ 2147483647 \\ ([P L S]) \end{gathered}$	$\begin{gathered} 0 \text { to } 35999999 \\ \left(\times 10^{-5}[\text { degree })\right. \end{gathered}$	$\begin{gathered} -2147483648 \text { to } \\ 2147483647 \\ \left(\times 10^{-5} \text { [degrees] }\right) \end{gathered}$
+1						
+2	Target pos.					
+3	change value					
+4	Target pos.					
+5	change value 3					
+6	Target pos.					
+7	change value 4					

(a) Set a positioning address or travel value for the target position change value based on the (S2) setting.
(b) Set the target position change values in ascending order among the interpolation axes. (Example) If making a target position change request while an INC-3 command is being executed

[K100] | INC-3 | | | |
| :--- | :--- | :--- | :---: |
| | Axis | 3, | 3000 PLS |
| Axis | 4. | 4000 PLS | |
| Axis | 1, | 4000 PLS | |
| Speed | | $10000 \mathrm{PLS} / \mathrm{s}$ | |

The axis Nos. corresponding to target position change values 1 to 4 are as follows.

Target position change value 1	Axis No. 1 setting
Target position change value 2	Axis No.3 setting
Target position change value 3	Axis No. 4 setting
Target position change value 4	No setting required

(5) The CHGP command can be executed for both real mode programs and virtual mode programs.
(6) When executing the CHGP command, the following operations are performed with servo commands during execution.

Control	Serv	vo command	Operation
Linear	$\begin{gathered} \hline \mathrm{ABS}-1 \\ \mathrm{ABS}-2 \\ \mathrm{ABS}-3 \\ \mathrm{ABS}-4 \\ \hline \end{gathered}$	INC-1 INC-2 INC-3 INC-4	By executing the CHGP command, positioning is performed with linear interpolation control to the target position from which the change was made from the feed current value when the command is executed.
Fixed feed	FEED-1 F	FEED-2 FEED-3	
Circular interpolation control	ABS CIRCULAR		The target position change is ignored, and a minor error [330] occurs.
Helical interpolation control	ABS HELICAL		
Constant speed control	CPSTART1 CPSTART3	$\begin{array}{\|l\|} \hline \text { CPSTART2 } \\ \hline \text { CPSTART4 } \\ \hline \end{array}$	By executing the CHGP command, positioning is performed with linear interpolation control to the target position from which the change was made from the feed current value when the command is executed. Positioning to the remaining points is not performed. (See item 10.)
Speed control (I)	VF VR		The target position change is ignored, and a minor error [330] occurs.
Speed control (II)	VVF VVR		
Speed/position control	VPF VPR	VPSTART	
Fixed-pitch feed control	PFSTART		
Fixed position stop speed control	PVF PVR		
Speed switching control	VSTART		
JOG operation			
Speed/torque control			
High-speed oscillation	OSC		
Zeroing	ZERO		

(7) Operation following execution of the CHGP command is as follows.

- The automatic decelerating flag (M2128+n) turns ON when automatic deceleration to the target position following the change is processed.
- The command in-position signal (M2403+20n) turns ON when the absolute value for the difference between the target position following the change and the feed current value falls below the "command in-position range".
- The positioning complete signal (M2401+20n) turns ON when output of the command to the target position following the change is complete.
(8) After executing the CHGP command, the composite speed remains as is, and the speed of each axis changes based on the target position following the change. Consequently, the speed of each axis may change suddenly depending on the target position following the change, and therefore caution is advised.
(9) Processing is as follows if using reference axis speed designation or major axis reference designation with linear interpolation control.
- The major axis is not reselected when changing the target position. The same major axis as that prior to the target position changed is used.
- The positioning speed is recalculated based on the travel value for each axis following the target position change.
- If the reference axis or major axis travel value becomes 0 due to the target position change, a minor error (error code: 264) occurs, and deceleration stops.
(10) By executing a CHGP command during constant speed control (CPSTART), positioning is performed at the changed target position.
Positioning is not performed at the points after the point being executed when a target position change request is made.
[Servo program]

[Locus]

POINT

(1) By executing the CHGP command, setting items for the point for which positioning is currently being performed are taken over, and positioning is performed.
(2) The CHGP command is used to perform linear interpolation control for all axes specified with CPSTART, and therefore it is necessary to set target positions for all axes specified with CPSTART.
(3) If the CHGP command is executed while positioning at the circular interpolation or helical interpolation point when performing constant speed control, positioning at the circular interpolation and helical interpolation points is completed, and the target position is then changed at the same time as positioning at the linear interpolation point is started.
(11) The operation if a target position change request is made with the address designation method for axes for which the control unit is [degrees] is as follows.

- Positioning is performed at the address following the change with the current travel direction unchanged.
- If using the address designation method, set the change address from 0 to $35999999 \times 10-5$ [degrees]. If set outside the range, a minor error (error code: 260) occurs, and deceleration stops.
(12) By executing the CHGP command, the operation if the travel value to the target position following the change is smaller than the deceleration distance required to stop deceleration from the speed applied during control is as follows.
- A minor error (error code: 261) occurs, and deceleration stops the moment the CHGP command is executed.
- The difference between the travel value to the deceleration stoppage until the target position following the change is an overrun.
- The positioning complete signal (M2401+20n) does not turn ON.
 (M2401+20n)
(13) If a negative speed change is performed after executing the CHGP command, the axis decelerates to a speed of 0 , and when decelerating is complete, the axis returns to and stops (stands by) at the position where the target position change (when CHGP command received) was made when performing linear interpolation.

[Error]

(1) An operation error occurs in the following cases, and the target position is not changed.

- When the (S1) designated axis No. lies outside the range.
- When a value outside the 0 to 1 range is specified with (S2).
- When (S3) is other than an even-numbered device.
- When the (S3) to (S3) +7 device No. lies outside the range.
(2) A minor error occurs in the following cases, and the target position is not changed.
- When home zeroing is being performed for the relevant axis. (Minor error: 330)
- When executing a servo program that does permit the target position of the relevant axis to be changed. (Minor error: 330)
- When the target position following the change exceeds the stroke limit range. (Minor error: 262)
- When the FIN acceleration/deceleration or advanced S-curve acceleration/deceleration is set for the acceleration/deceleration system. (Minor error: 263)
- When the travel value for the reference axis or major axis becomes 0 if reference axis speed and major axis reference have been designated when performing linear interpolation control. (Minor error: 264)
- When the change address lies outside the 0 to $35999999 \times 10-5$ [degrees] if an address designation method target position change request for axes for which the control unit is [degrees]. (Minor error: 260)
- When the travel value to the target position following the target position change is smaller than that required to stop deceleration from the speed during control. (Minor error: 261)

[Program example]

(1) Program when changing the target position by travel value designation for axes 2 and 8 during positioning with ABS-2

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10 Other Commands

Appendix 7.10.1 Event task authorized: El

Format	El	No. of basic steps	1

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
-	-	-	-	-	-	-	-	-	-	-	-

O: Setting possible

[Setting data]

There is no setting data.
[Function]
(1) Authorizes event task execution.
(2) Can only be used with normal tasks.
[Error]
(1) An operation error occurs in the following cases.

- When used with other than normal task.

[Program example]

(1) Authorizes event task execution.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.2 Event task prohibited: DI

| Format | DI | No. of basic
 steps 1 \mathbf{c} |
| :---: | :---: | :---: | :---: |

[Usable data]

O: Setting possible

[Setting data]

There is no setting data.

[Function]

(1) Prohibits event task execution.
(2) If an external interrupt or PLC interrupt occurs after executing the DI command, the corresponding event task is executed once when the El command is executed. (If an external interrupt or PLC interrupt occurs multiple times while executing the DI command, the corresponding event task is executed once only when the El command is executed.)
(3) Fixed cycle events are not executed during DI.
(4) The execution of NMI tasks cannot be prohibited.
(5) The status becomes the DI status when the multiple CPU system power is turned ON or reset.
[Error]
(1) An operation error occurs in the following cases.

- When used with other than normal task.
[Program example]
(1) Program in which event task execution is prohibited
\qquad

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.3 No processing: NOP

| Format | NOP | No. of basic
 steps |
| :--- | :--- | :--- | :--- |

[Usable data]

आ菏OO士©	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
-	-	-	-	-	-	-	-	-	-	-	-

O: Setting possible

[Setting data]

There is no setting data.

[Function]

(1) With a no processing command, there is no effect on operations performed thus far.

[Error]

(1) No processing: There is no NOP operation error.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.4 Block transfer: BMOV

| Format | $\operatorname{BMOV}(\mathrm{D}),(\mathrm{S}),(\mathrm{n})$ |
| :---: | :---: | :---: | :---: | | No. of basic
 steps | 6 |
| :---: | :---: |

[Usable data]

$\begin{aligned} & \text { 哥 } \\ & \text { त } \\ & \text { O } \\ & \text { = } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
(S)	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
(D)	First No. of transfer destination device	
(S)	First No. of transfer origin device	
(n)	No. of transfer words	

[Function]

(1) The n word content from the device specified with (S) is batch transferred to the n word from the device specified with (D).
(2) Transfer is possible even if the transfer origin and transfer destination devices overlap. If transferring to the device with smaller number, data is transferred from (S), and if transferring to the device with larger number, data is transferred from $(S)+(n-1)$.
(3) By specifying Nn (cam No.) for (D) or (S), cam data can be batch transferred. It is necessary that cam data for the same cam No. already be registered in the motion controller. Ensure that the number of transfer words specified with (n) matches the specified cam No. resolution.

