SAFETY PRECAUTIONS

(Read these precautions before using this product.)
Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the MELSEC iQ-R Module Configuration Manual.
In this manual, the safety precautions are classified into two levels: "WARNING" and "CAUTION".

⚠️ WARNING
Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

⚠️ CAUTION
Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under "CAUTION" may lead to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.
[Design Precautions]

⚠️ **WARNING**

- Configure safety circuits external to the programmable controller to ensure that the entire system operates safely even when a fault occurs in the external power supply or the programmable controller. Failure to do so may result in an accident due to an incorrect output or malfunction.

1. Emergency stop circuits, protection circuits, and protective interlock circuits for conflicting operations (such as forward/reverse rotations or upper/lower limit positioning) must be configured external to the programmable controller.

2. When the programmable controller detects an abnormal condition, it stops the operation and all outputs are:
 - Turned off if the overcurrent or overvoltage protection of the power supply module is activated.
 - Held or turned off according to the parameter setting if the self-diagnostic function of the CPU module detects an error such as a watchdog timer error.

3. All outputs may be turned on if an error occurs in a part, such as an I/O control part, where the CPU module cannot detect any error. To ensure safety operation in such a case, provide a safety mechanism or a fail-safe circuit external to the programmable controller. For a fail-safe circuit example, refer to "General Safety Requirements" in the MELSEC iQ-R Module Configuration Manual.

4. Outputs may remain on or off due to a failure of a component such as a relay and transistor in an output circuit. Configure an external circuit for monitoring output signals that could cause a serious accident.

- In an output circuit, when a load current exceeding the rated current or an overcurrent caused by a load short-circuit flows for a long time, it may cause smoke and fire. To prevent this, configure an external safety circuit, such as a fuse.

- Configure a circuit so that the programmable controller is turned on first and then the external power supply. If the external power supply is turned on first, an accident may occur due to an incorrect output or malfunction.

- For the operating status of each station after a communication failure, refer to the troubleshooting in the MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application). Incorrect output or malfunction due to a communication failure may result in an accident.

- When connecting an external device with a CPU module or intelligent function module to modify data of a running programmable controller, configure an interlock circuit in the program to ensure that the entire system will always operate safely. For other forms of control (such as program modification, parameter change, forced output, or operating status change) of a running programmable controller, read the relevant manuals carefully and ensure that the operation is safe before proceeding. Improper operation may damage machines or cause accidents.

- Especially, when a remote programmable controller is controlled by an external device, immediate action cannot be taken if a problem occurs in the programmable controller due to a communication failure. To prevent this, configure an interlock circuit in the program, and determine corrective actions to be taken between the external device and CPU module in case of a communication failure.
[Design Precautions]

⚠️ WARNING

- Do not write any data to the "system area" and "write-protect area" of the buffer memory in the module. Also, do not use any "use prohibited" signals as an output signal from the CPU module to each module. Doing so may cause malfunction of the programmable controller system. For the "system area", "write-protect area", and the "use prohibited" signals, refer to the user's manual for the module used.
- If a communication cable is disconnected, the network may be unstable, resulting in a communication failure of multiple stations. Configure an interlock circuit in the program to ensure that the entire system will always operate safely even if communications fail. Incorrect output or malfunction due to a communication failure may result in an accident.
- To maintain the safety of the programmable controller system against unauthorized access from external devices via the network, take appropriate measures. To maintain the safety against unauthorized access via the Internet, take measures such as installing a firewall.

[Design Precautions]

⚠️ CAUTION

- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100mm or more between them. Failure to do so may result in malfunction due to noise.
- During control of an inductive load such as a lamp, heater, or solenoid valve, a large current (approximately ten times greater than normal) may flow when the output is turned from off to on. Therefore, use a module that has a sufficient current rating.
- After the CPU module is powered on or is reset, the time taken to enter the RUN status varies depending on the system configuration, parameter settings, and/or program size. Design circuits so that the entire system will always operate safely, regardless of the time.
- Do not power off the programmable controller or reset the CPU module while the settings are being written. Doing so will make the data in the flash ROM and SD memory card undefined. The values need to be set in the buffer memory and written to the flash ROM and SD memory card again. Doing so also may cause malfunction or failure of the module.
[Installation Precautions]

⚠️ WARNING
- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may result in electric shock or cause the module to fail or malfunction.

[Installation Precautions]

⚠️ CAUTION
- Use the programmable controller in an environment that meets the general specifications in the Safety Guidelines included with the base unit. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.
- To mount a module, place the concave part(s) located at the bottom onto the guide(s) of the base unit, and push in the module until the hook(s) located at the top snaps into place. Incorrect interconnection may cause malfunction, failure, or drop of the module.
- To mount a module with no module fixing hook, place the concave part(s) located at the bottom onto the guide(s) of the base unit, push in the module, and fix it with screw(s). Incorrect interconnection may cause malfunction, failure, or drop of the module.
- When using the programmable controller in an environment of frequent vibrations, fix the module with a screw.
- Tighten the screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- When using an extension cable, connect it to the extension cable connector of the base unit securely. Check the connection for looseness. Poor contact may cause malfunction.
- When using an SD memory card, fully insert it into the SD memory card slot. Check that it is inserted completely. Poor contact may cause malfunction.
- Securely insert an extended SRAM cassette or a battery-less option cassette into the cassette connector of the CPU module. After insertion, close the cassette cover and check that the cassette is inserted completely. Poor contact may cause malfunction.
- Do not directly touch any conductive parts and electronic components of the module, SD memory card, extended SRAM cassette, battery-less option cassette, or connector. Doing so can cause malfunction or failure of the module.

