Channel Isolated Digital-Analog Converter Module
User's Manual

-Q66DA-G
-GX Configurator-DA (SW2D5C-QDAU-E)
SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.

The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: " ⚠️ WARNING" and " ⚠️ CAUTION".

⚠️ WARNING
Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

⚠️ CAUTION
Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " ⚠️ CAUTION" may lead to serious consequences.

Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

⚠️ WARNING
- Do not write any data to the "system area" of the buffer memory in the intelligent function module.
- Also, do not use any "use prohibited" signals as an output signal from the programmable controller CPU to the intelligent function module.
- Doing so may cause malfunction of the programmable controller system.

⚠️ CAUTION
- Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100mm (3.9 inches) or more between them. Failure to do so may result in malfunction due to noise.
- At power-on, a voltage may occur or a current may flow between output terminals for a moment. In this case, start the control after analog outputs become stable.
[Installation Precautions]

Use the programmable controller in an environment that meets the general specifications in the user's manual for the CPU module used. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.

To mount the module, while pressing the module mounting lever located in the lower part of the module, fully insert the module fixing projection(s) into the hole(s) in the base until it snaps into place. Incorrect mounting may cause malfunction, failure or drop of the module. Fix the module to the base unit with a fixing bracket.

Tighten the screw within the specified torque range. Undertightening can cause drop of the screw, short circuit or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.

Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may result in damage to the product. A module can be replaced online (while power is on) on any MELSECNET/H remote I/O station or in the system where a CPU module supporting the online module change function is used. Note that there are restrictions on the modules that can be replaced online, and each module has its predetermined replacement procedure. For details, refer to the relevant chapter in this manual.

Do not directly touch any conductive parts and electronic components of the module. Doing so can cause malfunction or failure of the module.

[Wiring Precautions]

Individually ground the FG terminal of the programmable controller with a ground resistance of 100Ω or less. Failure to do so may result in electric shock or malfunction.

Tighten the terminal screw within the specified torque range. Undertightening can cause short circuit, fire, or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.

Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
[Wiring Precautions]

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A protective film is attached to the top of the module to prevent foreign matter, such as wire chips, from entering the module during wiring. Do not remove the film during wiring. Remove it for heat dissipation before system operation.</td>
</tr>
</tbody>
</table>

[Startup and Maintenance Precautions]

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do not touch any terminal while power is on.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doing so will cause electric shock or malfunction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the terminal screws, connector screws, or module fixing screws. Failure to do so may result in electric shock or cause the module to fail or malfunction. Undertightening can cause drop of the screw, short circuit or malfunction. Overtightening can damage the screw and/or module, resulting in drop, short circuit, or malfunction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not disassemble or modify the modules. Doing so may cause failure, malfunction, injury, or a fire.</td>
</tr>
<tr>
<td>Shut off the external power supply (all phases) used in the system before mounting or removing the module. Failure to do so may cause the module to fail or malfunction. A module can be replaced online (while power is on) on any MELSECNET/H remote I/O station or in the system where a CPU module supporting the online module change function is used. Note that there are restrictions on the modules that can be replaced online, and each module has its predetermined replacement procedure. For details, refer to the relevant chapter in this manual.</td>
</tr>
<tr>
<td>After the first use of the product, do not mount/remove the module to/from the base unit more than 50 times (IEC 61131-2 compliant). Exceeding the limit of 50 times may cause malfunction.</td>
</tr>
<tr>
<td>Before handling the module, touch a grounded metal object to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.</td>
</tr>
</tbody>
</table>
[Disposal Precautions]

⚠️ CAUTION

When disposing of this product, treat it as industrial waste.
●CONDITIONS OF USE FOR THE PRODUCT●

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
 i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major
 or serious accident; and
 ii) where the backup and fail-safe function are systematically or automatically provided outside of
 the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general
industries.

MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT
LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT,
WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR
LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR
USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS,
OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY
MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any
 other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of
 a special quality assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as
 Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation,
 Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or
 Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a
 significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the
PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT
is limited only for the specific applications agreed to by Mitsubishi and provided further that no
special quality assurance or fail-safe, redundant or other safety features which exceed the general
specifications of the PRODUCTS are required. For details, please contact the Mitsubishi
representative in your region.
<table>
<thead>
<tr>
<th>Print Date</th>
<th>*Manual Number</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan., 2007</td>
<td>SH (NA)-080648ENG-B</td>
<td>Correction Section 3.2.1, 4.6</td>
</tr>
<tr>
<td>Jan., 2008</td>
<td>SH (NA)-080648ENG-C</td>
<td>Correction SAFETY PRECAUTIONS, About the Generic Terms and Abbreviations, Section 1.1, 2.1, 2.3, 4.1, 4.6, 5.2.1, 5.2.2, 7.3.3, 7.3.5, 8.1, Appendix 1.1 to 1.3 Addition Section 2.2</td>
</tr>
<tr>
<td>May, 2008</td>
<td>SH (NA)-080648ENG-D</td>
<td>Correction SAFETY PRECAUTIONS, Compliance with the EMC and Low Voltage Directives, About the Generic Terms and Abbreviations, Section 2.1, 2.3, 4.1, 4.3, 5.1, 5.2.1, 5.2.2, 5.3.1, 5.3.3, Chapter 7, Section 7.1</td>
</tr>
<tr>
<td>Nov., 2010</td>
<td>SH (NA)-080648ENG-E</td>
<td>Correction SAFETY PRECAUTIONS, RELATED MANUALS, ABOUT THE GENERIC TERMS AND ABBREVIATIONS, PRODUCT STRUCTURE, Section 1.1, 2.1 to 2.3, 3.1.1, 3.1.2, 3.2, 3.2.1, 3.2.3, 3.2.5, 3.3.1, 3.3.2, 3.4.1, 3.4.3, 3.4.4, 3.4.6, 4.1, 4.3, 4.4.2, 4.5, 4.6, 5.1, 5.2.1, 5.2.2, 5.3.1, 5.3.3, 5.4, 5.5, 5.6.1, 5.6.2, 5.7, 6.2.3, 6.3, 6.3.1, 6.3.2, 7.1, 7.2, 7.3.1 to 7.3.6, 7.4, 7.5, 8.1, 8.2.4, 8.2.6, 8.2.7, Appendix 1.1 to 1.3 Addition CONDITIONS OF USE FOR THE PRODUCT, Appendix 2</td>
</tr>
<tr>
<td>Feb., 2012</td>
<td>SH (NA)-080648ENG-F</td>
<td>Correction SAFETY PRECAUTIONS, COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES, GENERIC TERMS AND ABBREVIATIONS, Section 3.1.1, 3.1.2, 3.2.2, 4.1, 4.3, 4.4.2, 5.2.2, 5.4, 5.5, 6.2.2, 6.2.3, 6.3, Chapter 7, Section 7.1, 7.3.4</td>
</tr>
<tr>
<td>Dec., 2012</td>
<td>SH (NA)-080648ENG-G</td>
<td>Correction MANUALS, COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES, Section 2.1, 2.2, 3.2.2, 3.2.4, 3.3.2, 3.4.2, 4.2, 4.3, 4.4.2, 4.5, 4.6, 5.2, 5.2.1, 5.2.2, 6.2.1, 8.1, 8.2.1, 8.2.4, 8.2.7, Appendix 1.1 to Appendix 1.3</td>
</tr>
<tr>
<td>May, 2015</td>
<td>SH (NA)-080648ENG-H</td>
<td>Correction GENERIC TERMS AND ABBREVIATIONS, Section 2.1, 2.3, 4.3, 4.6, Appendix 3</td>
</tr>
</tbody>
</table>
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2006 MITSUBISHI ELECTRIC CORPORATION
INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC-Q series programmable controllers. Before using the equipment, please read this manual carefully to develop full familiarity with the functions and performance of the Q series programmable controller you have purchased, so as to ensure correct use. Please forward a copy of this manual to the end user.

