This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX-1HC special function block and should be read and understood before attempting to install or use the unit. Further information can be found in the FX PROGRAMMING MANUAL and FX SERIES HARDWARE MANUAL.

INTRODUCTION

- The FX-1HC hardware high-speed counter block is 2-phase 50 kHz high-speed counter. It is a special function block for the FX, FXcc series PC. The FX-1HC counts at a higher speed than the built-in high-speed counter of the PC (2-phase 2 kHz, 1-phase 10 kHz) and performs comparisons and outputs directly.
- Various counter modes, such as 1-phase or 2-phase, 16-bit or 32-bit modes, can be selected using commands from the PC. Allow the FX-1HC unit to run only after setting these mode parameters.
- The source of your input signal should be a 1 or 2 phase encoder. A 5V, 12V, or 24V power source can be used. An initial value setting command input (PRESET) and a count prohibit command input (DISABLE) are also available.
- The FX-1HC has two output. When the counter value coincides with an output compare value, the appropriate output is set ON. A PNP and an NPN output transistor is provided for both outputs to allow either sink or source connection methods.
- FX PCs versions 2.0 or later (those with serial number 13XXXX or larger) are required as these units have the TO/FROM applied instructions in their instruction set. Data transfer between the FX-1HC and the FX PC is by buffer memory exchange. There are 32 buffer memories (each of 16 bits) in the FX-1HC.
- The FX-1HC occupies 8 points of I/O on the FX or FXcc expansion bus. The 8 points can be allocated from either inputs or outputs.
1.1 **External dimensions**

- **Weight**: Approx 0.5 kg (1.1 lbs)
- **Dimensions**: mm (inches)
- **Accessories**: Self-adhesive labels special block number identification.

![Diagram of external dimensions](image_url)

- ① DISABLE terminal (M3.5 (0.14) screws)
- ② YH•YS terminal (M3.5 (0.14) screws)
- ③ Extension cable and connector
- ④ POWER LED
- ⑤ φA,φB terminal (M3.5 (0.14) screws)
- ⑥ PRESET terminal (M3.5 (0.14) screws)
- ⑦ UP LED
- ⑧ φA LED
- ⑨ φB LED
- ⑩ φA LED
- ⑪ φA LED
- ⑫ φA LED
- ⑬ DN (Down) LED
- ⑭ PRESET LED
- ⑮ Mounting hole 2-φ5.5 (0.22)
- ⑯ Attachment groove for 3.5 (1.38) wide DIN rail
- ⑰ DIN rail clip
- ⑱ DIS (DISABLE) LED
- ⑲ YH LED
- ⑳ YS LED
- ⑴ Mounting hole 2-φ5.5 (0.22)
NPN output encoders can also be used.

Encoder

Phase A
- OUT
- COM
- E

Phase B
- OUT
- COM
- E

Phase Z
- OUT
- PRESET
- DISABLE
- START

1.5k
0.5k
0.1k

3.3k

Shielding wire

φA
φB
φZ

OUT
COM
E

OUT
COM
E

OUT
COM
E

12V to 24V inputtable

PC

FX-1HC

YHP
YHN
YSP
YSN

DC24V+
DC24V−

+24V
0V

External power source
DC5V, 12V, 24V

6.8 mm (0.27 inches) or less

Class 3 grounding (<100 Ω)

Extension cable
FX-1HC

External power source
DC12 to 24V

*1. Do not connect YHP and YHN, or YSP and YSN together.

*2. Connect SG and the grounded terminal at the PC side as required.

Using the solderless termination

- Use crimp terminals of the dimensions specified in the left figure.
- Secure the terminals using a tightening torque of 0.5 to 0.8 N•m (5 to 8 kg•cm).
- Wire only to the module terminals discussed in this manual. Leave all others vacant.

- For M3.5 (0.14 inches)

- 6.8 mm (0.27 inches) or less
3 SPECIFICATIONS

3.1 Environmental specifications
The environmental specifications for the FX-1HC are the same as those for your FX series PC.