[Wiring Precautions]

⚠️ WARNING
- Shut off the external power supply (all phases) used in the system before installation and wiring. Failure to do so may result in electric shock or cause the module to fail or malfunction.
- After installation and wiring, attach a blank cover module (RG60) to each empty slot and an included extension connector protective cover to the unused extension cable connector before powering on the system for operation. Failure to do so may result in electric shock.
[Wiring Precautions]

CAUTION

- Individually ground the FG and LG terminals of the programmable controller with a ground resistance of 100 ohms or less. Failure to do so may result in electric shock or malfunction.
- Use applicable solderless terminals and tighten them within the specified torque range. If any spade solderless terminal is used, it may be disconnected when the terminal screw comes loose, resulting in failure.
- Check the rated voltage and signal layout before wiring to the module, and connect the cables correctly. Connecting a power supply with a different voltage rating or incorrect wiring may cause fire or failure.
- Connectors for external devices must be crimped or pressed with the tool specified by the manufacturer, or must be correctly soldered. Incomplete connections may cause short circuit, fire, or malfunction.
- Securely connect the connector to the module. Poor contact may cause malfunction.
- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100mm or more between them. Failure to do so may result in malfunction due to noise.
- Place the cables in a duct or clamp them. If not, dangling cables may swing or inadvertently be pulled, resulting in malfunction or damage to modules or cables. In addition, the weight of the cables may put stress on modules in an environment of strong vibrations and shocks. Do not clamp the extension cables with the jacket stripped. Doing so may change the characteristics of the cables, resulting in malfunction.
- Check the interface type and correctly connect the cable. Incorrect wiring (connecting the cable to an incorrect interface) may cause failure of the module and external device.
- Tighten the terminal screws or connector screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, fire, or malfunction.
- When disconnecting the cable from the module, do not pull the cable by the cable part. For the cable with connector, hold the connector part of the cable. For the cable connected to the terminal block, loosen the terminal screw. Pulling the cable connected to the module may result in malfunction or damage to the module or cable.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.
[Wiring Precautions]

⚠️ CAUTION

● Programmable controllers must be installed in control panels. Connect the main power supply to the power supply module in the control panel through a relay terminal block. Wiring and replacement of a power supply module must be performed by qualified maintenance personnel with knowledge of protection against electric shock. For wiring, refer to the MELSEC iQ-R Module Configuration Manual.

● For Ethernet cables to be used in the system, select the ones that meet the specifications in the user's manual for the module used. If not, normal data transmission is not guaranteed.

● For optical fiber cables to be used in the system, select the ones that meet the specifications in this manual. If not, normal data transmission is not guaranteed.

[Startup and Maintenance Precautions]

⚠️ WARNING

● Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.

● Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the terminal screws, connector screws, or module fixing screws. Failure to do so may result in electric shock.

[Startup and Maintenance Precautions]

⚠️ CAUTION

● When connecting an external device with a CPU module or intelligent function module to modify data of a running programmable controller, configure an interlock circuit in the program to ensure that the entire system will always operate safely. For other forms of control (such as program modification, parameter change, forced output, or operating status change) of a running programmable controller, read the relevant manuals carefully and ensure that the operation is safe before proceeding. Improper operation may damage machines or cause accidents.

● Especially, when a remote programmable controller is controlled by an external device, immediate action cannot be taken if a problem occurs in the programmable controller due to a communication failure. To prevent this, configure an interlock circuit in the program, and determine corrective actions to be taken between the external device and CPU module in case of a communication failure.

● Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.

● Use any radio communication device such as a cellular phone or PHS (Personal Handy-phone System) more than 25cm away in all directions from the programmable controller. Failure to do so may cause malfunction.
[Startup and Maintenance Precautions]

⚠️ CAUTION

- Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may cause the module to fail or malfunction.
- Tighten the screws within the specified torque range. Undertightening can cause drop of the component or wire, short circuit, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.
- After the first use of the product, do not perform each of the following operations more than 50 times (IEC 61131-2/JIS B 3502 compliant). Exceeding the limit may cause malfunction.
 - Mounting/removing the module to/from the base unit
 - Inserting/removing the extended SRAM cassette or battery-less option cassette to/from the CPU module
 - Mounting/removing the terminal block to/from the module
- After the first use of the product, do not insert/remove the SD memory card to/from the CPU module more than 500 times. Exceeding the limit may cause malfunction.
- Do not touch the metal terminals on the back side of the SD memory card. Doing so may cause malfunction or failure of the module.
- Do not touch the integrated circuits on the circuit board of an extended SRAM cassette or a battery-less option cassette. Doing so may cause malfunction or failure of the module.
- Startup and maintenance of a control panel must be performed by qualified maintenance personnel with knowledge of protection against electric shock. Lock the control panel so that only qualified maintenance personnel can operate it.
- Before handling the module, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

[Operating Precautions]

⚠️ CAUTION

- When changing data and operating status, and modifying program of the running programmable controller from an external device such as a personal computer connected to an intelligent function module, read relevant manuals carefully and ensure the safety before operation. Incorrect change or modification may cause system malfunction, damage to the machines, or accidents.
[Disposal Precautions]

⚠️ CAUTION
● When disposing of this product, treat it as industrial waste.

[Transportation Precautions]

⚠️ CAUTION
● The halogens (such as fluorine, chlorine, bromine, and iodine), which are contained in a fumigant used for disinfection and pest control of wood packaging materials, may cause failure of the product. Prevent the entry of fumigant residues into the product or consider other methods (such as heat treatment) instead of fumigation. The disinfection and pest control measures must be applied to unprocessed raw wood.
CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
 i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
 ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC iQ-R series programmable controllers.
This manual describes the procedures, system configuration, and wiring of the relevant products listed below.
Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.
When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.
Please make sure that the end users read this manual.

Relevant product

RJ71LP21-25
COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES

Method of ensuring compliance
To ensure that Mitsubishi programmable controllers maintain EMC and Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to one of the following manuals.
• MELSEC iQ-R Module Configuration Manual
• Safety Guidelines (This manual is included with the base unit.)
The CE mark on the side of the programmable controller indicates compliance with EMC and Low Voltage Directives.