CONTENTS

SAFETY PRECAUTIONS...A - 1
CONDITIONS OF USE FOR THE PRODUCT ...A - 5
REVISIONS..A - 6
INTRODUCTION...A - 8
CONTENTS ..A - 8
MANUALS ..A - 12
RELEVANT MANUALS ..A - 12
COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES ..A - 12
GENERIC TERMS AND ABBREVIATIONS ...A - 13
PACKING LIST ..A - 13

1 OVERVIEW 1 - 1 to 1 - 2

1.1 Features ...1 - 1

2 SYSTEM CONFIGURATION 2 - 1 to 2 - 6

2.1 Applicable Systems ..2 - 1
2.2 Precautions on System Configuration ..2 - 3
2.3 Checking Function Version, Serial Number and Software Version ..2 - 4

3 SPECIFICATIONS 3 - 1 to 3 - 36

3.1 Performance Specifications ..3 - 1
3.1.1 Performance specifications list ..3 - 1
3.1.2 I/O conversion characteristics ...3 - 2
3.1.3 Accuracy ...3 - 7
3.1.4 Conversion speed ..3 - 7
3.2 Function List ..3 - 8
3.2.1 Analog output HOLD/CLEAR function ...3 - 9
3.2.2 Analog output test during programmable controller CPU STOP ..3 - 11
3.2.3 Warning output function ..3 - 12
3.2.4 Rate control function ...3 - 14
3.2.5 Scaling function ..3 - 16
3.3 I/O Signals for the Programmable Controller CPU ..3 - 19
3.3.1 List of I/O signals ...3 - 19
3.3.2 Details of I/O signals ...3 - 20
5 UTILITY PACKAGE (GX Configurator-DA) 5 - 1 to 5 - 34

5.1 Utility Package Functions ... 5 - 1
5.2 Installing and Uninstalling the Utility Package 5 - 2
5.2.1 Handling precautions ... 5 - 2
5.2.2 Operating environment ... 5 - 4
5.3 Utility Package Operation ... 5 - 6
5.3.1 Common utility package operations ... 5 - 6
5.3.2 Operation overview ... 5 - 6
5.3.3 Starting the Intelligent function module utility 5 - 9
5.4 Initial Setting ... 5 - 11
5.5 Auto Refresh Setting ... 5 - 15
5.6 Monitoring/Test .. 5 - 17
5.6.1 Monitor/test screen ... 5 - 20

4 SETUP AND PROCEDURES BEFORE OPERATION 4 - 1 to 4 - 17

4.1 Handling Precautions ... 4 - 1
4.2 Setup and Procedures Before Operation ... 4 - 3
4.3 Part Names .. 4 - 4
4.4 Wiring .. 4 - 6
4.4.1 Wiring precautions .. 4 - 6
4.4.2 External wiring .. 4 - 7
4.4.3 Connector/terminal block converter module 4 - 8
4.5 Intelligent Function Module Switch Setting 4 - 9
4.6 Offset/Gain Settings .. 4 - 12

3.4 Buffer Memory .. 3 - 25
3.4.1 Buffer memory assignment .. 3 - 25
3.4.2 D/A conversion enable/disable setting (Un\G0) 3 - 28
3.4.3 CH[]Digital value (Un\G1 to Un\G6) ... 3 - 28
3.4.4 CH[]Set value check code (Un\G11 to Un\G16) 3 - 29
3.4.5 Error code (Un\G19) .. 3 - 29
3.4.6 Setting range (Un\G20, Un\G21) ... 3 - 30
3.4.7 Offset/gain setting mode Offset/gain specification (Un\G22, Un\G23) .. 3 - 31
3.4.8 Offset/gain adjustment value specification (Un\G24) 3 - 31
3.4.9 Offset/gain range setting (Un\G25) .. 3 - 32
3.4.10 Rate control enable/disable setting (Un\G46) .. 3 - 32
3.4.11 Warning output setting (Un\G47) ... 3 - 32
3.4.12 Warning output flag (Un\G48) .. 3 - 33
3.4.13 CH[]Scaling enable/disable setting (Un\G53) 3 - 33
3.4.14 CH[]Scaling upper/lower limit value (Un\G54 to Un\G65) 3 - 34
3.4.15 CH[]Increase/decrease digital limit value (Un\G70 to Un\G81) .. 3 - 34
3.4.16 CH[]Warning output upper/lower limit value (Un\G86 to Un\G97) .. 3 - 34
3.4.17 Mode switching setting (Un\G158, Un\G159) 3 - 35
3.4.18 Pass data classification setting (Un\G200) 3 - 35
3.4.19 Industrial shipment settings and user range settings offset/gain values (Un\G202 to Un\G225) .. 3 - 36