When writing cam data

The cam data storage area is rewritten.

- Transfer of data to the cam data area is also performed during cam operation. Data is not written while performing operation with the same cam No., and therefore caution is advised.

When reading cam data

- Cam data in the currently set condition is read.
(4) Devices that can be set for (D), (S), and (n) are as follows.

Setting data	Word device *2					Bit device ${ }^{* 2, * 3}$							Cam No. designation
	Dn	Wn	SDn	U $\square \mathbf{I G n}$	\#n	Mn	UDIGn.m	Bn	Fn	SMn	Xn	Yn	$\mathrm{Nn}{ }^{* 1}$
(D)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	$\mathrm{O}^{* 4}$	$\mathrm{O}^{\text {" }}$	\bigcirc
(S)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	$\mathrm{O}^{* 4}$	$\mathrm{O}^{* 4}$	\bigcirc
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-

*1: Nn indicates the cam No.
*2: Indirect designation is not possible for device Nos.
*3: Device Nos. for bit data are specified in multiples of 16.
*4: PX and PY cannot be set.
(5) The range for cam Nos. that can be set with Nn is as follows.

Q173D(S)CPU/Q172D(S)CPU
1 to 64
101 to 164
201 to 264
301 to 364

[Error]
(1) An operation error occurs in the following cases.

- When cam data for cam Nos. specified with (D) and (S) have not been registered in the motion controller.
- When the resolution for cam Nos. specified with (D) and (S) differs from the number of transfer words specified with (n).
- When (S) to $(S)+(n-1)$ lies outside the device range.
- When (D) to (D) + (n-1) lies outside the device range.
- When (n) is 0 or a negative number.
- When PX and PY settings exist for (S) to $(S)+(n-1)$.

When (n) is a word device designation.

- When PX and PY settings exist for (D) to (D) + (n-1).
(2) An error occurs in the following cases if motion SFC program conversion is performed at MT Developer口.
- When (S) to $(S)+(n-1)$ lies outside the device range.
- When (D) to (D) + (n-1) lies outside the device range.
- When (n) is 0 or a negative number.
- When PX and PY settings exist for (S) to (S) + (n-1).

When (n) is a constant

- When PX and PY settings exist for (D) to (D) + (n-1).
- When (S) is a bit device, and the device No. is not a multiple of 16.
- When (D) is a bit device, and the device No. is not a multiple of 16.

[Program example]

(1) Program in which 5 word content from D0 is batch transferred from \#10 to the 5 words

BMOV \#10,D0,K5				
\#10	12	Batch transfer	D0	12
\#11	34		D1	34
\#12	56		D2	56
\#13	78		D3	78
\#14	90		D4	90

(2) Program in which 2048 word content from \#0 is batch transferred to the cam No. 2 (resolution 2048) data area

BMOV N2,\#0,K2048

Cam No. 2 cam data

No. 0 stroke ratio No. 1 stroke ratio No. 2 stroke ratio No. 2047 stroke ratio	H0000	Batch transfer	\#0	H0000
	H0005		\#1	H0005
	H000A		\#2	H000A
	:			:
	H0000		\#2047	H0000

POINT

The cam stroke ratio is set in the 0 to 7FFFH range.
(3) Program in which 4 word content from X0 is batch transferred from \#20 to the 4 words
BMOV \#20,X0,K4

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.5Same data block transfer: FMOV

Format	FMOV (D),(S),(n)

No. of basic steps	6

[Usable data]

$\begin{aligned} & \text { IN } \\ & \text { TV } \\ & \text { O } \\ & \text { E } \\ & \text { U } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
(S)	\bigcirc	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

O: Setting possible
[Setting data]

Setting data	Details	Resultant data type
(D)	First No. of transfer destination device	
(S)	Transfer data, or device No. in which data to be transferred is stored	-
(n)	No. of transfer words	

[Function]

(1) The data or device content specified with (S) is (n) word transferred to the device specified with (D).
(2) Devices that can be set for (D), (S), and (n) are as follows.

Setting data	Word device ${ }^{* 1}$					Bit device *1, *2						
	Dn	Wn	SDn	U口IGn	\#n	Mn	UपIGn.m	Bn	Fn	SMn	Xn	Yn
(D)	\bigcirc	O	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	$0^{* 3}$	$\mathrm{O}^{* 3}$
(S)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	O	O	$\mathrm{O}^{* 3}$	$\mathrm{O}^{* 3}$
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-

*1: Indirect designation is not possible for device Nos.
*2: Device Nos. for bit data are specified in multiples of 16.
*3: PX and PY cannot be set.

[Error]

(1) An operation error occurs in the following cases.

- When (D) to (D) + (n-1) lies outside the device range.
- When (n) is 0 or a negative number.
- When PX and PY settings exist for (D) to (D) + (n-1). \int designation.
(2) An error occurs in the following cases if motion SFC program conversion is performed with MT Developer \square.
- When (D) to (D) + ($n-1$) lies outside the device range.
- When (S) lies outside the device range.
- When (n) is 0 or a negative number. $\}$ When (n) is a constant
- When PX and PY settings exist for (S).
designation
- When PX and PY settings exist for (D) to (D) + (n-1).
- When (S) is a bit device, and the device No. is not a multiple of 16.
- When (D) is a bit device, and the device No. is not a multiple of 16.

[Program example]

(1) Program in which all 3456 H is set in the 100 word section from \#10

FMOV \#10,H3456,K100

m,km
(2) Program in which the D4000 content is set in the 50 word section from W0

(3) Program in which all 8000 H is set in the 4 word section from M0

FMOV M0,H8000,K4

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.6 Data writing to self CPU shared memory: MULTW

| Format | MULTW (D),(S),(n),(D1) | No. of basic
 steps 8 \mathbf{c} |
| :---: | :---: | :---: | :---: |

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(S)	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(D1)	\bigcirc	-	-	-	-	-	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D)	Self CPU shared memory address for write destination $(800 H$ to FFFH)	
(S)	No. of first device in which write data is stored	
(n)	No. of write words (1 to 256)	
(D1)	Self CPU device turned ON when writing complete	

[Function]

(1) Writes the (n) word section of data for devices specified with the self CPU unit (S) and onward to the CPU shared memory address specified with the self CPU unit (D) and onward. When writing is complete, the completed bit device specified with (D1) turns ON.
Self CPU shared memory
(D)

(S)
Device memory

H0000
H0005
H000A
$:$
H0000

(2) Reset completed bit devices at the user program.
(3) Other MULTW commands cannot be processed until the MULTW command is executed and the completed bit device turns ON. If the MULTW command is executed again during the period of time from when the MULTW command is executed until the completed bit device turns ON, an error will occur for subsequently executed MULTW commands.
(4) Devices that can be set for (D), (S), (n), and (D1) are as follows.

Setting data	Word device ${ }^{\text {" }}$					Bit device ", *2						
	Dn	Wn	SDn	U■\Gn	\#n	Mn	$\mathrm{U} \square \backslash \mathrm{Gn} .$ m	Bn	Fn	SMn	Xn	Yn
(D)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(S)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	$0^{* 3}$	$0^{* 3}$
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(D1)	-	-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	$0^{* 4}$	$0^{* 4}$

*1: Indirect designation is not possible for device Nos.
*2: Device Nos. for bit data are specified in multiples of 16.
*3: PX and PY cannot be set.
*4: PY setting is also possible. PX cannot be set.
(5) With this command, processing time becomes longer in proportion to the number of write words (n), and execution tasks and the number of transfer words should be adjusted by referring to the operation processing time in order to prevent from obstructing the execution of motion operation.

[Error]

(1) An operation error occurs in the following cases.

- When the number of write words (n) lies outside the 1 to 256 range.
- When the write destination self CPU shared memory address (D) lies outside the CPU shared memory address (800 H to FFFH) range.
- When the write destination self CPU shared memory address (D) + number of write words (n) lie outside the CPU shared memory address (800 H to FFFH) range.
- The first device No. (S) in which the write data is stored + number of write words (n) lie outside the device range.
- When the MULTW command is executed again during the period of time from when the MULTW command is executed until the completed bit device turns ON.
- (D) is a device for which writing is not possible.
- When (S) is a bit device, and the device No. is not a multiple of 16.
- When PX and PY settings exist for (S) to $(S)+(n-1)$.

[Program example]

(1) Writes 2 words from D0 to shared memory A00H and onward, and processing proceeds to the next step after write completion is confirmed.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.7 Data reading from shared memory: MULTR

Format	MULTR (D),(S1),(S2),(n)	No. of basic steps	7

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
(S1)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D)	No. of first device in which read data is stored	
	First I/O number of PLC CPU,	
$(\mathrm{S} 1)$	motion CPU from which data is read	
	(No.1 CPU: 3E0H, No.2 CPU: 3E1H,	
$(\mathrm{S} 2)$	No.3 CPU: 3E2H, No.4 CPU: 3E3H)	
(n)	CPU shared memory first address for data	

[Function]

(1) Reads (n) word data from the address specified with CPU shared memory (S2) in the applicable CPU specified with (S1), and stores it in the device specified with (D) onward.

H0000
H0005
H000A
$:$
H0000

(n) word section read
(S1) Shared memory for specified CPU
(D)
(S2)

H0000
H0005
H000A
$:$
H0000

*1: Read is not possible if the applicable CPU is a self CPU.
(2) Devices that can be set for (D), (S1), (S2), and (n) are as follows.