Additional measures
No additional measures are necessary for the compliance of this product with EMC and Low Voltage Directives.
CONTENTS

SAFETY PRECAUTIONS ... 1
CONDITIONS OF USE FOR THE PRODUCT 9
INTRODUCTION ... 9
COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES 10
RELEVANT MANUALS .. 12
TERMS ... 13
GENERIC TERMS AND ABBREVIATIONS 14

CHAPTER 1 PART NAMES ... 15

CHAPTER 2 SPECIFICATIONS .. 17
2.1 Performance Specifications ... 17
2.2 Cable Specifications .. 18

CHAPTER 3 FUNCTION LIST ... 19

CHAPTER 4 PROCEDURES BEFORE OPERATION 22

CHAPTER 5 SYSTEM CONFIGURATION 24
5.1 MELSECNET/H Network Configuration 24

CHAPTER 6 WIRING ... 26
6.1 Wiring Methods ... 26
6.2 Wiring Products ... 28

CHAPTER 7 COMMUNICATION EXAMPLES 29
7.1 Cyclic Transmission Program ... 29
 System configuration example ... 29
 Setting in the control station ... 31
 Setting in the normal stations .. 34
 Checking the network status ... 36
 Program example ... 37
7.2 Transient Transmission Program .. 40
 System configuration example ... 40
 Setting in the control station ... 40
 Setting in the normal stations .. 40
 Checking the network status ... 40
 Program example ... 40

APPENDIX ... 42
Appendix 1 External Dimensions .. 42

INDEX ... 44

REVISIONS ... 46
WARRANTY ... 47
TRADEMARKS ... 48
RELEVANT MANUALS

<table>
<thead>
<tr>
<th>Manual name [manual number]</th>
<th>Description</th>
<th>Available form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELSEC iQ-R MELSECNET/H Network Module User's Manual (Startup) [SH-082202ENG] (this manual)</td>
<td>System configuration, performance specifications, procedures before operation, wiring, and communication examples of the MELSECNET/H network module</td>
<td>Print book</td>
</tr>
<tr>
<td>MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application) [SH-082204ENG]</td>
<td>Functions, parameter settings, programming, troubleshooting, and buffer memory of the MELSECNET/H network module</td>
<td>Print book</td>
</tr>
<tr>
<td>MELSEC iQ-R Ethernet, CC-Link IE, and MELSECNET/H Function Block Reference [BCN-P5999-0381]</td>
<td>Specifications of the following MELSEC iQ-R module function blocks: MELSEC iQ-R Ethernet equipped module function blocks, CC-Link IE TSN module function blocks, CC-Link IE Controller Network module function blocks, CC-Link IE Field Network module function blocks, and MELSECNET/H network module function blocks</td>
<td>e-Manual PDF</td>
</tr>
<tr>
<td>MELSEC iQ-R Programming Manual (Module Dedicated Instructions) [SH-081976ENG]</td>
<td>Dedicated instructions for the intelligent function modules</td>
<td>e-Manual PDF</td>
</tr>
</tbody>
</table>

This manual does not include detailed information on the following:

- General specifications
- Applicable combinations of CPU modules and the other modules, and the number of mountable modules
- Installation

For details, refer to the following.

- MELSEC iQ-R Module Configuration Manual

e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated tool.

- e-Manual has the following features:
 - Required information can be cross-searched in multiple manuals.
 - Other manuals can be accessed from the links in the manual.
 - The hardware specifications of each part can be found from the product figures.
 - Pages that users often browse can be bookmarked.
 - Sample programs can be copied to an engineering tool.
TERMS

Unless otherwise specified, this manual uses the following terms.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baton pass</td>
<td>A token to send data over a network</td>
</tr>
<tr>
<td>Buffer memory</td>
<td>Memory in an intelligent function module for storing data such as setting values and monitored values. When integrated into the CPU module, this memory refers to a memory for storing data such as setting values and monitored values of the Ethernet function, and data used for data communication of the multiple CPU system function.</td>
</tr>
<tr>
<td>Control system</td>
<td>A system that controls a redundant system and performs network communications in a redundant system.</td>
</tr>
<tr>
<td>Dedicated instruction</td>
<td>An instruction that simplifies programming for using functions of intelligent function modules.</td>
</tr>
<tr>
<td>Device</td>
<td>A memory of a CPU module to store data. Devices such as X, Y, M, D, and others are provided depending on the intended use.</td>
</tr>
<tr>
<td>Engineering tool</td>
<td>A tool used for setting up programmable controllers, programming, debugging, and maintenance.</td>
</tr>
<tr>
<td>Global label</td>
<td>A label that is valid for all the program data when multiple program data are created in the project. There are two types of global label: a module specific label (module label), which is generated automatically by GX Works3, and an optional label, which can be created for any specified device.</td>
</tr>
<tr>
<td>Intelligent function module</td>
<td>A module that has functions other than input and output, such as an A/D converter module and D/A converter module</td>
</tr>
<tr>
<td>Link device</td>
<td>A device (LB, LW, LX, LY, SB, or SW) in a MELSECNET/H network module</td>
</tr>
<tr>
<td>Link refresh</td>
<td>Data transfer between a link device in a network module and a device in a CPU module. Link refresh is performed in the END processing of the CPU module's sequence scan.</td>
</tr>
<tr>
<td>Link scan (link scan time)</td>
<td>Time required for all the stations on the network to transmit data. The link scan time depends on data volume and the number of transient transmission requests.</td>
</tr>
<tr>
<td>Logical channel</td>
<td>Eight input channels that can be changed by using a program. The channel number can be specified from 1 to 64 by changing the values in the link special register. This channel number is used to receive only the messages selected on the receiving station when they have a lot of information types. The sending station is equivalent to a broadcasting station, which sends messages to logical channels. The receiving station is equivalent to a TV receiver in household, which receives the messages in the required logical channels by switching channels.</td>
</tr>
<tr>
<td>MELSECNET/10 mode</td>
<td>Mode that the MELSECNET/H network module operates on the MELSECNET/10 network.</td>
</tr>
<tr>
<td>MELSECNET/H extended mode</td>
<td>A mode in which the maximum number of link points per station in MELSECNET/H mode is extended. Set this mode for a system that uses a large number of link points per station.</td>
</tr>
<tr>
<td>MELSECNET/H mode</td>
<td>Mode that the MELSECNET/H network module operates on the MELSECNET/H network.</td>
</tr>
<tr>
<td>Module label</td>
<td>A label that represents one of memory areas (I/O signals and buffer memory areas) specific to each module in a given character string. For the module used, GX Works3 automatically generates this label, which can be used as a global label.</td>
</tr>
<tr>
<td>Normal station</td>
<td>A station that performs cyclic transmission and transient transmission with the control station and other normal stations</td>
</tr>
<tr>
<td>Process CPU (redundant mode)</td>
<td>A Process CPU operating in redundant mode. A redundant system is configured with this CPU module. Process control function blocks and the online module change function can be executed even in this mode.</td>
</tr>
<tr>
<td>Redundant system</td>
<td>A system consisting of two systems that have same configuration (CPU module, power supply module, network module, and other modules). Even after an error occurs in one of the two system, the other system takes over the control of the entire system.</td>
</tr>
<tr>
<td>Relay station</td>
<td>A station that includes two or more network modules. Data are passed through this station to stations on other networks.</td>
</tr>
<tr>
<td>Standby system</td>
<td>A backup system in a redundant system</td>
</tr>
<tr>
<td>System switching</td>
<td>A function which switches the systems between the control system and the standby system to continue operation of the redundant system when a failure or an error occurs in the control system.</td>
</tr>
</tbody>
</table>
GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