3.2 Performance specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>1-phase input</th>
<th>2-phase input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 input</td>
<td>2 inputs</td>
</tr>
<tr>
<td></td>
<td>1 edge count</td>
<td>2 edge count</td>
</tr>
<tr>
<td>Signal level</td>
<td>5V, 12V, or 24V ±10% (selected by terminal connection) 7mA</td>
<td></td>
</tr>
<tr>
<td>MAX. frequency</td>
<td>50 kHz</td>
<td>25 kHz</td>
</tr>
<tr>
<td>Input signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t1</td>
<td>t2</td>
</tr>
<tr>
<td></td>
<td>Rise/fall time is 3µs or less</td>
<td>ON/OFF pulse duration 10µs or more</td>
</tr>
<tr>
<td></td>
<td>PRESET (Z phase) input 100µs or more</td>
<td>DISABLE (count prohibit) input 100µs or more</td>
</tr>
<tr>
<td>Counting specification</td>
<td>Format</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automatic UP/DOWN (however, when on 1 phase 1 input mode, UP/DOWN is determined by a PC command or an input terminal.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When 32-bit is specified: -2,147,483,648 to +2,147,483,647</td>
<td>When 16-bit is specified: 0 to 65,535 (upper limit can be user specified)</td>
</tr>
<tr>
<td></td>
<td>Comparison Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each output is set when the present value of the counter matches with the compare value (which is transferred from the PC), and is switched OFF by a reset command from the PC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Types of outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YHN : NPN transistor output for YH output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YHP : PNP transistor output for YH output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YSN : NPN transistor output for YH output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YSP : PNP transistor output for YH output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC 12V to 24V 0.5A</td>
<td></td>
</tr>
<tr>
<td>I/O occupation</td>
<td>8 point taken from the FX, FX2c expansion bus (can be either inputs or outputs)</td>
<td></td>
</tr>
<tr>
<td>Power from base</td>
<td>DC 5V 70mA</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Buffer memories (BFM)

<table>
<thead>
<tr>
<th>BFM number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>Counter mode K0 to K11 Default: K0</td>
</tr>
<tr>
<td>#1</td>
<td>DOWN/UP command (1-phase 1-input mode) Default: K0</td>
</tr>
<tr>
<td>#3, #2</td>
<td>Ring length Upper/Lower Default: K65,536</td>
</tr>
<tr>
<td>#4</td>
<td>Command Default: K0</td>
</tr>
<tr>
<td>#11, #10</td>
<td>Preset data Upper/Lower Default: K0</td>
</tr>
<tr>
<td>#13, #12</td>
<td>YH compare value Upper/Lower Default: K32,767</td>
</tr>
<tr>
<td>#15, #14</td>
<td>YS compare value Upper/Lower Default: K32,767</td>
</tr>
<tr>
<td>#21, #20</td>
<td>Counter current value Upper/Lower Default: K0</td>
</tr>
<tr>
<td>#23, #22</td>
<td>Maximum count value Upper/Lower Default: K0</td>
</tr>
<tr>
<td>#25, #24</td>
<td>Minimum count value Upper/Lower Default: K0</td>
</tr>
</tbody>
</table>

Write / Read

<table>
<thead>
<tr>
<th>Write / Read</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>#26</td>
<td>Compare results</td>
</tr>
<tr>
<td>#27</td>
<td>Terminal status</td>
</tr>
<tr>
<td>#29</td>
<td>Error status</td>
</tr>
<tr>
<td>#30</td>
<td>Model identification code K4010</td>
</tr>
</tbody>
</table>

#5 ~ #9, #16 ~ 19, #28, #31 are reserved.

(1) BFM #0 Counter mode (K0 to K11), BFM #1 DOWN/UP command

The counter mode is selected form the PC. As shown below, values between K0 and K11 are written to buffer memory BFM #0 form the PC. When a value is written to BFM #0 the contents of BFM #1 to BFM #31 are reset to default values. When setting this value use a TOP (pulsed) instruction use M8002 (initial pulse) to drive the TO instruction.

A continuous command is not allowed.

(a) 32-bit counter modes

A 32-bit binary counter which executes UP/DOWN counting will change from the lower limit to the upper limit or the upper limit to the lower limit when overflow occurs. Both the upper and lower limits are fixed values: the upper limit is +2,147,483,647, and the lower limit is -2,147,483,648.

(b) 16-bit counter modes

A 16-bit binary counter handles only positive values from 0 to 65,535. Changes to zero from the upper limit or to the upper limit from zero when overflow occurs; the upper limit is determined by BFM #3 and #2.
(c) 1-phase 1-input counter (K8 to K11)
- Hardware UP/DOWN (K8, K9)

Phase A
ON
OFF
ON
Phase B
OFF
ON
Current value
UP
DOWN

Up/Down is determined by input phase A (ON/OFF).

(d) 1-phase 2-input counter (K6, K7)
- Phase B input ON → OFF while phase A input ON Count down by 1.
- Phase B input OFF → ON while phase A input ON Count up by 1.

Phase A
ON
OFF
Phase B
OFF
ON
1 2 3 3 2 1 0

(e) 2-phase counter (K0 to K5)
- 1 edge-count counter (K0, K1)

Phase A
ON
OFF
Phase B
OFF
ON
Phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.