Setting data	Word device ${ }^{* 1}$					Bit device ${ }^{* 1}$, *2						
	Dn	Wn	SDn	U口\Gn	\#n	Mn	U口\Gn.m	Bn	Fn	SMn	Xn	Yn
(D)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	O	-	O	O	-	$0^{* 3}$	$O^{* 3}$
(S1)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(S2)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-

*1: Indirect designation is not possible for device Nos.
*2: Device Nos. for bit data are specified in multiples of 16
*3: PX and PY cannot be set.
(3) If reading is completed successfully from the applicable CPU No. specified with (S1), read completion flags SM528 to SM531 (No. 1 CPU: SM528, No. 2 CPU: SM529, No. 3 CPU: SM530, No. 4 CPU: SM531) corresponding to the applicable CPU number turn ON. If reading is unsuccessful, the read completion flag for the applicable CPU No. specified with (S1) does not turn ON .
(4) With this command, processing time becomes longer in proportion to the number of read words (n), and execution tasks and the number of transfer words should be adjusted by referring to the operation processing time in order to prevent from obstructing the execution of motion operation.
(5) If multiple MULTR commands are executed simultaneously for the same CPU, read completion flag SM528 to SM531 for the applicable CPU turns ON depending on the result of the MULTR command executed last.
(6) Reset read completion flag SM528 to SM531 at the user program.

[Error]

(1) An operation error occurs in the following cases.

- When the number of read words (n) lies outside the 1 to 256 range.
- When the read data CPU shared memory first address (S2) lies outside the CPU shared memory address (0H to FFFH) range.
- When the read data CPU shared memory first address (S2) + number of read words (n) lie outside the CPU shared memory address (0 H to FFFH) range.
- The first device No. (D) in which the read data is stored + number of read words (n) lie outside the device range.
- When other than 3E0H, 3E1H, 3E2H, or 3E3H is set with (S1).
- When the CPU performing reading is being reset.
- When an error is detected at the CPU performing reading.
- When (D) is a bit device, and the device No. is not a multiple of 16.
- When PX and PY settings exist for (D) to (D) + (n-1).

[Program example]

(1) Confirms that the No. 1 CPU is not being reset, reads 2 words to \#0 onward from No. 1 CPU shared memory C 00 H , and processing proceeds to the next step after write completion is confirmed.

F/FS	G
\bigcirc	\bigcirc

Appendix 7.10.8 Word data writing to intelligent function module: TO

| Format | TO (D1),(D2),(S),(n) |
| :---: | :---: | :---: | :---: | | No. of basic
 steps | 7 |
| :---: | :---: |

[Usable data]

आ\%OO末©	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	$\begin{aligned} & \text { 64-bit } \\ & \text { floating- } \\ & \text { point } \\ & \text { type (F) } \end{aligned}$	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floating- point type (K)			
(D1)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(D2)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(S)	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D1)	Intelligent function module first I/O No.	
(000H to FF0H)		

[Function]

(1) Writes (n) word data from the device specified with (S) to the address specified with (D2) in the buffer memory inside the intelligent function module managed by the self CPU specified with (D1) and onward.
(D1) Intelligent function module buffer memory

Device memory

H0000
H0005
H000A
$:$
H0000

(2) (D1) specifies the first I/O number for the module specified in the system settings.

Power unit	$\begin{gathered} \text { Q03UD } \\ \text { CPU } \end{gathered}$	$\begin{aligned} & \text { Q173DS } \\ & \text { CPU } \end{aligned}$	QX40 First I/O No. No. : 0 OH	Q64AD First I/O No. No. : 10H	Q64DAN First I/O No. No. : 20H

If the TO command is executed for the D/A conversion module (Q64DA) with the above mentioned system setting, (D1) will be 20 H .
(3) Devices that can be set for (D), (D2), (S), and (n) are as follows.

Setting data	Word device *1					Bit device *1, *2						
	Dn	Wn	SDn	UDIGn	\#n	Mn	U口IGn.m	Bn	Fn	SMn	Xn	Yn
(D1)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(D2)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(S)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	O	-	O	O	-	$0^{* 3}$	$0^{* 3}$
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-

*1: Indirect designation is not possible for device Nos.
*2: Device Nos. for bit data are specified in multiples of 16.
*3: PX and PY cannot be set.
(4) With this command, processing time becomes longer in proportion to the number of write words (n), and execution tasks and the number of transfer words should be adjusted by referring to the operation processing time in order to prevent from obstructing the execution of motion operation.
(5) Only the following analog modules can be used as motion CPU control modules.

- Analog input (Q68ADV, Q62AD-DGH, Q66AD-DG, Q68ADI, Q64AD, Q64AD-GH, Q68AD-G)
- Analog output (Q68DAVN, Q68DAIN, Q62DAN, Q62DA-FG, Q64DAN, Q66DA-G)

[Error]

(1) An operation error occurs in the following cases.

- When the number of write words (n) lies outside the 1 to 256 range.
- When unable to communicate with the intelligent function module when executing the command.
- When an intelligent function module error is detected when executing the command.
- When the I/O No. specified with (D1) is not an intelligent function module controlled by a self CPU.
- When the address specified with (D2) lies outside the buffer memory range.
- The first device No. (S) in which the write data is stored + number of write words (n) lie outside the device range.
- When (S) is a bit device, and the device No. is not a multiple of 16.
- When PX and PY settings exist for (S) to (S) + (n-1).

[Program example]

(1) Writes 2 words from \#0 to intelligent function module (first I/O No. 010H) buffer memory address OH .
TO H010,H0,\#0,K2

Intelligent function module
(first I/O No. 010H)

Appendix 7.10.9 Word data reading from intelligent function module: FROM

Format	FROM (D),(S1),(S2),(n)

No. of basic steps	7

[Usable data]

	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floating point type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-
(S1)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(D)	No. of first device in which read data is stored	-
(S1)	Intelligent function module first I/O No. (000 H to FFOH)	
(S2)	First address in buffer memory from which data is read	
(n)	No. of read words (1 to 256)	

[Function]

(1) Reads (n) word data from the address specified with (S2) in the buffer memory inside the intelligent function module controlled by the self CPU specified with (S1), and writes it to the device specified with (D) and onward.

(2) (S1) specifies the first I/O number for the module specified in the system settings.

| | Q03UD
 CPU | Q173DS
 CPU | QX40
 First
 I/O No.
 No. : 00H | Q64AD
 First I/O
 No.
 No. $: 10 \mathrm{H}$ | Q64DAN
 First I/O
 No. |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| No. :20H | | | | | |$|$

If the FROM command is executed for the A/D conversion module (Q64AD) with the above mentioned system setting, (S1) will be 10 H .
(3) Devices that can be set for (D), (S1), (S2), and (n) are as follows.

Setting data	Word device ${ }^{* 1}$					Bit device *1, *2						
	Dn	Wn	SDn	U口\Gn	\#n	Mn	U口IGn.m	Bn	Fn	SMn	Xn	Yn
(D)	\bigcirc	O	-	\bigcirc	\bigcirc	O	-	\bigcirc	O	-	$0^{* 3}$	$O^{* 3}$
(S1)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(S2)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
(n)	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-

*1: Indirect designation is not possible for device Nos.
${ }^{*}$ 2: Device Nos. for bit data are specified in multiples of 16
*3: PX and PY cannot be set.
(4) With this command, processing time becomes longer in proportion to the number of read words (n), and execution tasks and the number of transfer words should be adjusted by referring to the operation processing time in order to prevent from obstructing the execution of motion operation.
(5) Only the following analog modules can be used as motion CPU control modules.

- Analog input (Q68ADV, Q62AD-DGH, Q66AD-DG, Q68ADI, Q64AD, Q64AD-GH, Q68AD-G)
- Analog output (Q68DAVN, Q68DAIN, Q62DAN, Q62DA-FG, Q64DAN, Q66DA-G)

[Error]

(1) An operation error occurs in the following cases.

- When the number of read words (n) lies outside the 1 to 256 range.
- When unable to communicate with the intelligent function module when executing the command.
- When an intelligent function module error is detected when executing the command.
- When the I/O No. specified with (S1) is not an intelligent function module controlled by a self CPU.
- When the address specified with (S2) lies outside the buffer memory range.
- The first device No. (D) in which the read data is stored + number of read words (n) lie outside the device range.
- When (D) is a bit device, and the device No. is not a multiple of 16.
- When PX and PY settings exist for (D) to (D) + (n-1).

[Program example]

(1) Reads 1 word from intelligent function module (first I/O No. 020H) buffer memory address 10 H , and stores it in W0.

FROM W0,H020,H10,K1

F/FS	G
-	O

Appendix 7.10.10 Time wait: TIME

Format	$\operatorname{TIME}(S)$	No. of basic steps	7

[Usable data]

$\begin{aligned} & \text { 婩 } \\ & \text { N } \\ & \text { ס } \\ & \text { = } \\ & \text { © } \end{aligned}$	Usable data										
	Bit device	Word device				Constant					
		16-bit integer type	32-bit integer type (L)	64-bit floatingpoint type (F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H, L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-

O: Setting possible

[Setting data]

Setting data	Details	Resultant data type
(S)	Wait time $(0$ to 2147483647$)[\mathrm{ms}]$	Logical type (true/false)

[Function]

(1) Waits the length of time specified with (S).

When the elapsed time is less than the set time, the result is false, and when longer than or equal to the set time, the result is true, and processing continues.
(2) If (S) is specified with a 16-bit integer type word device and there are times when the time is specified between 32768 and 65535 [ms], perform 32-bit integer value conversion without symbol with ULONG. (See program example.)
[Error]
(1) An operation error occurs in the following cases.