<table>
<thead>
<tr>
<th>Generic term/abbreviation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Network module | A generic term for the following modules:
 • Ethernet interface module
 • A module on CC-Link IE TSN (the RJ71GN11-T2 and a module on a remote station)
 • CC-Link IE Controller Network module
 • A module on CC-Link IE Field Network (a master/local module, and a module on a remote I/O station, a remote device station, and an intelligent device station)
 • MELSECNET/H network module
 • MELSECNET/10 network module
 • RnENCPU (network part) |
This chapter describes the names of each part of the RJ71LP21-25.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>RUN LED</td>
<td>On: Normal operation Off: Error (Source: MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application))</td>
</tr>
<tr>
<td></td>
<td>ERR LED<sup>1</sup></td>
<td>On or flashing: Error (Source: MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)) Off: Normal operation</td>
</tr>
<tr>
<td></td>
<td>T PASS LED<sup>1</sup></td>
<td>On: Baton pass (state of connecting to the network) Flashing: Testing Off: Baton pass not executed (disconnection of the own station from the network)</td>
</tr>
<tr>
<td></td>
<td>D LINK LED<sup>1</sup></td>
<td>On: Data link (state of performing cyclic transmission) Off: Data link not performed (disconnected)</td>
</tr>
<tr>
<td></td>
<td>25M LED</td>
<td>On: Communicating at 25Mbps Off: Communicating at 10Mbps</td>
</tr>
<tr>
<td></td>
<td>MNG LED<sup>1</sup></td>
<td>On: Operating as a control station or sub-control station Off: Operating as a normal station</td>
</tr>
<tr>
<td></td>
<td>SD/RD LED</td>
<td>On: Data being sent or received Off: Data not sent nor received</td>
</tr>
<tr>
<td></td>
<td>L ERR LED</td>
<td>On: Communication error Any of the following has occurred. • Cable failure or noise • Before receiving data, the RJ71LP21-25 has received the next data and deleted the previous one. Or, hardware failure has occurred in the RJ71LP21-25 receiving part. • The number of bits whose value is one in the receive data in the frame is more than specified, or the receive data is shorter than specified. • Baton pass does not return to own station within the monitoring time. • Data with an abnormal code has been received. • Internal processing of send data is not performed at regular intervals. • Failure has occurred in the forward loop line or reverse loop line; the power supply of the adjacent station to be sent to the own station is turned off. Or, hardware failure has occurred in the sending station part of the loop. Off: No communication error</td>
</tr>
<tr>
<td>(2)</td>
<td>Dot matrix LED</td>
<td>Indicates the station number set to the RJ71LP21-25 and the status of each test. (Source: Page 16 Dot matrix LED indication).</td>
</tr>
<tr>
<td>(3)</td>
<td>Optical connector (IN connector)</td>
<td>A connector to connect the optical fiber cable. Connect to OUT connector of another station.</td>
</tr>
<tr>
<td>(4)</td>
<td>Optical connector (OUT connector)</td>
<td>A connector to connect the optical fiber cable. Connect to IN connector of another station.</td>
</tr>
<tr>
<td>(5)</td>
<td>Production information marking</td>
<td>Indicates the production information (16 digits) of the module.</td>
</tr>
</tbody>
</table>

¹ The LED is always off in offline mode.
Dot matrix LED indication
Displays the station number set to the RJ71LP21-25 and the status of each test.

<table>
<thead>
<tr>
<th>Module operation mode</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online mode</td>
<td>Displays the station number currently set to the RJ71LP21-25.</td>
</tr>
<tr>
<td>Debug mode</td>
<td>• Control station, normal station: 1 to 64</td>
</tr>
<tr>
<td></td>
<td>• No parameter set: "————"</td>
</tr>
<tr>
<td>Offline mode</td>
<td>"—" is displayed.</td>
</tr>
<tr>
<td>Forward loop test</td>
<td>"MD3" is displayed.</td>
</tr>
<tr>
<td>Reverse loop test</td>
<td>"MD4" is displayed.</td>
</tr>
<tr>
<td>Station-to-station test (executing station)</td>
<td>"MD5" is displayed.</td>
</tr>
<tr>
<td>Station-to-station test (non-executing station)</td>
<td>"MD6" is displayed.</td>
</tr>
<tr>
<td>Self-loopback test</td>
<td>"MD7" is displayed.</td>
</tr>
<tr>
<td>Internal self-loopback test</td>
<td>"MD8" is displayed.</td>
</tr>
<tr>
<td>Hardware test</td>
<td>"MD9" is displayed.</td>
</tr>
</tbody>
</table>

The operation mode is displayed during the execution of each test. For the displayed content of each test result, refer to the following: MELSEC iQ-R MELSENET/H Network Module User's Manual (Application)
2 SPECIFICATIONS