3.4.2 D/A conversion enable/disable setting (Un\G0) 3 - 28
3.4.3 CH[]Digital value (Un\G1 to Un\G6) ... 3 - 28
3.4.4 CH[]Set value check code (Un\G11 to Un\G16) 3 - 29
3.4.5 Error code (Un\G19) .. 3 - 29
3.4.6 Setting range (Un\G20, Un\G21) ... 3 - 30
3.4.7 Offset/gain setting mode Offset/gain specification (Un\G22, Un\G23) .. 3 - 31
3.4.8 Offset/gain adjustment value specification (Un\G24) 3 - 31
3.4.9 Offset/gain range setting (Un\G25) .. 3 - 32
3.4.10 Rate control enable/disable setting (Un\G46) .. 3 - 32
3.4.11 Warning output setting (Un\G47) ... 3 - 32
3.4.12 Warning output flag (Un\G48) .. 3 - 33
3.4.13 CH[]Scaling enable/disable setting (Un\G53) 3 - 33
3.4.14 CH[]Scaling upper/lower limit value (Un\G54 to Un\G65) 3 - 34
3.4.15 CH[]Increase/decrease digital limit value (Un\G70 to Un\G81) .. 3 - 34
3.4.16 CH[]Warning output upper/lower limit value (Un\G86 to Un\G97) .. 3 - 34
3.4.17 Mode switching setting (Un\G158, Un\G159) 3 - 35
3.4.18 Pass data classification setting (Un\G200) 3 - 35
3.4.19 Industrial shipment settings and user range settings offset/gain values (Un\G202 to Un\G225) .. 3 - 36
5.6.2 Offset/gain setting operation ... 5 - 23
5.6.3 Confirmation of Conversion Characteristic ... 5 - 25
5.6.4 Pass data ... 5 - 27
5.7 FB Conversion of Initial Setting/Auto Refresh Setting .. 5 - 29
5.8 Usage of FB ... 5 - 31
5.8.1 Outline .. 5 - 31
5.8.2 Paste an FB to a Sequence Program .. 5 - 33
5.8.3 Convert (Compile) a Sequence Program .. 5 - 34

6 PROGRAMMING 6 - 1 to 6 - 18
6.1 Programming Procedure ... 6 - 1
6.2 For Use in Normal System Configuration .. 6 - 2
6.2.1 Before creating a program ... 6 - 3
6.2.2 Program example using the utility package .. 6 - 5
6.2.3 Programming example without using the utility package .. 6 - 8
6.3 For Use on Remote I/O Network .. 6 - 10
6.3.1 Program example using the utility package .. 6 - 12
6.3.2 Program example without using the utility package .. 6 - 15

7 ONLINE MODULE CHANGE 7 - 1 to 7 - 38
7.1 Online Module Change Conditions .. 7 - 2
7.2 Online Module Change Operations ... 7 - 3
7.3 Online Module Change Procedure ... 7 - 4
7.3.1 When industrial shipment setting is used and initial setting was made with GX Configurator-DA .. 7 - 4
7.3.2 When industrial shipment setting is used and initial setting was made with sequence program .. 7 - 9
7.3.3 When user range setting is used and initial setting was made with GX Configurator-DA (other system is available) .. 7 - 15
7.3.4 When user range setting is used and initial setting was made with GX Configurator-DA (other system is unavailable) .. 7 - 20
7.3.5 When user range setting is used and initial setting was made with sequence program (other system is available) ... 7 - 26
7.3.6 When user range setting is used and initial setting was made with sequence program (other system is unavailable) ... 7 - 31
7.4 Range Reference Table ... 7 - 37
7.5 Precautions for Online Module Change ... 7 - 38