- When (S) is an indirect designation device, and the device No. lies outside the range.
- When the data specified with (S) (device data when indirect designation) lies outside the 0 to 2147483647 range.

[Program example]

(1) Program with wait time of 60 seconds (when constant designation)
TIME K60000
(2) Program with 16-bit integer type indirect designation (\#0) and in which the wait time can be between 32768 and 65535 [ms]
TIME ULONG(\#0)
(3) Program in which the bit device is set (reset) when the specified time or longer has elapsed, and processing continues
SET M100 = TIME K60000

POINT

(1) If the wait time is designated indirectly with a word device, the device value is controlled with the value loaded first. The set time cannot be changed, even if the device value is changed during the wait time status.
(2) The TIME command is the equivalent of a conditional expression, and therefore can only be set in the last line of transition (G) programs.
(3) If transition programs (Gn) with same number for which the TIME command is set are used with multiple motion SFC programs, ensure that the programs are not run simultaneously. (If run simultaneously, the wait time for the program run first will be illegal.)
(4) If the transition program (Gn) is of another number, the TIME command can be executed simultaneously with multiple motion SFC programs. (The maximum number of simultaneous active steps is 256 .)
(5) The wait time cannot be canceled during the wait time specified by executing the TIME command.

Appendix 8 Overview of Virtual Mode Control for SV22 Automatic Machines

(a) Virtual mode uses software to perform synchronous control processing with a mechanical system program comprised of a virtual main shaft and mechanical module. By using virtual mode, it is possible to switch from the previous synchronous control performed with a mechanical system using a main shaft, gears, and cams, etc. to positioning control using servo motors.
(b) With virtual mode, a mechanical system program is required in addition to the positioning parameters, servo programs, and motion SFC programs used with real mode.
(c) The procedure when performing positioning control in virtual mode is as follows.

1) A virtual mode motion SFC program start request is issued with a sequence program SFCS command.
2) The mechanical system program virtual servo motors start.
\downarrow
3) The results of operations performed through a transfer module are output to the servo amplifier set in the output module.
4) Servo motors are controlled.

- External synchronous encoder pulses are input to the synchronous encoder input unit or manual pulse generator input unit, allowing the mechanical system program synchronous encoder to be operated.

Appendix 9 Glossary

A

This means cam non-dimensional acceleration.
Non-dimensional acceleration is non-dimensional speed differentiated by non-dimensional time.
The maximum value is expressed with Am.
See "Am".
See "V".

5th power polynomial curve

This curve has five boundary conditions, is smooth, and possesses excellent characteristics.

Absolute encoder

This is an absolute position detector that allows angular data contained in a single motor rotation to be output externally, and standard encoders allow 360 degrees to be extracted in 8 to 12 bits.
With incremental encoders, the axis position when a power outage occurs is lost, however, with absolute encoders, the axis position is retained, even in the event of a power outage.
See "Encoder".

Angular data contained in a single rotation is known the instant the power is turned back ON again, however, data for multiple rotations (how may rotations were made) is backed up with a battery.

Absolute mode

This is a method used to express the positioning address. This is an absolute address method.
This method expresses the distance from the reference 0 . The positioning direction is determined automatically without being specified. There is also an incremental mode.

Absolute position system

By zeroing once when starting up positioning control devices, current values are backed up with a battery even when the power is turned OFF, and machine displacements are compensated.
Consequently, there is no need to perform zeroing after turning ON the power.
To construct this system, a servo amplifier compatible with servo motor with absolute position detector is required.

AC motor drive unit

This is a built-in servo amplifier capable of being connected to and driving a single servo motor.

Acceleration

Acceleration is speed differentiated by time, and expresses the rate of change of speed.
Furthermore, acceleration is proportional to force.
See "A".

Acceleration time

This is the time taken to reach full speed from the stopped status with the motion controller.
The parameter acceleration time is the time taken to reach the speed limit value, and therefore becomes proportionally shorter if the set speed is low. It is determined by such factors as the machine inertia and motor torque, and load resistance torque.

Actual current value

This is the actual servo travel amount pulse count calculated from feedback pulses.

Address

(1) Memory address Memory holds addresses, and data is written and read by specifying these addresses.

(2) Numerical value indicating the target position when performing positioning. Units are set in mm , inches, degrees, or pulses.

Am acceleration

This is the cam non-dimensional acceleration maximum value.
See "A".

Analog command

Converts command pulses inside the positioning module to analog voltage, and outputs the converted analog voltage to the servo motor drive module.
The motion controller contains no dedicated module capable of issuing this analog command.
A stand-alone MELSEC-A AD72 or AD70 analog output positioning module can be used.

Auto tuning

The responsiveness and stability of machines driven by servo motors is influenced by changes in the moment of inertia and rigidity resulting from changes in factors such as machine load.
This function is used to automatically adjust the speed loop gain and position loop gain based on the machine condition in order to maintain maximum machine performance.

Automatic trapezoidal acceleration/deceleration

This is positioning movement in which the time and speed graph forms a trapezium.

Backlash compensation

Play (backlash) occurs as the movement direction changes from forward rotation to background rotation as the gears engage. The same phenomenon occurs even with screws, and it is not simply enough to feed an axis 1 m to the right when performing positioning and then feed 1 m back to the left to return the axis to its original position. The axis will not return to its original position until it has also been fed by the amount of play. This refers to the compensating of this play. This is similar to the "play" in car steering wheels.

Backup function

(1) This function ensures that sequence programs and device statuses stored in the PLC CPU RAM memory are not forgotten even in the event of a power outage.
(2) This function is used on absolute position compatible systems to ensure that current values are not forgotten even in the event of a power outage.
(3) When replacing CPU modules, CPU data (servo programs, servo parameters, absolute position compatible data, etc.) is read by peripheral equipment, and then loaded following CPU replacement.

Ballscrew

This is a type of screw, and has balls in the engaging part similar to ball bearings. There is very little backlash, and it can rotate with very little force, and so is used for positioning.
See "Feed screw".

Base shut-off

The servo amplifier supplies power to the servo motor through power transistor switching.
Consequently, the base is shut off to stop power supply to the servo motor when the servo power turns OFF or when an alarm occurs. When this happens, servo motors are in a coasting condition.

Blank cover module

This is an empty module used to improve the appearance of vacant slots on the main base or expansion base.

Bottom dead center

This refers to the lower side of the machine installation route for the cam mechanism reciprocating motion.
This is the lower point of the cam.
See "Reciprocating cam".
See "Feed cam".

Cam

Machine element used to transfer anticipated movements through direct contact with a joint with contactor of simple shape such as a knife edge, roller, or planar shape.

Cam curve

The follower member motion curve moved with the cam can be set with a software package (SWOSRX-CAMP). There are various names of cam curves such as constant speed, constant acceleration, 5th power polynomial, cycloid, modified trapezoid, modified sine, modified constant velocity, trapecloid, double harmonic, and simple harmonic.

CAMP

CAMP is a software package (SW3RN-CAMP) used to create cams for virtual mode cam output.

CHANGE signal

This is an external signal used to trigger position control while executing speed control.

Characteristics of cam curves

This is the speed and acceleration of cam curves.

Circular interpolation

Positioning is performed by running a horizontal direction motor and vertical direction motor simultaneously, the CPU performs the computations necessary to draw an arc, and interpolation is performed automatically.
Circles are created with auxiliary point designation, radius designation, and center point designation, and any obstructions found can be avoided.
See "Linear interpolation".

Command in-position

This turns ON when the difference detected between the positioning address (command position) and feed current value with a signal found in the positioning data fixed parameters matches the set value.
Detection is made a little before the positioning end point address, and it is used to carry out preparatory work, etc.

Constant speed control

With a single start command, positioning is performed to the end point at fixed speed while performing linear or circular specified positioning control to a predetermined pass point.
With a FOR/NEXT command, the same control as that for the pass point can be repeated.

Constant velocity curve

This curve is applied if necessary for axes to run at constant speed.

Continuous pass

This is control such as constant speed control in which a route is followed without interruption.

Control unit

This is one of the basic units of positioning data, and is specified in mm , inches, degrees, or pulses

In Japan, mm or degrees?	
In the USA, inches or degrees?	

COPY

This means copying a part from the Edit screen to another location.

Count type zeroing

The axis decelerates to creep speed when the proximity dog turns ON during zeroing, and after moving the travel value after the dog turns ON, the subsequent home position signal is set as the home position address.
The proximity dog length can be ignored.
See "Zeroing method".

Creep

This is a low speed at which the axis moves a little before reaching the home position when performing zeroing during positioning.
It is difficult to stop suddenly at a precise point when traveling at high speed, and therefore it is necessary to switch to creep speed.
See "Proximity dog type zeroing".

Current feed value

This is the number of calculated pulses corresponding to the travel distance output by the motion controller.

Current loop mode

This is also referred to as torque loop mode.
See "Position loop mode".

Current value

Current positioning control address

Current value change, current value rewrite

Refers to the teaching of temporary proximate values used for positioning when the machine is assembled and connected to the motion controller.
In addition, this function can be used to write temporary current values at such times as when current values are lost in the event of an accident, etc. By then performing zeroing, the motion controller recognizes the home position. Changes to current values can be performed with a CHGA command during a positioning stoppage.

Cursor

Used to urge caution to the operator at display screens on peripheral equipment and CRTs, etc.

CUT

This means storing a part from the Edit screen to the system buffer.
Parts stored in the system buffer by cutting can be displayed on the Edit screen again by pasting.