2.1 Performance Specifications

The following table lists the performance specifications of the RJ71LP21-25.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of link points per network</td>
<td>LB 16384 points (MELSECNET/10 mode: 8192 points)</td>
</tr>
<tr>
<td></td>
<td>LW 16384 points (MELSECNET/10 mode: 8192 points)</td>
</tr>
<tr>
<td></td>
<td>LX 8192 points</td>
</tr>
<tr>
<td></td>
<td>LY 8192 points</td>
</tr>
<tr>
<td>Maximum number of link points per station</td>
<td>LB • MELSECNET/H mode, MELSECNET/10 mode</td>
</tr>
<tr>
<td></td>
<td>LW ((LY+LB)/8+(2×LW))/2000 bytes</td>
</tr>
<tr>
<td></td>
<td>LX ((LY+LB)/8+(2×LW))/35840 bytes</td>
</tr>
<tr>
<td></td>
<td>LY (LY+LB)/8+(2×LW)</td>
</tr>
<tr>
<td>Communication speed</td>
<td>25Mbps/10Mbps (MELSECNET/10 mode: 10Mbps)</td>
</tr>
<tr>
<td>Number of connected stations per network</td>
<td>64 stations (control station: 1, normal station: 63)</td>
</tr>
<tr>
<td>Connection cable</td>
<td>Optical fiber cable</td>
</tr>
<tr>
<td></td>
<td>For details, refer to the following.</td>
</tr>
<tr>
<td></td>
<td>Page 18 Cable Specifications</td>
</tr>
<tr>
<td>Applicable connector</td>
<td>2-core optical connector plug</td>
</tr>
<tr>
<td></td>
<td>F06/F08 equivalent (JIS C5975/5977 compliant)</td>
</tr>
<tr>
<td>Overall cable distance</td>
<td>30km</td>
</tr>
<tr>
<td>Maximum station-to-station distance</td>
<td>The maximum station-to-station distance varies depending on the optical fiber cable used.</td>
</tr>
<tr>
<td></td>
<td>For details, refer to the following.</td>
</tr>
<tr>
<td></td>
<td>Page 18 Cable Specifications</td>
</tr>
<tr>
<td>Maximum number of networks</td>
<td>239</td>
</tr>
<tr>
<td>Maximum number of groups</td>
<td>32 (MELSECNET/10 mode: 9)</td>
</tr>
<tr>
<td>Network topology</td>
<td>Duplex loop</td>
</tr>
<tr>
<td>Communication method</td>
<td>Token ring</td>
</tr>
<tr>
<td>Transient transmission capacity</td>
<td>1920 bytes maximum (MELSECNET/10 mode: 960 bytes maximum)</td>
</tr>
<tr>
<td>Number of occupied I/O points</td>
<td>32 points</td>
</tr>
<tr>
<td>Internal current consumption (5VDC)</td>
<td>0.48A</td>
</tr>
<tr>
<td>External dimensions</td>
<td>Height 106mm (Base unit mounting side: 98mm)</td>
</tr>
<tr>
<td></td>
<td>Width 27.8mm</td>
</tr>
<tr>
<td></td>
<td>Depth 110mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.15kg</td>
</tr>
</tbody>
</table>

*1 The number of points for LY for a station set as the I/O master station is the sum of LY output to all the stations in the block.
2.2 Cable Specifications

The following table lists the specifications of optical fiber cables. The types of optical fiber cables that can be used vary depending on the station-to-station distance.

<table>
<thead>
<tr>
<th>Type</th>
<th>Station-to-station distance</th>
<th>Applicable connector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25Mbps</td>
<td>10Mbps</td>
</tr>
<tr>
<td>SI optical fiber cable (Old type: A-2P-□)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type L</td>
<td>200m</td>
<td>500m</td>
</tr>
<tr>
<td>Type H</td>
<td>100m</td>
<td>300m</td>
</tr>
<tr>
<td>SI optical fiber cable</td>
<td>200m</td>
<td>500m</td>
</tr>
<tr>
<td>H-PCF optical fiber cable</td>
<td>400m</td>
<td>1000m</td>
</tr>
<tr>
<td>Broadband H-PCF optical fiber cable</td>
<td>1000m</td>
<td>1000m</td>
</tr>
<tr>
<td>QSI optical fiber cable/Broadband silica glass optical fiber cable</td>
<td>1000m</td>
<td>1000m</td>
</tr>
<tr>
<td>F06/F08 equivalent (JIS C5975/5977 compliant)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This chapter describes the functions of the RJ71LP21-25. For details on the functions, refer to the following.

MELSEC iQ-R MELSECNET/H Network Module User’s Manual (Application)

Cyclic transmission function

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic transmission</td>
<td>Communications using LB and LW</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Writes data on the link device (LB, LW) of the RJ71LP21-25 and sends the data to all stations connected in the same network.</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Communications using LX and LY</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Exchanges data between the I/O master station that controls LX and LY and another station on a one-to-one (1:1) basis.</td>
<td>O</td>
</tr>
<tr>
<td>Low-speed cyclic transmission</td>
<td>Collectively sends data that do not require high speed transmission to another station by using link devices (LB/LW). It has the same performance as the transient transmission function.</td>
<td>O</td>
</tr>
<tr>
<td>Refresh</td>
<td>Link refresh</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Automatically transfers data between a link device in the RJ71LP21-25 and a device in the CPU module. Refresh can be performed on labels as well.</td>
<td>O</td>
</tr>
<tr>
<td>Direct access to link devices</td>
<td>Directly reads/writes link devices (LB/LW/LX/LY/SB/SW) of the RJ71LP21-25 using a program.</td>
<td>O</td>
</tr>
<tr>
<td>Constant link scan</td>
<td>Keeps the link scan time at the level of the setting time.</td>
<td>—</td>
</tr>
<tr>
<td>Data assurance</td>
<td>Assures the cyclic data integrity in units of 32 bits or station-based units.</td>
<td>O</td>
</tr>
<tr>
<td>Interlink transmission</td>
<td>Transfers data in the link devices of the RJ71LP21-25 to another network module on a relay station. Between MELSEC iQ-R series modules, high-speed interlink transmission is performed without going through the CPU module.</td>
<td>O</td>
</tr>
<tr>
<td>Cyclic transmission stop and restart</td>
<td>Starts/Stopss cyclic transmission in the specified station using MELSECNET diagnostics or a program. Transient transmission does not stop.</td>
<td>O</td>
</tr>
</tbody>
</table>

Transient transmission function

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient transmission</td>
<td>Communications within the same network</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Performs the transient transmission to other stations using dedicated instructions and the engineering tool.</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Communications with different networks</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Performs the transient transmission seamlessly to stations on different networks using dedicated instructions or the engineering tool.</td>
<td>O</td>
</tr>
<tr>
<td>Group transient transmission</td>
<td>Sends data to all stations of the same transient transmission group number with a single instruction by dividing the transient transmission target stations into groups.</td>
<td>O</td>
</tr>
<tr>
<td>Sending messages by using logical channel numbers</td>
<td>Sends messages by using logical channel numbers. This function is used to receive only the messages selected on the receiving station when they have a lot of information types.</td>
<td>O</td>
</tr>
</tbody>
</table>
RAS function

