1. System power calculation method

\[\text{Total current consumption} = \frac{\text{Input voltage}}{\text{Number of modules}} \times \text{Total initial current of remote I/O modules and I/O equipment} \]

2. Power Wiring

- **WARNING**
 - If the screws are insufficiently tightened, the power adapter may drop.

 - Power adapter is 20.4 V, therefore, supply voltage subtracted by the voltage drop (V)

 - If the screws are insufficiently tightened, the power adapter may drop.

 - Total current (A) and specifications (V)

3. Specifications

- **WARNING**
 - Make sure that foreign objects such as cutting and wire chips do not enter the device.

- **SAFETY PRECAUTIONS**
 - Do not touch the terminals while the power is being supplied.

- **INSTALLATION PRECAUTIONS**
 - Be careful not to damage the power adapter or the internal components of the panel while inserting it.

4. Construction and connection

Installation of power adapters

- At least one power adapter is required per CC-Link/LT system.

- When constructing the system using only one power adapter, the following conditions should be satisfied.

Performance specifications

<table>
<thead>
<tr>
<th>Input voltage range</th>
<th>Current consumption range</th>
<th>Terminal screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.8V DC or less</td>
<td>100mA or less</td>
<td>24G</td>
</tr>
</tbody>
</table>

5. Power supply

- **WARNING**
 - Do not touch the terminals while the power is being supplied.

- **SAFETY PRECAUTIONS**
 - Do not touch the terminals while the power is being supplied.

- **INSTALLATION PRECAUTIONS**
 - Be careful not to damage the power adapter or the internal components of the panel while inserting it.

6. Construction and connection

Installation of power adapters

- At least one power adapter is required per CC-Link/LT system.

- When constructing the system using only one power adapter, the following conditions should be satisfied.

Performance specifications

<table>
<thead>
<tr>
<th>Input voltage range</th>
<th>Current consumption range</th>
<th>Terminal screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.8V DC or less</td>
<td>100mA or less</td>
<td>24G</td>
</tr>
</tbody>
</table>

5. Power supply

- **WARNING**
 - Do not touch the terminals while the power is being supplied.

- **SAFETY PRECAUTIONS**
 - Do not touch the terminals while the power is being supplied.

- **INSTALLATION PRECAUTIONS**
 - Be careful not to damage the power adapter or the internal components of the panel while inserting it.

6. Construction and connection

Installation of power adapters

- At least one power adapter is required per CC-Link/LT system.

- When constructing the system using only one power adapter, the following conditions should be satisfied.

Performance specifications

<table>
<thead>
<tr>
<th>Input voltage range</th>
<th>Current consumption range</th>
<th>Terminal screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.8V DC or less</td>
<td>100mA or less</td>
<td>24G</td>
</tr>
</tbody>
</table>
Thank you very much for purchasing this product. Please read this manual thoroughly before starting to use the product and a result of using the contents noted in this manual.

1. System power calculation method

1.1 Calculation procedure

1. **Select the load power.**
 - First, select the load power from the available load powers (rated output and internal rating). Use this load power as the reference power for the load power calculation.
 - Then, multiply the load power by the load power calculation constant (0.8 for a load power of 10kW and 0.7 for a load power of 100kW).
 - Calculate the load power using the following formula:
 \[
 \text{Load Power} = \text{Reference Power} \times 0.8
 \]

2. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant (0.8 for a load power of 10kW and 0.7 for a load power of 100kW) to calculate the load power.

3. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

4. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

5. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

6. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

7. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

8. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

9. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

10. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

11. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

12. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

13. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

14. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

15. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

16. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

17. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

18. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

19. **Select the load power calculation method.**
 - The load power calculation method is a method used to calculate the load power.
 - Use the load power calculation method to calculate the load power.

20. **Select the load power calculation constant.**
 - The load power calculation constant is a value that represents the load power calculation method.
 - Use the load power calculation constant to calculate the load power.

2. Power Supply

2.1 INPUT connector

- **Power supply**: 24V DC, 5A or less
- **Input voltage**: 28.8V DC or less
- **Input filter**: Plastic film capacitor
- **Input filter capacity**: 0.06μF
- **Input filter inductance**: 0.1mH
- **Input filter characteristics**: Equivalent to or less than 3.6 V

2.2 Handling of LINK connector and LINK/POWER connector

- **LINK connector**: Excludes only communication (does not supply power)
- **LINK/POWER connector**: Excludes communication, and supplies the power to the CC-Link/LT system.