- 2 edge-count counter (K2, K3)

Phase A
ON
OFF
Phase B
OFF
ON
Phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.
Phase B input OFF → ON while phase A input ON Count up by 1.

- 4 edge-count counter (K4, K5)

Phase A input
Phase B input

UP COUNT:
-1 +1 +1 +1

Phase A input
Phase B input

DOWN COUNT:
-1 -1 -1 -1

- Software UP/DOWN (K10, K11)

BFM #1
K0
K1

UP/DOWN is determined by the contents of BFM #1 (K0/K1).

If both phase A and phase B inputs are received simultaneously, the counter value does not change.
(2) BFM #3, #2 Ring length
Stores the data that specifies the length of the 16-bit counter (default: K65,536).

When ring length K100 is specified, the value of the counter changes as shown above.

UP
98 99 0 1
DOWN
1 0 99 98

In the above example, K100 is written into BFM s #3 and #2 of special block No.2 as a 32-bit binary
value (BFM #3 = 0, BFM #2 = 100). Permitted
values: K2 to K65,536.

Write counter data with (D) TO
- Count data is always handled as a pair from two 16-bit values in this special function block. 16-bit
 2's complement value stored in the registers of the PC cannot be used.
- When you are writing a positive value between K32,768 and K65,535, the data should be treated
 as a 32-bit value even when a 16-bit ring counter is used.
- When transferring counter data to/from this special function block, always use the 32-bit forms of
 the FROM/TO instructions ((D) FROM, (D) TO).

(3) BFM #4 Command

<table>
<thead>
<tr>
<th>BFM #4</th>
<th>When '0' (OFF)</th>
<th>When '1' (ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>Count prohibit</td>
<td>Count permit</td>
</tr>
<tr>
<td>b1</td>
<td>YH output prohibit</td>
<td>YH output permit</td>
</tr>
<tr>
<td>b2</td>
<td>YS output prohibit</td>
<td>YS output permit</td>
</tr>
<tr>
<td>b3</td>
<td>YH/YS independent action</td>
<td>Mutual reset action</td>
</tr>
<tr>
<td>b4</td>
<td>Preset prohibit</td>
<td>Preset permit</td>
</tr>
<tr>
<td>b5 to b7</td>
<td>Undefined</td>
<td>Undefined</td>
</tr>
<tr>
<td>b8</td>
<td>No action</td>
<td>Error flag reset</td>
</tr>
<tr>
<td>b9</td>
<td>No action</td>
<td>YH output reset</td>
</tr>
<tr>
<td>b10</td>
<td>No action</td>
<td>YS output reset</td>
</tr>
<tr>
<td>b11</td>
<td>No action</td>
<td>YH output set</td>
</tr>
<tr>
<td>b12</td>
<td>No action</td>
<td>YS output set</td>
</tr>
</tbody>
</table>

1. When b0 is set to ON and the DISABLE input terminal to
 OFF, the counter is permitted to start counting input pulses.
2. Unless b1 is set to ON, YH (hardware compared
 output) does not turn ON.
3. Unless b2 is set to ON, YS (software compared
 output) does not turn ON.
4. When b3 = ON, YS output is reset if YH output is set,
 and YH output is reset if YS output is set. When b3 =
 OFF, YH and YS output act independently, and do
 not reset each other.
5. When b4 = OFF, preset function by the PRESET
 input terminal is disabled.
6. When b5 is set to ON, all error flags are reset.
7. When b9 is set to ON, YH output is reset.
8. When b10 is set to ON, YS output is reset.
9. When b11 is set to ON, YH output is set ON.
10. When b12 is set to ON, YS output is set ON.

(4) BFM #11, #10 Preset data
- Data to use as the initial value when the counter starts to count.
- Data becomes valid when b4 of BFM #4 is set to ON, and PRESET input terminal changes from OFF to
 ON. The default value of the counter is zero. You can change it by writing a value into BFM #11 and #10
 or by using the command below.
- The initial counter value can also be set by writing the data directly into BFM #21 and #20 (current value
 of the counter).
After comparing the current value of the counter with the value written in BFM #13 and #12, BFM #15 and #14, the hardware and software comparator in the FX-1HC outputs the comparison result.

- YH, YS output will not turn ON if you use PRESET or the TO instruction to set the counter value equal to the comparison value. It will turn ON only when a match occurs by the counting of input pulses.
- The YS comparison operation takes about 300μs, and if a match occurs, the output goes ON.
- Output occurs when the current value becomes equal to the compare value but only if b1 and b2 of BFM #4 are ON. Once an output is set, it remains ON until it is reset by b9 or b10 of BFM #4. If b3 of BFM #4 is ON, however, one of the outputs is reset when the other is set.