○: Available, *—*: Not available

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic return</td>
<td>Automatically returns the station disconnected from the network due to a data link error to the network when it recovers and restarts data link.</td>
<td>○</td>
</tr>
<tr>
<td>Control station switching</td>
<td>Continues data link with another normal station that serve as a sub-control station even if the control station goes down.</td>
<td>—</td>
</tr>
<tr>
<td>Control station recovery control</td>
<td>Shortens network downtime by resolving the cause of an error in the control station and making that station join the network as a normal station.</td>
<td>○</td>
</tr>
<tr>
<td>Loopback function</td>
<td>Isolates a faulty area such as a cable disconnection and faulty station to continue data link connection between normal stations.</td>
<td>○</td>
</tr>
</tbody>
</table>

Troubleshooting

○: Available, *—*: Not available

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network diagnostics</td>
<td>Checks the line status of the network and the module setting status.</td>
<td>○</td>
</tr>
</tbody>
</table>

Applied function

○: Available, *—*: Not available

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt program start</td>
<td>Checks interrupt conditions at every link scan, and sends an interrupt request to the CPU module to start the interrupt program if the interrupt conditions are met.</td>
<td>○</td>
</tr>
<tr>
<td>Multiplex transmission function</td>
<td>Performs high speed communication using duplex transmission path (forward loop and reverse loop). In the environment where the QJ71LP21-25 with multiplex transmission operates as a control station, the RJ71LP21-25 is allowed to participate in the network as a sub-control station or normal station.</td>
<td>—</td>
</tr>
<tr>
<td>Send points increase</td>
<td>Increases the number of send points (a maximum of 2000 bytes per station) to a maximum of 8000 bytes (when four modules are mounted) by mounting multiple RJ71LP21-25s with the same network number to one CPU module.</td>
<td>○</td>
</tr>
</tbody>
</table>
Redundant system function

- **Available**, —: **Not available**

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant system function</td>
<td>Consists of a control system and standby system. When an error occurs in the control system, the standby system is switched to the new control system and cyclic transmission continues.</td>
<td>○</td>
</tr>
</tbody>
</table>

Firmware update function

- **Available**, —: **Not available**

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware update</td>
<td>Enables users to update the firmware versions of modules by obtaining firmware update files from the users’ local Mitsubishi representatives.</td>
<td>○</td>
</tr>
</tbody>
</table>
This chapter describes the procedures before operation.

1. Network construction
Configure the system and set the parameters which are required for start-up.
 • Wiring (Page 26 WIRING)
 • Parameter setting (MELSEC iQ-R MELSECNET/H Network Module User’s Manual (Application))

2. Network diagnostics
Using MELSECNET diagnostics, check if the cables are connected properly and communication is performed normally with the configured parameters.
For details, refer to the following.
 MELSEC iQ-R MELSECNET/H Network Module User’s Manual (Application)

3. Programming
Create a program. For details, refer to the following.
 Page 29 COMMUNICATION EXAMPLES
5 SYSTEM CONFIGURATION

This chapter describes the system configuration of MELSECNET/H network.

5.1 MELSECNET/H Network Configuration

Single-network system

A system in which the control station and normal stations are connected with optical fiber cables. A total of 64 stations can be connected: one control station and 63 normal stations. A station with any station number can be set as the control station. Note that one system has only one control station.

In the following system configuration example, a station with station No.1 is set as the control station.

(1) Control station (station No.1)
(2) Normal station (station No.2)
(3) Normal station (station No.3)
Multi-network system

A system in which multiple networks are connected at a relay station. A maximum of 239 networks can be connected regardless of the network type, such as Ethernet, CC-Link IE TSN, CC-Link IE Controller Network, and CC-Link IE Field Network.

(1) Relay station

Redundant system

The RJ71LP21-25 can be used in a redundant system.

If an error occurs in the control system, the redundant system function executes system switching and continues data communications.

For details on the redundant system function, refer to the following.

[Melsec iQ-R MELSECNET/H Network Module User's Manual (Application)]
6 WIRING

This chapter describes the wiring when MELSECNET/H network is used.

6.1 Wiring Methods

This section describes connection and disconnection of the optical fiber cable. The RJ71LP21-25 has IN connector and OUT connector. Connect the IN connector of own station to OUT connector of another station and OUT connector of own station to IN connector of another station.

Connecting the cable

1. Turn the power off.
2. Insert the plug by aligning its groove with the projection of the jack.
3. Push the plug in until the hole for securing the plug is caught by the hook of the jack.
4. Lightly pull the plug in the direction of the arrow to check that it is securely connected.
Disconnecting the cable

1. Turn the power off.
2. Press the side buttons that engage the locking mechanism in the direction of the arrows to pull the plug out.
3. For storage, attach the covers that were attached to both the plug and the jack before connecting them.

Precautions

- Cables do not need to be connected in the order of station numbers.
- For the RJ71LP21-25, there is a distinction between IN connector and OUT connector. Connect the IN connector of own station to OUT connector of another station and OUT connector of own station to IN connector of another station.
- Do the wiring in a loop by using optical fiber cables.
- Use the types of optical fiber cables shown in the cable specifications. (Page 18 Cable Specifications)
- The bending radius of the optical fiber cable is limited. For details, check the specifications of the cable to be used.
- Place the optical fiber cable in a duct or fix it. Otherwise, a dangling cable may swing or inadvertently be pulled, resulting in damage to the module or cables or malfunction due to poor contact.
- When handling an optical fiber cable, do not touch the optical fiber core of the cable-side or module-side connector, and protect it from dirt or dust. If oil from your hand, dirt or dust is attached to the core, it can increase transmission loss, giving rise to a problem in data link.
- When connecting/disconnecting an optical fiber cable, hold its connector part.
- Securely connect the cable-side connector and module-side connector of an optical fiber cable securely until it clicks.
- When connecting/disconnecting an optical fiber cable, shut off the external power supply (all phases) used in the system.
6.2 Wiring Products

Optical fiber cables with connectors (optical fiber cables for MELSEC) are available from Mitsubishi Electric System & Service Co., Ltd. (Catalogs for the optical fiber cables are also available.) In addition, installation work is also available for your preference. Please consult your local Mitsubishi representative.
COMMUNICATION EXAMPLES

7.1 Cyclic Transmission Program

This section describes the procedure for creating a program using cyclic transmission.