8 TROUBLESHOOTING 8 - 1 to 8 - 7
8.1 Error Code List .. 8 - 1
8.2 Troubleshooting .. 8 - 3
8.2.1 When the "RUN" LED is flashing or turned off .. 8 - 3
8.2.2 When the "ERR." LED is on or flashing .. 8 - 3
8.2.3 When the "ALM" LED is turned on ... 8 - 3
8.2.4 When an analog output value is not output .. 8 - 4
8.2.5 When the analog value is not within the reference accuracy of the theoretical value 8 - 5
8.2.6 When analog output value is not “HOLD” ... 8 - 5
8.2.7 When External power supply READY (X7) does not turn on 8 - 5
8.2.8 Checking the Q66DA-G status using GX Developer system monitor 8 - 6

APPENDICES App- 1 to App - 11

Appendix 1 Dedicated Instruction List and Available Devices ... App- 1
Appendix 1.1 G(P).OFFGAN ... App- 2
Appendix 1.2 G(P).OLOAD ... App- 4
Appendix 1.3 G(P).OGSTOR ... App- 7
Appendix 2 Functions Added or Changed Due to Version Upgrade App- 10
Appendix 3 External Dimensions ... App- 11

INDEX Index - 1 to Index - 2
The manuals related to this product are listed below. Please place an order as needed.

RELEVANT MANUALS

<table>
<thead>
<tr>
<th>Manual name</th>
<th>Manual number (model code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX Developer Version 8 Operating Manual</td>
<td>SH-080373E (13JU41)</td>
</tr>
<tr>
<td>Operating methods of GX Developer, such as programming, printing, monitoring, and debugging (Sold separately)</td>
<td></td>
</tr>
<tr>
<td>GX Developer Version 8 Operating Manual (Function Block)</td>
<td>SH-080376E (13JU44)</td>
</tr>
<tr>
<td>Operating methods of GX Developer, such as creating and printing function blocks (Sold separately)</td>
<td></td>
</tr>
<tr>
<td>GX Works2 Version 1 Operating Manual (Common)</td>
<td>SH-080779ENG (13JU63)</td>
</tr>
<tr>
<td>System configuration, parameter settings, and online operations (common to Simple project and Structured project) of GX Works2 (Sold separately)</td>
<td></td>
</tr>
<tr>
<td>GX Works2 Version 1 Operating Manual (Intelligent Function Module)</td>
<td>SH-080921ENG (13JU69)</td>
</tr>
<tr>
<td>Explains methods of intelligent function module for such as parameter setting, monitoring programs, and predefined protocol support function in GX Works2. (Sold separately)</td>
<td></td>
</tr>
</tbody>
</table>

Remark

Printed manuals are available separately. Please place an order with the manual number (model code) in the table above.

COMPLIANCE WITH EMC AND LOW VOLTAGE DIRECTIVES

1. **Method of ensuring compliance**

 To ensure that Mitsubishi Electric programmable controllers maintain EMC and Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to one of the following manuals.
 - QCPU User’s Manual (Hardware Design, Maintenance and Inspection)
 - Safety Guidelines
 (This manual is included with the CPU module or base unit.)

 The CE mark on the side of the programmable controller indicates compliance with EMC and Low Voltage Directives.