(6) Counter current value (BFM #21, 20)
The current value of the counter can be read by the PC. It will not be the correct value during high-speed operations because of the communication delay. The current value of the counter can be forcibly changed by writing a 32-bit value into the appropriate BFM#s from the PC.

(7) Maximum count value (BFM #23, 22)
These store the maximum and minimum value reached by the counter. If the power is turned off, the stored data is cleared.

(8) Comparison status (BFM #26)

<table>
<thead>
<tr>
<th>BFM #26</th>
<th>When ‘0’ (OFF)</th>
<th>When ‘1’ (ON)</th>
<th>BFM #26</th>
<th>When ‘0’ (OFF)</th>
<th>When ‘1’ (ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YH</td>
<td></td>
<td></td>
<td>YS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0</td>
<td>Set value ≤ current value</td>
<td>Set value > current value</td>
<td>b3</td>
<td>Set value ≤ current value</td>
<td>Set value > current value</td>
</tr>
<tr>
<td>b1</td>
<td>Set value + current value</td>
<td>Set value = current value</td>
<td>b4</td>
<td>Set value < current value</td>
<td>Set value = current value</td>
</tr>
<tr>
<td>b2</td>
<td>Set value ≥ current value</td>
<td>Set value < current value</td>
<td>b5</td>
<td>Set value > current value</td>
<td>Set value < current value</td>
</tr>
</tbody>
</table>

BFM #26 is for reading only. Write commands from the programmable controller are ignored.

(9) Terminal status (BFM #27)

<table>
<thead>
<tr>
<th>BFM #27</th>
<th>When ‘0’ (OFF)</th>
<th>When ‘1’ (ON)</th>
<th>BFM #27</th>
<th>When ‘0’ (OFF)</th>
<th>When ‘1’ (ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>PRESET input is OFF</td>
<td>PRESET input is ON.</td>
<td>b2</td>
<td>YH output is OFF.</td>
<td>YH output is ON.</td>
</tr>
<tr>
<td>b1</td>
<td>DISABLE input is OFF</td>
<td>DISABLE input is ON.</td>
<td>b3</td>
<td>YS output is OFF.</td>
<td>YS output is ON.</td>
</tr>
<tr>
<td>b4 to b15</td>
<td></td>
<td></td>
<td>b4 to b15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unsatisfactory
(10) **BFM #29 Error status**

Error status in the FX-1HC can be checked by reading the contents of b0 to b7 of BFM #29 to auxiliary relays of the PC.

<table>
<thead>
<tr>
<th>BFM #29</th>
<th>Error status</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>Set when any of b1 to b7 is ON.</td>
</tr>
<tr>
<td>b1</td>
<td>Set when the value of the ring length is written incorrectly (other than K2 to K65,536).</td>
</tr>
<tr>
<td>b2</td>
<td>Set when the preset value is written incorrectly.</td>
</tr>
<tr>
<td>b3</td>
<td>Set when the compare value is written incorrectly.</td>
</tr>
<tr>
<td>b4</td>
<td>Set when the current value is written incorrectly.</td>
</tr>
<tr>
<td>b5</td>
<td>Set when the counter overflows the upper limit.</td>
</tr>
<tr>
<td>b6</td>
<td>Set when the counter overflows the lower limit.</td>
</tr>
<tr>
<td>b7</td>
<td>Set when the FROM/TO command is used incorrectly.</td>
</tr>
<tr>
<td>b8 ~ b15</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

There error flags can be reset by b8 of BFM #4.

(11) **Model identification code number BFM #30**

The identification number for a Special Function Block is read by using the FROM command.

The identification number for the FX-1HC unit is K4010.

By reading this identification number, the user may create built-in checking routines to check whether the physical position of the FX-1HC matches to that of the software.
5.2 Error checking
The following LEDs on the main panel of the FX-1HC may help you to troubleshoot the unit.

- \(\phi_A, \phi_B \): Goes on/off as \(\phi_A, \phi_B \) input turn ON/OFF. It can be checked by rotating the encoder slowly.
- UP, DN: Lights up to indicate whether the counter is going up (UP) or down (DN).
- PRESET and DIS: The appropriate LED lights up when the PRESET terminal or the DISABLE terminal is ON.
- YH, YS: The appropriate LED lights up when YH/YS output is turned on.

You can check the error status by reading the content of BFM #29 to the PC. Error contents are shown in section 3.3 (10).

4 EXAMPLE PROGRAM

Please use the following program as a guide whenever you use the FX-1HC unit. Other instructions to read the current value of the counter, status etc. can be added as required.