Cycloid curve

Commonly abbreviated to CY curve, this curve has been known for many years as a continuous curve, and has little excitation frequency component, making it ideal for high speed. On the downside, it has high characteristic values such as speed, acceleration, and inertia torque.

Data set type zeroing

Sets the position at which the axis is currently stopped as the home position address.
No proximity dog switch is required.
See "Zeroing method".

DELETE

This means deleting parts from the Edit screen.

Deviation counter

This counter is built in to the drive unit, and is used for positioning.
Feedback pulses are subtracted from motion controller command pulses, the command pulse and feedback pulse deviation value (droop pulses) are sent to the D/A converter, the motor is run, and if there are no command pulses, the motor is run until the number of droop pulses reaches 0 .

Differential gear

This is one transfer module in the virtual mode mechanical system program, and is used for auxiliary input for main shaft rotations.

Differential output

This is one type of encoder feedback pulse output. If transferring a single signal, by transmitting signals with reversed polarity in pairs, the receipt side is able to judge by setting the signal logic, and its excellent noise resistant properties make it ideal for pulse train high speed signal transfer.

Digital bus connection

Commands output from the motion controller to servo amplifiers are generally in the form of a pulse train or analog output, however, this method involves issuing commands with digital values by connecting a bus line, facilitating the construction of highly reliable, high-speed, high-accuracy systems.

Direct clutch

This is one of the virtual mode mechanical system programs.
This transfer module clutch is a clutch with setting time of zero for which no smoothing time constant has been set.
See "Smoothing clutch".

Discontinuous curve

This is a constant speed curve or constant acceleration curve within a cam curve for which acceleration within an interval including both the start point and finish point is not continuous.

DOG signal

This refers to the home position proximity dog.

Drive module

This is one of the virtual mode mechanical system programs.
Refers to the pairing of a virtual servo motor and synchronous encoder used to rotate the main shaft and auxiliary input axes.

Drive unit

Commands (pulses, etc.) issued by the motion controller are of low voltage and current, resulting in insufficient energy to drive motors. This unit amplifies these commands to drive motors.

Drive unit ready

This signal indicates that the motor drive unit is ready. The drive unit remains OFF if the power is OFF or if an accident occurs.

Droop pulses

As the machine has inertia (GD2), if positioning module speed commands are issued as is, the machine becomes delayed and is therefore unable to keep up.
In the case of servo motors, speed command pulses are accumulated in the deviation counter to delay them. Droop pulses are these accumulated pulses. When the machine stops, the deviation counter discharges all pulses to leave the count at 0 .
To be exact, the difference between feed pulses and feedback pulses is droop pulses.

Dwell

Dwell refers to a condition in which the axis is temporarily stopped, with no follower member displacement over the passage of a certain period of time.

Dwell period

This is the input axis rotation angle when the output axis is stopped, and the sum of this and the index period is 360°.

Dwell time

It takes time to calculate deviation counter droop pulses immediately after positioning is finished. Positioning will be inaccurate if this time is too short, and so a longer time is used for the dwell time.

Dynamic brake

When the protective circuits are triggered by a power outage or emergency stop condition (EMG signal), the dynamic brake is used to short the circuit via a resistor between servo motor terminals, consume rotation energy as heat, and stop axes suddenly without coasting the motor.
Braking power is generated only while motors capable of obtaining brake torque greater than that of electromagnetic brakes are rotating, and as there is no holding power when motors are stopped, mechanical brakes are also used to prevent vertical axes from falling.

EIA

This is the EIA code (EIA standard) punched on the perforated paper tape used to instruct the NC unit to perform processing.
Other NC languages are ISO code (ISO standard) and JIS code (JIS standard).

EIA code

This is a tape code used for numerical control machine perforated paper tape stipulated by the Electronics Industries Association, and has 8 tracks including 6 bits used to show information, an odd number parity bit, and an EOB character (end of block).

Electromagnetic brake

Electromagnetic brakes are installed on motors to prevent vertical axes slipping during power outages or when accidents occur, and for protection when motors are stopped.
This is a non-excitation electromagnetic brake.

Electronic gear

This function is used for positioning, and allows the feed value per feedback pulse to be changed freely. The feed pulse and feedback pulse ratio, in other words pulse rate, is selected based on the machine, however, the advantage of this function is that it can be set freely regardless of this machine system.

Emergency stop

It is necessary to insert the emergency stop or stop program for safety purposes into the PLC program, and also install a circuit used to stop the machine outside the PLC.
This measure is taken in consideration of the rare event of a PLC defect occurring, or the emergency stop being disabled by the sequence program based on the timing at which the PLC power turns ON and OFF.
Note that it is better for input devices to use contact b because it allows wire damage and contact defects to be detected.
EMG signals should be used.

EMG signal

With all axes, the emergency stop external switch is contact b. Consequently, the power for the switch is normally ON.
By issuing this signal, all axes stop, the external emergency stop input flag (M9076) turns OFF, and the motor coasts.
Furthermore, addresses will be lost and so caution is required.

Encoder

Inputs position information to the control unit. Pulse generator, etc. Encoding device
The diagram shows an optical encoder.

Rotary encoder
(incremental)

Index scale

Linear encoder

Linear encoders employ a binary output format, and are available in incremental and absolute types.
See "Absolute encoder".
See "Incremental encoder".

Error compensation

When a dimensional error exists at the machine, when the feed value is actually less than or greater than 1 m even although a 1 m command is sent from the module, the motion controller compensates for that error. For example, when the actual feed value is less than 1 m , extra pulses just enough to cover the shortfall are sent to perform the correct 1 m positioning.

External regenerative brake resistor

Referred to as regenerative brake.
When moving machinery with a motor, power is normally supplied from the amplifier to the motor, however, when the motor is decelerating or driving a down load, the rotation energy held by the motor and machinery flows back (is regenerated) to the amplifier. This regenerative energy is consumed by resistance, and regenerative control capability is exhibited using the regenerative brake torque obtained.
This is used if performing high-frequency acceleration/ deceleration.

Feed cam

Consecutive feed motions are made by the stroke amount from the lower stroke position (bottom dead center), facilitating conveyor feed and transfer device feed.

Feed forward control

Used to minimize motor delay and improve servo tracking in response to positioning control commands. (Disabled during auto tuning.)
Set to 0 to 150%.

Feed pulse

These are pulses sent from the command device on the positioning module, etc. to the servo unit or stepping motor. These are also referred to as command pulses.

Feed screw

This is a piece of apparatus used to perform positioning by rotating a screw, and is the main screw. Ballscrews are commonly used to minimize backlash and dimensional error.

Feedback pulse

A command is issued during automatic control, and this pulse train is returned to confirm whether the machine is behaving in accordance with the command. If not, a correction command is issued. If a command with 10,000 pulses is issued, and 10,000 feedback pulses are returned, the balance should be 0 . These are also referred to as return pulses.
See "Deviation counter".

File name

This is the name given when writing data or programs to a floppy disk or hard drive.
File names are made up of the system name and machine name, each with up to 8 characters, and a header is appended.
See "Machine name".

Fixed feed

This means obtaining the dimensions required to cut sheet and rod materials in the specified dimensions when performing positioning. The incremental method is commonly used.
There are three types: FEED-1, FEED-2, and FEED-3.

Follower member

This is a general term used to refer to the part that makes contact with the cam (rod which moves back and forth), or a load system after that point.

Formatting

Refers to the initialization of the hard drive or floppy drive disk, and involves the writing of computer rules and contents, etc. to the disk. Consequently, the disk memory capacity will be reduced by the amount required for formatting.
Disks are for general use, and therefore formatting is required to tailor them for the computer. Formatting need only be performed once at the beginning.

Forward limit switch signal

This is a positioning control device input signal used to report the triggering of the external upper limit switch (contact b configuration, power normally ON) for the travel range in which positioning control is performed.
This signal turns OFF when the external FLS signal (contact b) is OFF (not conducting), and the positioning operation has stopped.

Fully closed control

The machine travel mechanism is equipped with a closed encoder, and direct travel distance is detected, allowing transfer system mechanism (gears, ballscrews, timing belts, etc.) machine system errors between the motor and machine to be suppressed to a minimum.
This type of control is also ideally suited to positioning control for sliding mechanisms.

With closed encoders, the workpiece length is detected directly, ensuring a uniform workpiece cutting length regardless of feed roller slipping.

G-code

This is a standardized two-digit (00 to 99) number used to stipulate the NC unit axis control function, and is also referred to as G function.
Example
G01 Linear interpolation
G02 Circular interpolation (clockwise)
G04 Dwell
G28 Zeroing
G50 Main shaft high speed setting
GD2
In mechanics, this is the same concept as moment of inertia, and is a format used to express the moment of inertia for gravitational unit systems (engineering units, etc.)
" $G D^{2 "}$ is one of these symbols with G representing gravity, and D representing the rotational diameter.
$\mathrm{GD}^{2}=[$ gravity $] \times[\text { rotational diameter }]^{2}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$
The unit for moment of inertia used in catalogs is J (x $10^{-4} \mathrm{~kg} / \mathrm{m}^{2}$).
Consequently, it is given by $\mathrm{GD}^{2}=4 \mathrm{x} \mathrm{J}$.

Gear

This is one transfer module in the virtual mode mechanical system program, and is used to branch main shaft rotations to the output module.
The gear ratio and rotation direction can be set.

Grid

Refers to useful reference horizontal and vertical lines used for arranging parts on the mechanical system editing screen.

Home position

This is the position used as the reference for positioning. Positioning cannot be started without a reference point.