System configuration example

The following system configuration is used to explain communication between the control station and normal station.

System configuration

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Control station (station No.1)</td>
<td>Power supply module R61P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU module R04CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MELSECNET/H network module RJ71LP21-25</td>
</tr>
<tr>
<td>(2)</td>
<td>Normal station (station No.2)</td>
<td>Power supply module R61P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU module R04CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MELSECNET/H network module RJ71LP21-25</td>
</tr>
</tbody>
</table>
7 COMMUNICATION EXAMPLES
7.1 Cyclic Transmission Program

Link device assignment

LB and LW assignment
No.1: control station, No.2: normal station.

- Cyclic transmission
- Link refresh

1. Control station (station No.1) bit: 256 points
2. Normal station (station No.2) bit: 256 points
3. Control station (station No.1) word: 256 points
4. Normal station (station No.2) word: 256 points
Setting in the control station

Connect the engineering tool to the CPU module on the control station and set the parameters.

1. Set the CPU module as follows.

 ![Image](image1)

 - [Project] ⇒ [New]

2. Click the [Setting Change] button and set "Use" for "Module Label".

 ![Image](image2)

3. Set the RJ71LP21-25 as follows.

 ![Image](image3)

 - [Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ Right-click ⇒ [Add New Module]
4. Click the [OK] button to add the module labels of the RJ71LP21-25.

5. Set the items in “Required Settings” as follows.

 [Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ [RJ71LP21-25] ⇒ [Required Settings]

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station Type</td>
<td>MNET31 Mode (Control Station)</td>
</tr>
<tr>
<td>Network No.</td>
<td>1</td>
</tr>
<tr>
<td>Station No.</td>
<td>1</td>
</tr>
<tr>
<td>Network Range Assignment Setting</td>
<td></td>
</tr>
<tr>
<td>Operation after Reconnection</td>
<td>Return as Control Station</td>
</tr>
<tr>
<td>Transmission Speed</td>
<td>10Mbps</td>
</tr>
</tbody>
</table>

6. Set the network range assignment as follows and click the [Apply] button.

 [Required Settings] ⇒ [Network Range Assignment] ⇒ [Detailed Setting]

<table>
<thead>
<tr>
<th>Total No. of Stations</th>
<th>Switch windows</th>
<th>LB/LV Setting</th>
<th>Switch Setting(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 | Station No. | Station Type | LB Points | LB Start | LB End | LVF Points | LVF Start | LVF End | Low Speed LB Points | Low Speed LB Start | Low Speed LB End | Low Speed LVF Points | Low Speed LVF Start | Low Speed LVF End | Reserved Station | Pairing |
 |-------------|--------------|-----------|---------|--------|------------|---------|--------|---------------------|-------------------|-----------------|---------------------|-------------------|------------------|-------------------|---------|---------|
7. Set the items in "Basic Settings" as follows.
[Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ [RJ71LP21-25] ⇒ [Basic Settings]

8. Set the link refresh settings as follows and click the [Apply] button.
[Basic Settings] ⇒ [Link Refresh Settings] ⇒ [Detailed Setting]

9. Write the set parameters to the CPU module of the control station. Then reset the CPU module or power off and on the system.
[Online] ⇒ [Write to PLC]

In this example, default values are used for parameters that are not shown above. For the parameters, refer to the following.
[MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)]
Setting in the normal stations

Connect the engineering tool to the CPU module on the normal station and set the parameters.

1. Set the CPU module and add a module label of the CPU module. The setting method of the CPU module and addition method of the module label are the same as those of the control station. (Page 31 Setting in the control station)

2. Set the RJ71LP21-25 as follows.

 [Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ Right-click ⇒ [Add New Module]

3. Add the module labels of the RJ71LP21-25. The addition method of the module label is the same as that of the control station. (Page 31 Setting in the control station)

4. Set the items in "Required Settings" as follows and click the [Apply] button.

 [Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ [RJ71LP21-25] ⇒ [Required Settings]
5. Set the items in "Basic Settings" as follows.
 [Navigation window] ⇒ [Parameter] ⇒ [Module Information] ⇒ [RJ71LP21-25] ⇒ [Basic Settings]

6. Set the link refresh settings as follows and click the [Apply] button.
 [Basic Settings] ⇒ [Link Refresh Settings] ⇒ [Detailed Setting]

7. Write the set parameters to the CPU module of the control station. Then reset the CPU module or power off and on the system.
 [Online] ⇒ [Write to PLC]

Point

In this example, default values are used for parameters that are not shown above. For the parameters, refer to the following.
MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)
Checking the network status

Once parameters are set for the control station and normal station, the MELSECNET diagnostics of the engineering tool can be used to check whether data link is normally operating.

1. Connect the engineering tool to the CPU module on the control station.

2. Start MELSECNET diagnostics.

[Diagnosics] ⇒ [MELSECNET Diagnostics]

If the following display appears, data link is normal.

For details on the "MELSECNET Diagnostics(Host Station Information)" window, refer to the following.

MELSEC iQ-R MELSECNET/H Network Module User's Manual (Application)
Program example

This section describes program examples.

Program example of cyclic transmission

The values in D0 to D3 of the control station (station No.1) are sent to D100 to D103 of the normal station (station No.2) through cyclic transmission.

When creating a program, configure an interlock using ‘Data link error status of own station’ (SB0049) and ‘Data link status of each station’ (SW0074 to SW0077).

■ Overview of the sending station (control station (station No.1)) program example
 • When bHandShake1 and bHandShake2 are turned off, send the values in D0 to D3 (uOutputData[0] to uOutputData[3]) to W0 to W3 (uData[0] to uData[3]). To notify the receiving station that the data was sent, turn bHandShake1 on.
 • Check that the receiving station received the data by checking that bHandShake2 is on, and turn bHandShake1 off to complete the send processing.