2. **Additional measures**

 No additional measures are necessary for the compliance of this product with EMC and Low Voltage Directives.
GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

<table>
<thead>
<tr>
<th>General term/Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS/V personal computer</td>
<td>An IBM PC/AT® or compatible computer with DOS/V</td>
</tr>
<tr>
<td>GX Developer</td>
<td>The product name of the software package for the MELSEC programmable controllers</td>
</tr>
<tr>
<td>GX Works2</td>
<td>The abbreviation for the digital-analog converter module setting and monitor tool GX Configurator-DA (SW2D5C-QDAU-E)</td>
</tr>
<tr>
<td>QCPU (Q mode)</td>
<td>A generic term for Basic model QCPU, High Performance model QCPU, Process CPU, Redundant CPU, and Universal model QCPU</td>
</tr>
<tr>
<td>Basic model QCPU</td>
<td>A generic term for the Q00JCPU, Q00CPU, and Q01CPU</td>
</tr>
<tr>
<td>High Performance model QCPU</td>
<td>A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, and Q25HCPU</td>
</tr>
<tr>
<td>Process CPU</td>
<td>A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU</td>
</tr>
<tr>
<td>Redundant CPU</td>
<td>A generic term for the Q12PRHCPU and Q25PRHCPU</td>
</tr>
<tr>
<td>Universal model QCPU</td>
<td>A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPUI, Q04UDVCPUI, Q04UDEHCPUI, Q06UDHCPUI, Q06UDVCPUI, Q06UDEHCPUI, Q10UDHCPUI, Q10UDEHCPUI, Q13UDHCPUI, Q13UDVCPUI, Q13UDEHCPUI, Q20UDHCPUI, Q20UDEHCPUI, Q26UDHCPUI, Q26UDVCPUI, Q26UDEHCPUI, Q50UDEHCPUI, and Q100UDEHCPUI</td>
</tr>
<tr>
<td>Personal computer</td>
<td>A generic term for DOS/V personal computers</td>
</tr>
<tr>
<td>Industrial shipment setting</td>
<td>A generic term for analog output ranges 0 to 5V, 1 to 5V, -10 to 10V, 0 to 20mA, and 4 to 20mA</td>
</tr>
<tr>
<td>FB</td>
<td>The abbreviation for function block</td>
</tr>
</tbody>
</table>

PACKING LIST

The product package contains the following.

<table>
<thead>
<tr>
<th>Model</th>
<th>Product</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q66DA-G</td>
<td>Q66DA-G Channel Isolated Digital-Analog Converter module</td>
<td>1</td>
</tr>
<tr>
<td>SW2D5C-QDAU-E</td>
<td>GX Configurator-DA Version 2 (single license product) (CD-ROM)</td>
<td>1</td>
</tr>
<tr>
<td>SW2D5C-QDAU-EA</td>
<td>GX Configurator-DA Version 2 (volume license product) (CD-ROM)</td>
<td>1</td>
</tr>
</tbody>
</table>
This User's Manual describes the specifications, handling and programming methods for the Q66DA-G type channel isolated digital-analog converter module (hereinafter referred to as the Q66DA-G) that is used in combination with a MELSEC-Q series CPU module (hereinafter referred to as the programmable controller CPU).

1.1 Features

1) Multi-channel analog input is available.
 By using a single Q66DA-G, analog voltage or current outputs of 6 points (6 channels) are available.

2) Channel isolated
 The channels are isolated from each other and from the external supply power.

3) High accuracy
 The reference accuracy*1 is as high as +0.1% and the temperature coefficient*2 is as high as -80ppm/°C.
 *1: Accuracy attained at the ambient temperature when offset/gain setting has been made
 *2: Accuracy per temperature change of 1°C
 Example) Accuracy when the ambient temperature changed from 25°C to 30°C
 0.1% (reference accuracy) + 0.008%/°C (temperature coefficient) × 5°C
 (temperature difference) = 0.14%

4) Output range switching
 The output range*1 switching can be set easily from GX Developer.
 *1: The output range indicates the offset/gain setting type. While the generally used output ranges are available as defaults, the user can set offset/gain values. (Refer to Section 4.5.)

5) Analog output HOLD/CLEAR function
 This function is used to set whether to hold or clear the analog output value when the CPU module is stopped or when a stop error occurs. (Refer to Section 3.2.1.)

6) Changing the resolution mode
 The resolution mode can be changed according to the application, and digital value resolution settings of 1/4000, 1/12000 or 1/16000 can be selected. (Refer to Section 4.5)
(7) **Warning output function**
A warning is output if a digital input value falls outside the setting range. (Refer to Section 3.2.4.)