In position
The droop pulse value (difference between position command value and position feedback from servo motor) in the deviation counter is detected with a signal in the positioning data servo parameters, and this in-position signal turns ON when the detected value matches the set value.
A few droop pulses are cut, allowing them to be used at such times as when staring subsequent positioning.

Incremental encoder

This is a device used simply to emit ON/OFF pulses as an axis rotates. Single-phase encoders emit only A pulses, and the axis rotation direction is unknown. Twophase encoders emit both A and B pulses, allowing the system to judge that the motor is rotating in the forward direction if B turns ON while A is $O N$, and in the reverse direction if A turns $O N$ while B is $O N$.
There are also encoders with zero point signals. Incremental encoders emit between 100 and 10,000 pulses per axis rotation, and are the most commonly used encoders.
See "Encoder".

Output waveform 2 phase + home position output

Incremental mode

This mode is used for positioning, and expresses the position based on the specified direction and distance, with 0 as the stopping point. This is a relative address method. This mode is used for fixed feeding, etc. There is also an absolute mode.

No. 2 is 0 mm to the right of No1.

Inertia

Behavior in which the current condition remains the same provided that the object is not acted upon by an external force. It is referred to as the moment of inertia.

Installation function

The motion controller internal OS (operating system) can be rewritten using peripheral equipment. Dedicated operating systems are used for the SV13 conveyance and assembly controller, SV22 automatic machine controller, SV43 processing machine peripheral equipment controller, and SV51 dedicated robot controller, and installing each OS facilitates use to match each machine.

Inverter

This is a device used to convert direct current to alternating current. In order to actually change the motor speed, a commercial frequency of 50 Hz or 60 Hz is first delivered by direct current, which is then converted to a an alternating current of 5 Hz to 120 Hz to control the motor speed.

Jerk

This is a further differentiation of acceleration by time, and expresses the rate of change of acceleration.

JOG

JOG operation This means moving a little at a time. Inching.
JOG operation is used for peripheral equipment test operation, and can be performed with a sequence program by writing parameters and the JOG speed.

KANA. Key found on peripheral equipment. Press to enter Katakana characters. Remember to reset this key when entering alphabet characters or numbers.

KPPS

Kilo-pulse per second
This is the number of pulses per second. 80 KPPS means 80,000 pulses per second.

Linear interpolation

Positioning is performed by running a horizontal direction (X) motor and vertical direction (Y) motor simultaneously, the CPU performs the computations necessary for axis travel to proceed in a straight line, and interpolation is performed automatically.
ABS-2 to ABS-4, and INC-2 to INC-4 can be used.
The following is an example of 2 axis linear interpolation.

No. 8

Lateral feed

Load inertia ratio

$\mathrm{GD}_{\mathrm{L}}{ }^{2} / \mathrm{GD}_{\mathrm{M}}{ }^{2}$
See "GD".

Low inertia motor

Used when wishing to accelerate and decelerate frequently.
In order to reduce the moment of inertia from standard motors to approximately one third, the rotor diameter is reduced, and the longitudinal direction is lengthened to cover torque.
A load inertia ratio of 1 or less is ideal.

Machine name

Maximum eight character code applied freely by the user from a file name. Alphabet characters (upper case), numbers, and one symbol are used. The first character must be an alphabet character.
See "File name".

Manual pulse generator

Pulses are generated by manually rotating a handle.

Margin

This is the cam and cam follower ratio of contact, and should normally be 60\% or higher.

Master axis

This is the side at which positioning data is prioritized when performing interpolation during positioning. It is an interpolation control unit set in the parameter block.

Line monitoring

This is the monitoring of the PLC and controller control status during operation.

M-code

This is a signal used to trigger auxiliary functions such as drill change, clamping, unclamping, raising and lowering of electrodes, and all types of display that are performed together with positioning.
Codes 1 to 255 are assigned (1: clamp, 2: unclamp, etc.) and used by users.
M is an abbreviation of machine.

Mechanical support language

Synchronous control is performed, and therefore by using software to process synchronous control operations that were previously mechanically joined with mechanisms using a main shaft, gears, and cams, processing switches to positioning control (roller output, ballscrew output, rotary table output, cam output) with servo motors.
See "Mechanical system program".

Mechanical system program

This consists of a mechanical mechanism connection drawing connecting the drive module (virtual servo motor and synchronous encoder) and virtual main shaft, transfer module (gears, clutches, speed change gear, differential gear), output module (cams, rollers, ballscrews, rotary table) with the respective module parameters.

Model adaptive control

When performing actual operation, differences occur in the actual control state quantity relative to the ideal control state quantity.
Motion control enables optimum loop gain control based on those differences to ensure that control is always performed at maximum performance.

Modified constant velocity curve

Commonly abbreviated to MCV curve, this curve has a fixed speed interval in the middle of the curve, and is used when necessary to lower the maximum speed to reduce the pressure angle, or when a fixed speed portion is required.
It is applied to heavy loads traveling at medium speed.

Modified sine curve

Commonly abbreviated to MS curve, this is a commonly used standard curve. It has low maximum speed and small cam axis torque coefficient, and acceleration is comparatively low, and therefore is widely used when the nature of the load is unknown. It is applied to loads traveling at high speed.

Modified trapezoid curve

Commonly abbreviated to MT curve, this is a standard curve developed to minimize the maximum acceleration value, and is applied to light loads traveling at high speed.

Monitoring trace graph

This is a monitor function, and displays waveforms based on traced (recorded) position commands, position droop, motor speed, motor current, and speed command values during positioning.

Motion control

This refers to positioning control.

Multiplication ratio setting

This is the pulse rate.
See "Pulse rate".

No-dwell motion

At the operation start and end points, there is no dwell, acceleration is maintained at an arbitrary value, the reciprocating operation is repeated, and the acceleration (A) value becomes smaller.

Notch filter

This sets the notch frequency to match the machine system resonant frequency.

Numerical Control

This is the language punched on the paper tape used to instruct the NC unit to perform processing.
Other NC languages are EIA code (EIA standard), ISO code (ISO standard) and JIS code (JIS standard).

Numerical controller

Unit offering even more advanced positioning. 3 axes or more can be controlled with high accuracy and at high speed. Control for complex curves and curved surfaces is also possible.

One-dwell motion, dwell-rise-dwell motion

If used to double back on the same curve on the upward and downward journey for a movement involving a stop at only the start point or finish point of that journey, acceleration can be reduced, and movement becomes smoother.

Option slot

Slot into which a motion module or MELSEC-Q Series can be installed to suit the intended use.

Output module

This refers to a module used to run a servo motor in virtual mode.
The output module has rollers, ballscrews, rotary table, and cams.

Pancake motor

The axis direction dimension is 100 mm shorter than the standard shape,
and is used when there is little space to install the servo motor.

Parabolic curve

Commonly abbreviated to PB curve, it possesses the characteristic of having a non-dimensional maximum acceleration, facilitating minimum time control under the condition that the maximum acceleration value is suppressed.
On the downside, acceleration is discontinuous, and vibrations occur easily.

Parameter block

This allows changes to be made easily to control conditions with data such as that for acceleration and deceleration control used for positioning processing.

Parameters

Parameters stipulate PLC functions. Memory capacity, relay or timer types, status latch selection, and comment capacities and so on can be set by users as parameters. Default values are set to enable basic functionality. There are fixed parameters and servo parameters for positioning.

PASTE

This means redisplaying parts cut from the Edit screen and stored in the system buffer on the Edit screen again.

PCPU

This refers to the positioning control CPU that exists as the motion controller CPU configuration.
In addition, there is also a sequence control CPU known as an SCPU.

PG0 (PG zero)

See "Home position signal".

Plural harmonic motion

This is a cam curve, examples of which are motions in which the acceleration pattern is the multiple perpendicular axis component of a uniform circular motion.
This has been improved to make it difficult to cause vibrations to "simple harmonic motions".

Position loop gain

Expresses the control response speed when performing positioning control at item 1 in the positioning data servo parameters. This value stipulates the number of deviation counter droop pulses during operation, and droop pulses will become smaller if the setting is high, allowing the settling time when the axis is stopped to be reduced. If too high, however, undulations will occur when the axis stops, resulting in slight vibrations. Droop pulses will increase in size if the value is small, allowing axes to come to a smooth halt as the settling time increases when the axis stops, however, the stopping error will increase.
Position loop gain $=\frac{\text { Command pulse frequency }}{\text { Droop pulse }\left(\mathrm{sec}^{-1}\right)}$

Position loop mode

This is one of the servo control modes used for positioning, and is used for position control.
In addition, there is also a speed loop mode used to perform speed control, and a torque loop mode used to perform torque control (current control).

Positioning

This refers to traveling from a certain point to the predetermined next point.
For example, determining length in mm units, outputting a drilling position, etc.
Servo motors channel power from the motion controller issuing the position commands.

Positioning completion signal

This is signal Xn 1 that turns ON when the positioning dwell time is complete.
The purpose of this signal is to begin other work (clamping, etc.) after positioning.

Positioning devices

These refer to I/O signals, internal relays, data registers, special relays, and special registers used to communicate signals between the SCPU (PLC CPU) and PCPU (positioning CPU).

Positioning parameters

This is the basic data used for positioning control, and includes such information as system settings to match the servo motors and servo amps used, the control unit, travel value per pulse, speed limit value, upper and lower stroke limits, and acceleration/deceleration time.

Programmable controller ready

Signal indicating that the PLC CPU is ready. Special function modules are unable to function if this condition is not established.