M8002
Initial pulse
TO K2 K0 K11 K1

X014
(D) TO K2 K2 K1234 K1

M8002
(D) TO K2 K12 K1000 K1

M8000
(D) FROM K2 K14 K900 K1

1. K11 is written into BFM #0 of special function block No.2. The counter input is 16-bit 1-phase. Please use a pulse command for this initialization.
2. K1234 \(\rightarrow \) BFM #3, #2 (special function block No.2) The ring length can be specified when a 16-bit counter is specified.
3. UP/DOWN direction should be specified for 1-phase 1-input software determined UP/DOWN counter.
4. K1000 \(\rightarrow \) BFM #13, #12 Set the compare value for YH output.
5. K900 \(\rightarrow \) BFM #15, #14 Set the compare value for YS output (not necessary if only YH output is used).
6. Note that counting only occurs if count prohibit is OFF. Also, outputs will not be set from the counting process at all if the relevant output prohibit are set in the command register. Please reset the error flags and YH/YS output before you start. The mutual reset and preset initialization commands can be used as required.
7. (M25 to M10) \(\rightarrow \) BFM #4 (b15 to b0) command
8. BFM (#21, #20) \(\rightarrow \) Reads the current value to the data registers D3 and D2.

5 DIAGNOSTICS

5.1 Preliminary checks
(1) Check that the I/O wiring and extension cable of the FX-1HC are properly connected.
(2) 5V 70mA power is supplied from the base or extension units for the FX-1HC. Check that there is no power overload from this and other extension blocks.
(3) The counter works correctly only when data such as the counter mode (set with a pulse command), the TO command, the compare value, etc. are appropriately specified. Remember to initialize the count (BFM #4 b0), preset (BFM #4 b4), and output (BFM #4 b2, b1) prohibits. Reset the YH/YS outputs before you start.

5.2 Error checking
The following LEDs on the main panel of the FX-1HC may help you to troubleshoot the unit.

- \(\phi_A, \phi_B \): Goes on/off as \(\phi_A, \phi_B \) input turn ON/OFF. It can be checked by rotating the encoder slowly.
- UP, DN: Lights up to indicate whether the counter is going up (UP) or down (DN).
- PRESET and DIS: The appropriate LED lights up when the PRESET terminal or the DISABLE terminal is ON.
- YH, YS: The appropriate LED lights up when YH/YS output is turned on.

You can check the error status by reading the content of BFM #29 to the PC. Error contents are shown in section 3.3 (10).
SYSTEM BLOCK DIAGRAM

- **Counter mode BFM #0**: TO Ring upper limit value BFM #3, #2
- **DOWN/UP command BFM #1**: TO 16-bit counter
- **1-phase 1-input counter**: DISABKE BFM #4 b0
- **φB Count pulse**: TO 16/32-bit 1-phase/2-phase
- **φA Count start DISABLE**: TO Counter 16/32-bit 1-phase/2-phase
- **φZ Initializaton**: TO Preset data BFM #11, #10
- **INITIALIZE**: TO Direct initialization
- **Model code BFM #30**: TO Preset data register BFM #21, #20
- **Current value register BFM #21, #20**: TO Sampling cycle 300μs
- **Maximum value BFM #23, #22**: TO Compare results BFM #26
- **Minimum value BFM #25, #24**: TO Terminal status BFM #27
- **Error status BFM #29**: TO Reset BFM #4 b8
- **BFM #3, #2 Comparison data BFM #13, #12**: TO for YH output
- **BFM #1 Comparison data BFM #15, #14**: TO for YS output
- **Matched**: TO *1. Comparison is made at the next sampling point after an input count.
- **BFM #4 b1, b2, b10, b11, b12**: TO YH S R
- **BFM #4 b9, b10, b11, b12**: TO YS S R
- **BFM #4 b8, b10**: TO for YS output

*1. Comparison is made at the next sampling point after an input count.
Guidelines for the safety of the user and protection of the FX-1HC special function block

- This manual has been written to be used by trained and competent personnel. This is defined by the European directives for machinery, low voltage and EMC.

- If in doubt at any stage during the installation of the FX-1HC always consult a professional electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use of the FX-1HC please consult the nearest Mitsubishi Electric distributor.

- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

- All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.

Manual number : JY992D53001
Manual revision : A
Data : February 1996

MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE : MITSUBISHI DENKI BLDG, MARUNOUCHI TOKYO 100
TELEX : J24532 MELCO TOKYO
HIMEJI WORKS : 840, CHIYODA CHO, HIMEJI, JAPAN

Effective FEB. 1996
Specifications are subject to change without notice.