3. Specifications

- **Input range**: 28.8V DC or less
- **Input current**: 0.06μA
- **Input filter**: Plastic film capacitor
- **Input filter capacity**: 0.06μF
- **Input filter inductance**: 0.1mH
- **Input filter characteristics**: Equivalent to or less than 3.6 V

4. Installation

4.1 Construction of LINK connector and LINK/POWER connector

- **Installation**: Use a simple method by connecting the power adapter and LINK connector or LINK/POWER connector.

4.2 Installation of LINK connector and LINK/POWER connector

- **Installation method**: Use a simple method by connecting the power adapter and LINK connector or LINK/POWER connector.

4.3 Installation of LINK connector and LINK/POWER connector

- **Installation method**: Use a simple method by connecting the power adapter and LINK connector or LINK/POWER connector.

4.4 Installation of LINK connector and LINK/POWER connector

- **Installation method**: Use a simple method by connecting the power adapter and LINK connector or LINK/POWER connector.

5. Power Supply

- **Power supply**: 24V DC, 5A or less
- **Input voltage**: 28.8V DC or less
- **Input current**: 0.06μA
- **Input filter**: Plastic film capacitor
- **Input filter capacity**: 0.06μF
- **Input filter inductance**: 0.1mH
- **Input filter characteristics**: Equivalent to or less than 3.6 V

6. Dimensions

- **Dimensions**: 32.8mm (1.28") x 14.2mm (0.56") x 17.2mm (0.68")
- **Weight**: Approx. 0.26kg (0.58lbs)
- **Mounting**: DIN rail or screw type
- **Connection**: Terminal screw
- **Color**: Black

7. Accessories

8. Revisions

- **Revision**: V1.25-3 (manufactured by JST Mfg. Co., Ltd.)

9. Important Notes

- **Important Points**: This product is designed for use in industrial applications.
- **Product Information**: This document provides the necessary information for the installation and use of the product.
- **Technical Support**: For any inquiries or technical support, please contact the nearest Mitsubishi Electric representative.

10. Conclusion

- **Conclusion**: Thank you for purchasing this product. We hope that this product will meet your needs and contribute to your success.

Note: This manual is for Chinese only.
4.1 Construction and Maintenance

4.1.1 Current consumption calculation

When constructing the system using only one power adapter, the following calculations are necessary. This calculation is appropriate for general power adapters. When using more than one power adapter, the calculation should be performed for each power adapter. The maximum current of each power adapter should be confirmed and the total current should not exceed the maximum rating of the power supply used. If the power supply is overheating, the power adapter may be damaged or the power supply may not function correctly.

Sample calculation:
1. Determine the type of power adapter to be used.
2. Determine the current consumption of each module to be connected.
3. Calculate the total current consumption.
4. Multiply the total current consumption by the number of power adapters to be used.
5. Compare the calculated value with the maximum current rating of the power supply used.

Example:
- Power adapter type: 5.0A
- Module 1 current consumption: 2.5A
- Module 2 current consumption: 3.0A
- Number of power adapters: 2

Total current consumption = 2.5A + 3.0A = 5.5A

Total current consumption of the power adapter = 5.5A * 2 = 11.0A

Maximum current rating of the power supply used should be at least 11.0A.

4.2 Installation

4.2.1 Selection of terminal screws

For more details please contact the local Mitsubishi Electric sales. eTo comply with EMC (EMC) regulation, it is necessary to install the CL1P-AD power adapter in a housing of metal control panels.

- Use the product in Zone 4 as defined in EN61131-2-1. Zone 4: Factory area which is isolated from public areas by dedicated barriers.

4.3 Crimp-style terminal

For the I/O wiring, use the crimp terminals of the following dimensions:

- Location: 2x2mm
- Length: 100mm

4.4 Running instructions

Read this manual thoroughly before starting to use the product and pay careful attention to safely and handle the product properly. Please read this manual carefully before starting to use the product and comply with the specifications in this manual.