Proximity dog type zeroing

The axis starts to decelerate when the proximity dog turns ON during zeroing, and after moving at creep speed until the proximity dog turns OFF, the first home position is set as the home position address. The length of the proximity dog is the point.
See "Zeroing method".

PTP point to point control

This refers to positioning control.
This is control in which pass points are specified at intervals on the route.
A request is made only to reach the target position, and control over the route during travel from a certain position to the next value is not required.

Pulse

(1) The turning ON and OFF of current (voltage) over a short period of time. The same term is applied to the human pulse. A pulse train is a series of pulses. The MELSEC AD71 is a unit that emits pulses.
The AD61 unit receives and counts pulses.

Pulse command

This command turns only 1 program cycle (1 scan) ON when conditions turn ON. With MELSEC-A, there is a PLS command that turns the 1 scan time ON with the leading edge when the signal is ON, and a PLF command that turns the 1 scan time ON with the trailing edge when the signal is OFF.

Pulse generator

This is a device used to generate pulses. For example, pulses are generated as the shaft attached to the motor axis rotates. Digital device
Single-phase types emit a single pulse train, and two-phase types emit two pulse trains with phase difference. 600 to 1 million pulses are emitted per axis rotation. Furthermore, one or two pulses with home position signal are emitted per axis rotation.
See "Encoder".

Pulse rate

This is a coefficient used for positioning which doubles, triples, halves, or thirds the feedback pulse per motor axis rotation, and is the ratio of feed pulses to feedback pulses.
For example, when there are 2,400 pulses per rotation and the pulse rate is 2 , the result will be 1,200 pulses. The axis rotation per pulse when there are 2,400 pulses is 0.15°, however, this will be 0.3° with 1,200 pulses. Positioning accuracy drops as the pulse rate is increased.
See "Electronic gear".

Pulse train command

By continuously emitting the number of pulses corresponding to the machine travel distance from the motion controller to the servo motor servo amplifier, it is possible to perform positioning control proportional to the number of pulses.

Ready (M9074)

Condition in which the PCPU or servo amp is able to function normally after the power is turned ON.

Real mode

In this mode, servo motors are controlled directly with a servo program.

Real-time auto tuning

See "Auto tuning".

Reciprocating cam

Consecutive reciprocating motions are made by the stroke amount from the lower stroke position (bottom dead center), facilitating push/return movements, up/down movements, and left/right movements.

Regenerative brake option

This is an optional part, and is used to perform high-frequency acceleration and deceleration.
See "External regenerative brake resistor".

Resolver

This is a device used to resolve angle detection into two analog voltages.
Also referred to as a two-phase synchro, as opposed to single phase voltage input, the resolver converts a single rotation of the axis rotation angle to a perpendicular two-phase voltage (analog voltage), and then outputs it.

Reverse limit switch signal

This is a positioning control device input signal used to report the triggering of the external lower limit switch (contact b configuration, power normally ON) for the travel range in which positioning control is performed. This signal turns OFF when the external RLS signal (contact b) is OFF (not conducting), and the positioning operation has stopped.

Roller

This is a cylindrical rotating object used to feed and roll paper or steel plate.
Roller output can be set as a virtual mode output module.

Rotary table

Performs positioning control while rotating the workpiece on a round table within a 360° range.

SCPU

This refers to the sequence CPU that exists as the motion controller CPU configuration. In addition, there is also a positioning control CPU known as a PCPU.

Scroll

The CRT screen and so on changes repeatedly like a scroll.
The screen changes as the machine being controlled moves, and with key operations.

Sequence control

This refers to a sequence program used to control operations sequentially such as detecting the completion of a single movement with a switch, and using this signal to start the next operation.

Servo amplifier

There is a type built in to the controller base, and an externally installed type. The servo amplifier issues speed commands to the servo motor, and controls the servo motor with received feedback pulses.

Servo lock

Force used to hold the motor at the stop position is required for positioning with servo motors and stepping motors, etc. (The motor position will be lost if moved with external forces.)
This condition is referred to as servo lock or servo lock torque.

Servo motor

Motor that rotates reliably in response to commands.
These motors offer high responsiveness, high speed, and high accuracy, and are capable of frequent starting and stopping. They are produced in DC and AC types, and large capacity models are also available. They are equipped with pulse generators used to detect speed, and often perform feedback control.
In other words, they move in accordance with command values, and in such a manner as to minimize differences between command values and current values while detecting current values.

Servo on

Positioning is not performed when the drive unit is normal and this servo on is not ON.

Servo parameters

See "Positioning parameters".

Servo program

This is a program used to control servo motors, and contains such commands as independent linear control, linear interpolation control, circular interpolation control, fixed feeding, speed control, constant speed control, and zeroing.

Servo response

Sets auto turning responsiveness.
The optimum response can be selected based on the machine rigidity. The higher the machine rigidity, the higher responsiveness can be set, facilitating improved tracking in response to commands, as well as reduced settling time.

Settling time

This is the delay time from the time the stop command is complete until the servo motor stops (time until droop pulse becomes ± 1).

SFC (sequential function chart)

This is the optimum structured programming method required to perform machine automatic control sequentially with a PLC.

Simple Harmonic motion

This is an example of a cam curve, examples of which are motions in which the acceleration pattern is the single perpendicular axis component of a uniform circular motion.
This motion generally exhibits smooth characteristics, and is therefore applied to low speeds.
On the downside, acceleration is discontinuous, and vibrations occur easily.

Simultaneous start control

Two to three types of servo program are run with a START command to start multiple servo motors simultaneously.
Multiple axes specified in a special register are started simultaneously with a special relay with JOG operation.

Skip function

This function allows subsequent positioning to be started even if an external STOP signal turns ON during positioning control, and the signal remains ON when stopped.
Subsequent positioning is started with an SVST command when the external STOP signal input disable flag is turned ON during deceleration, and the start accept flag turns OFF.

Slave axis

See "Master axis".

Smoothing clutch

This is a clutch for which a smoothing time constant is set as a virtual mode transfer module.
The rotation can be conveyed smoothly when the clutch is ON and OFF.
It is known as a direct clutch when the smoothing time constant is zero.

Smoothing time constant t

Acceleration with

See "Smoothing clutch".

Speed change

See "DSFLP command".

Speed change control

Axes are positioned at the travel value end point while changing speed at the speed switching point during positioning control.

Speed change gear

This is one transfer module in the virtual mode mechanical system program, and is used to change the main shaft rotation speed and transfer it to the roller output module.

Speed control

Controls the speed for endless rotations in the same direction for conveyors, etc.
Using VF forward rotation and VR reverse rotation commands (position loop) and VVF forward rotation and VVR reverse rotation commands (speed loop), feed current values are zeroed at the same time as axis movement starts, axes are rotated at a previously set speed, and then decelerate when a stop command is received, without increasing or decreasing the feed current value.
Note that upper and lower stroke limits are ignored.

Speed integral compensation

Frequency responses are issued when performing positioning control at item 1 in the positioning data servo parameters, and transient characteristics are improved.
It is helpful to increase this value when the overshoot when accelerating or decelerating does not get any smaller even by adjusting the speed loop gain.
The unit is ms .

Speed limit value

This is the maximum positioning speed. By setting this value in the parameters, operation is performed with speed limit values even if a larger value is set due to a mistake in other data. Note that acceleration time and deceleration time are the speed limit value times.

Speed loop gain

Expresses the control response speed when performing speed control at item 1 in the positioning data servo parameters.
If the control system responsiveness drops and operation becomes unstable as the load inertia moment ratio increases, stability can be improved by increasing this setting.
If increased too much, the overshoot increases when accelerating, and motor vibration noises are emitted during operation or stoppages.

Speed loop mode

See "Position loop mode".

Speed/position control

Incremental positioning control is performed when external switching signals are received during speed control.

SSCNET

This is an abbreviation of Servo System Controller Network.
This is a connection method used to improve reliability between the motion controller and servo amp through high-speed serial communication.
Wiring work is simplified with a one-touch connection using a connector.

Start completion

This is a signal sent to immediately indicate that the motion controller has successfully started positioning. It does not mean that positioning is complete.

| Servo amp program start | |
| :--- | :--- | :--- |
| | Normal
 start |
| Start completion signal | |

Starting axis

This is the axis to be started, and is axes 1 to $8 / 32$.

Status

This is a device used to express the condition, and collectively refers to signals that turn ON (1) in the clutch status, virtual mode status, and when making zeroing requests, etc.

Stepping motor

This is a motor that performs an angular rotation (e.g., 0.15°) with every pulse. Consequently, rotation proportional to the number of pulses can be obtained. Stepping motors are available in two to five-phase types, and with the three-phase type, the motor rotates by applying voltage in order from A to C. Most stepping motors are compact, and offer accurate rotation without feedback. Caution is advised with step outs, whereby the motor does not rotate accurately.

(1) First, the A phase is excited with a pulse.

(3) The nearest gear tooth is pulled toward the B phase, and the motor stops.

STOP signal

This is a positioning control device input signal used to directly stop positioning from outside during operation. When the external STOP signal (contact a) is ON (conducting), operation stops and XnD turns ON.

Stopper-forced stop

This is a zeroing method using with positioning, and involves stopping the axis when it comes into contact with a stopper installed at the home position.
The motor will burn out and the stopper damaged if the axis remains against the stopper, and therefore various methods are used to prevent this such as equipping the system with a timer allowing the motor to be turned OFF when a fixed time has elapsed, or turning the motor OFF when the system detects that the motor torque has risen suddenly when the axis is against the stopper.

Stroke

This refers to the axis journey, and is the movement change over the distance from the point the axis starts moving until it next stops.