■ Overview of the receiving station (normal station (station No.2)) program example
 • Check with bHandShake1 that the data was sent, and transfer (receive) the values in W0 to W3 (uData[0] to uData[3]) to D100 to D103 (uInputData[0] to uInputData[3]). To notify the sending station that the data was received, turn bHandShake2 on.
 • Check that the send processing is complete by checking that bHandShake1 is off, and turn bHandShake2 off to complete the receive processing.

■ Program example
 • Control station (station No.1)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Label name</th>
<th>Description</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module label</td>
<td>LP21_1.bDetect_DataLinkError</td>
<td>Data link error status of own station</td>
<td>SB0049</td>
</tr>
<tr>
<td></td>
<td>LP21_1.bnSts_CyclicTransmissionError_Station[2]</td>
<td>Data link status of each station (station No.2)</td>
<td>SW0074.1</td>
</tr>
</tbody>
</table>

Label to be defined

Define global labels as shown below:
When 'bSendRequest' (M100) is turned on, the contents of 'uOutputData' (D0 to D3) is stored in 'uData' (W0 to W3). When data storage is completed, 'bHandShake1' (B0) is turned on.

When 'bHandShake2' (B100) in the normal station (station No.2) is turned on, 'bHandShake1' (B0) is turned off.
• Normal station (station No.2)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Label name</th>
<th>Description</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module label</td>
<td>LP21_1.bDetect_DataLinkError</td>
<td>Data link error status of own station</td>
<td>SB0049</td>
</tr>
<tr>
<td></td>
<td>LP21_1.bnSts_CyclicTransmissionError_Station[1]</td>
<td>Data link status of each station (station No.1)</td>
<td>SW0074.0</td>
</tr>
</tbody>
</table>

Label to be defined

Define global labels as shown below:

```
<table>
<thead>
<tr>
<th>Label Name</th>
<th>Data Type</th>
<th>Class</th>
<th>Assign (Device/Label)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bDataLinN</td>
<td>Br</td>
<td>VAR_GLOBAL</td>
<td>M0</td>
</tr>
<tr>
<td>uData</td>
<td>Word (unsigned)Bit String (16 Bit x 3)</td>
<td>VAR_GLOBAL</td>
<td>W0</td>
</tr>
<tr>
<td>bHandShake1</td>
<td>Br</td>
<td>VAR_GLOBAL</td>
<td>B0</td>
</tr>
<tr>
<td>bHandShake2</td>
<td>Br</td>
<td>VAR_GLOBAL</td>
<td>B100</td>
</tr>
<tr>
<td>uOutputData</td>
<td>Word (unsigned)Bit String (16 Bit x 3)</td>
<td>VAR_GLOBAL</td>
<td>D100</td>
</tr>
</tbody>
</table>

(41) When 'bHandShake1' (B0) is turned on in the control station (station No.1), the contents of 'uData' (W0 to W3) is stored in 'uOutputData' (D100 to D103). When data storage is completed, 'bHandShake2' (B100) is turned on.

(48) When 'bHandShake1' (B0) in the control station (station No.1) is turned off, 'bHandShake2' (B100) is turned off.
7.2 Transient Transmission Program

This section describes the procedure for creating a program using transient transmission.

System configuration example

For details on the system configuration, refer to the following.

Setting in the control station

For details on how to set parameters for the control station, refer to the following.

Setting in the normal stations

For details on how to set parameters for the normal stations, refer to the following.

Checking the network status

For details on how to check the network status, refer to the following.

Program example

Program example of transient transmission

The following shows a program example of transient transmission.

Overview of the program example

Through transient transmission, by using the READ instruction, the values in D300 to D304 of the normal station (station No.2) are read to D800 to D804 of the control station (station No.1).

When creating a program, configure an interlock using ‘Baton pass error status of own station’ (SB0047) and ‘Baton pass status of each station’ (SW0070 to SW0073).

<table>
<thead>
<tr>
<th>Classification</th>
<th>Label name</th>
<th>Description</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module label</td>
<td>LP21_1.bDetect_BatonPassError</td>
<td>Baton pass error status of own station</td>
<td>SB0047</td>
</tr>
<tr>
<td></td>
<td>LP21_1.bnSts_BatonPassError_Station[1]</td>
<td>Baton pass status of each station</td>
<td>SW0070 to SW0073</td>
</tr>
</tbody>
</table>

Label to be defined

Define global labels as shown below:
Program example

- Control station (station No.1)

(23) When bTransientStart is turned on while there is no error in 'Baton pass error status of own station' (SB0047) and 'Baton pass status of each station' (SW0070 to SW0073), the number of resends is set and dedicated instruction GP.READ is executed.

(41) When dedicated instruction GP.READ is successfully completed, bSuccessFlg is turned on. When an error response is received, bErrFlg is turned on.
Appendix 1  External Dimensions

This chapter describes the external dimensions of the RJ71LP21-25.

(Unit: mm)
## INDEX

### A
- Automatic return ........................................ 20

### C
- Constant link scan ...................................... 19
- Control station recovery control ................. 20
- Control station switching .......................... 20
- Control system ......................................... 13
- Cyclic transmission stop and restart ........... 19

### D
- Data assurance ............................................. 19
- Direct access to link devices ....................... 19

### G
- Group transient transmission ......................... 19

### I
- Intelligent function module ............................. 13
- Interlink transmission .................................. 19

### L
- Link refresh ............................................... 13
- Logical channel .......................................... 13
- Loopback function ..................................... 20
- Low-speed cyclic transmission ...................... 19

### M
- MELSECNET/10 mode .................................. 17
- MELSECNET/H extended mode ...................... 17
- MELSECNET/H mode ................................... 17

### P
- Process CPU (redundant mode) ...................... 13

### R
- RAS function ............................................. 20

### S
- Standby system .......................................... 13
**REVISIONS**

*The manual number is given on the bottom left of the back cover.

<table>
<thead>
<tr>
<th>Revision date</th>
<th>*Manual number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2020</td>
<td>SH(NA)-082202ENG-A</td>
<td>First edition</td>
</tr>
</tbody>
</table>

Japanese manual number: SH-082201-A

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2020 MITSUBISHI ELECTRIC CORPORATION
WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter “Failure”) found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
   1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
   2. Failure caused by unapproved modifications, etc., to the product by the user.
   3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
   4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
   5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
   6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
   7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.
TRADEMARKS

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as ® or ™ are not specified in this manual.
Specifications subject to change without notice.