Stroke limit

This is the range in which positioning can be performed, or the movement range beyond which the machine will be damaged. If using a feed screw, the screw length is fixed, and if using fixed feed, this is the maximum dimension that is cut.
The upper and lower limits are set in the parameters, however, to ensure safety, the machine is installed with separate limit switches wired to external signal input modules, allowing axes to be stopped automatically.

Sudden stop

This is shorter than the deceleration time set in the parameters, and is the sudden stop deceleration time taken to stop.

SV13

This is a motion controller OS created for conveyance and assembly, is capable of 1 to 4 axis linear interpolation, 2 axis circular interpolation, CP control (constant speed control), and speed control, and is ideal for applications such as conveyance and assembly equipment.
Sequential control with SFC is possible.

SV22

This is a motion controller OS created for automatic machines, is capable of synchronous control of multiple servo motors, and controlling cams with software, and is ideal for applications such as automatic machines.

SV43

This is a motion controller OS created for processing machine peripheral equipment, is capable of linear interpolation, 2 axis circular interpolation, CP control (constant speed control), and speed control with an NC language (EIA), and is ideal for applications such as processing machines.

SV51

This is a motion controller OS created for dedicated robots, is capable of three-dimensional linear interpolation, three-dimensional circular interpolation, and three-dimensional CP control, and is ideal for applications such as dedicated robots (painting machines, transfer machines, etc.)
Sequential control with SFC is possible.

Synchronized control

This involves rotating the main shaft with a virtual mode drive module, and running the machine by synchronizing with multiple output modules (servo motors) through a transfer module.

Synchronous encoder

This is one type of virtual mode drive module. Pulses from encoders on external machines are input, and the system synchronizes with these pulses to drive the output module.

Teaching

This function is required for positioning, and involves the manual teaching of positions when addresses are unknown, or to align axes with the workpiece.
For example, it is troublesome to write the address for each point as data for complex addresses such as those in a picture, and so by tracing and teaching a model, positioning can be reproduced later.

Teaching playback function

This involves setting positioning points with the address teaching function, and simultaneously creating a servo program and setting positioning points with the program teaching function while actually moving the machine with the teaching unit (A30TU/A31TU).

Teaching unit

This unit is used to teach the data writing and reading, operation, and monitoring required for positioning.
There are two teaching units: A30TU and A31TU.

Three-dimensional cam

This cam uses three dimensional movements, and compared to planar cams, is generally more compact, and can be used as a positive cam for positive motion.

Three-dimensional interpolation CP control

XYZ-axes (3-axis orthogonal) and the C-axis (1 axis rotation) can be controlled at constant speed with a [CPSTART XYZ command] machine control servo command used with SV51 dedicated robots.

Top dead center

This refers to the upper side of the machine installation route for the cam mechanism reciprocating motion.

Torque

This is the size of a force acting on an axis multiplied by the arm length up to the line of action for that force. $\mathrm{N} \cdot \mathrm{m}(\mathrm{kgf} / \mathrm{m})$

Torque loop mode

This is also referred to as current loop mode. See "Position loop mode".

Torque ripple

This is the torque fluctuating range, or variations in torque.

Tracking

Travel values are entered from an external controller, and by adding these travel values to servo command values, positioning is performed at a relative speed with respect to the applicable object during travel.

Transmission module

This is one of the virtual mode mechanical system programs.
This is a module used to transfer drive module rotations to the output module, and is comprised of gears, clutches, speed change gear, and differential gear.

Trapecloid curve

Commonly abbreviated to TRP curve, residual vibrations after input is stopped can be suppressed, and seismic resistance is high.

Travel
See "Stroke".

Travel per pulse

This is data calculated from the machine side, and stipulates how much the motor axis travels per pulse when the unit is mm , inches, or pulses when performing positioning. This corresponds to the position detection unit. Positioning accuracy higher than this is not possible.
Systems are normally designed with a travel value of one rotation per axis at the motor side as a reference, and therefore the travel value per pulse is calculated as follows.
Travel value per pulse =

Two-dwell motion

Motion with dwell at both ends of the journey

Unit setting

This refers to changing to the actual address unit or travel value unit for which positioning is to be performed.
Units are set in mm, inches, degrees, or pulses.

Unsymmetrical

This is a cam curve in which the first half deceleration differs from the latter half ratio, and is mainly used to improve high-speed specification deceleration area characteristics.

V velocity

This means cam non-dimensional speed. This is non-dimensional displacement (motion displacement from start to finish expressed with 0 to 1) differentiated by non-dimensional time (motion time from start to finish expressed with 0 to 1).
See "Vm".

Vicinity passage

Refers to the performing of smooth pass point operations with SV51 dedicated robot three-dimensional interpolation CP control

When vicinity passage is zero Locus is $\mathrm{P} 0 \rightarrow \mathrm{P} 1 \rightarrow \mathrm{P} 2$
When vicinity passage is specified Locus is $\mathrm{P} 0 \rightarrow \mathrm{~A} 1 \rightarrow \mathrm{~A} 2 \rightarrow \mathrm{~A} 3 \rightarrow \mathrm{P} 2$

Virtual auxiliary input

This is one of the virtual mode mechanical system programs,
and adds addition/subtraction rotations from the auxiliary shaft virtual servo motor or synchronous encoder to rotations from the main shaft.

Virtual main shaft

This is one of the virtual mode mechanical system programs.
This shaft is used to connect drive module rotations directly to the transfer module gear.

Virtual mode

This is a method used to move mechanical system program drive modules with a servo program or external encoder in order to drive the servo motor.
The mode used to drive servo motors directly with a servo program is called real mode.
See "Mechanical system program".

Virtual mode status

This is special relay M2044 used for monitoring, and is capable of confirming that the system is operating in virtual mode.

Virtual servo motor

This is one of the drive modules in the virtual mode mechanical system program, and is started with the servo program.
The main shaft is connected directly to the virtual servo motor.

Vm velocity

This is the cam non-dimensional speed maximum value.
See "V".

WDT error

This is an abbreviation of watchdog timer error, and indicates a PCPU defect. M907 turns ON when an error occurs.

Window

Windows refers to selection menus displayed at the SW6RN-GSV22P or CAMP screen with peripheral equipment.

- Menu selection window
- Mode function selection window
- Sub function selection window
- Execution/setting selection window

Word

Expresses the data unit. With the MELSEC-A Series, 1 word represents 16 bits, and numerical values from $-32,768$ to 32,767 in decimal notation are handled. This is 0 to FFFF in hexadecimal notation.
However, there are also 32-bit commands, where 1 word represents 32 bits, and numerical values from $-2,147,483,648$ to $2,147,483,647$ are handled. This is 0 to FFFFFFFF in hexadecimal notation.

Word devices

This is an element in the devices inside the PLC and holds data. In this device, 1 point is 1 word. The timer (T), counter (C), and all registers ($\mathrm{D}, \mathrm{R}, \mathrm{W}, \mathrm{Z}, \mathrm{V}, \mathrm{A}$), etc. are word devices.

X-axis

2D right/left lateral direction

XY table

This is a table moved in the X (lateral) and Y (longitudinal) directions so that positioning can be performed easily.
This is used when drilling holes in plates and drawing diagrams, etc.

Y-axis

2D forward/backward direction

Z phase

Also referred to as PG zero.
See "Home position signal".

Z-axis

3D up/down direction

Zero point signal

This is the pulse generator (encoder) PGO (detected once per rotation). It is also referred to as the Z phase. See "Pulse generator".

Zero return data

This data is required by the motion controller to return to the home position. This is determined at the machine design stage, and involves changes to the machine design in order to be changed at a later date. This is the reference point for home position positioning, and therefore zeroing is required at such times as when a power outage occurs during positioning, or an axis is moved manually with the power OFF because the current values held by the motion controller are no longer relevant. By performing zeroing, the machine searches for the proximity dog, moves, and then changes to creep speed, regardless of the current value.

Zeroing method

There is a proximity dog method, count method, and data set method.

Zeroing request

This request turns ON at the following times when using an incremental position system.
(1) When the power is turned ON.
(2) When the PLC ready signal turns ON.
(3) When parameters and zeroing data from peripheral equipment is written.
(4) When the following are selected while in peripheral equipment test mode.
Zeroing
Positioning JOG operation Manual pulse generator
The decision as to whether to perform zeroing at these times is made by the user.

Motion Controller School Textbook

(Advanced Synchronous Control Edition)
Windows PC Compatible MT Works2

MODEL	
MODEL CODE	
SH-030148ENG-A (1509) MEE	

[^0]: 1), 4): CPU No. 1 writes to the user setting area *1 with a command using a multiple CPU area device.
 3), 6): CPU No. 2 reads from the user setting area *1 with a command using a multiple CPU area device.
 2), 5): The content of the user setting area *1 is transferred to other CPUs in 0.88 ms cycles with multiple CPU high speed transmission.
 *1: Area configured inside multiple CPU high speed transmission area (Refer to "(3) Multiple CPU high speed transmission area memory configuration".)

[^1]: *1: Unusable when performing SV22 advanced synchronous control.

[^2]: (Motion SFC programs other than No. 10 and No. 20 created here will not be described in detail.) Refer to the section on motion SFC programs for operation described later to create.

[^3]: Multiple pointers can be allocated.
 When allocation is complete, right-click to clear the SFC diagram symbol.

[^4]:
 (6) Connect the allocated SFC diagram symbols.

 Click the connect tool button at the Edit Program screen.

[^5]: Make corrections to motion SFC programs if a caution message appears.