(8) **Rate control function**
The increase and decrease in analog output values per 6ms*1 can be limited, preventing rapid change of the values. (Refer to Section 3.2.4.)
*1 6ms is the conversion cycle per channel.

(9) **Scaling function**
The digital input value range can be changed to any given range between –32000 and 32000, and digital values within the range are converted to analog values. (Refer to Section 3.2.5.)

(10) **Online module change**
The module can be changed without the system being stopped. Further, the existing specifications can be applied to the new system by using sequence programs and performing the following:
- Succession of offset/gain settings to the new Q66DA-G
- Transfer of offset/gain setting values to the other Q66DA-Gs mounted on the other slots

(11) **Offset/gain setting**
GX Configurator-DA, dedicated instruction (G(P). OFFGAN) or Mode switching setting allows a shift to the offset/gain setting mode easily. (Refer to Section 4.6.)

(12) **Easy setting with GX Configurator-DA**
The number of sequence programs can be reduced since GX Configurator-DA (sold separately) allows the Q66DA-G settings on the dialog box. Also, GX Configurator-DA simplifies checking of the module settings and operation status.

In addition, FB*1 can be automatically created from intelligent function module parameters set in advance to use them for in a sequence program. (Refer to Chapter 5.)

*1 FB stands for function block, which is a function for setting repeatedly-used circuit blocks as a component and using it in the sequence program. This function can increase the efficiency of program development and minimize program bugs to improve program qualities. For the details of FB, refer to "GX Developer Version 8 Operating Manual (Function Block)".
This chapter explains the system configuration of the Q66DA-G.

2.1 Applicable Systems

This section describes the applicable systems.

(1) Applicable modules and base units, and No. of modules

(a) When mounted with a CPU module

For the applicable modules, the number of modules, and base units applicable to
the Q66DA-G, refer to the user’s manual for the CPU module used.

Note the following when the Q66DA-G is mounted with a CPU module.
- Depending on the combination with other modules or the number of mounted
 modules, power supply capacity may be insufficient. Pay attention to the
 power supply capacity before mounting modules, and if the power supply
 capacity is insufficient, change the combination of modules.
- Mount a module within the number of I/O points for the CPU module. If the
 number of slots is within the available range, the module can be mounted on
 any slot.

Remark

When the module is used with a C Controller module, refer to the user’s manual
for the C Controller module.

(b) Mounting to a MELSECNET/H remote I/O station

For the MELSECNET/H remote I/O station, the number of modules, and base
units applicable to the Q66DA-G, refer to the Q Corresponding MELSECNET/H

(2) Support of the multiple CPU system

When using the Q66DA-G in a multiple CPU system, refer to the following manual
first.
- QCPU User’s Manual (Multiple CPU System)

(3) Support of online module change

The function version of the Q66DA-G has been "C" from the first release, supporting
online module change.
For procedures of the online module change, refer to Chapter7.
(4) Supported software packages

Relation between the system containing the Q66DA-G and software package is shown in the following table.

GX Developer or GX Works2 are necessary when using the Q66DA-G.

<table>
<thead>
<tr>
<th>CPU Modules</th>
<th>Software Version</th>
<th>GX Developer</th>
<th>GX Configurator-DA</th>
<th>GX Works2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q00J/Q01CPU</td>
<td></td>
<td>Version 7 or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q02/Q06H/Q12H/Q25H CPU</td>
<td>Single CPU system</td>
<td>Version 4 or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q02PH/Q06PH CPU</td>
<td>Single CPU system</td>
<td>Version 8.68W or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12PH/Q25PH CPU</td>
<td>Single CPU system</td>
<td>Version 7.10L or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12PRH/Q25PRH CPU</td>
<td>Redundant CPU system</td>
<td>Version 8.45X or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q00UJ/Q00U/Q01UCPU</td>
<td>Single CPU system</td>
<td>Version 8.78G or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q02U/Q3UDH/Q4UDH/Q6UDH CPU</td>
<td>Single CPU system</td>
<td>Version 8.48A or later</td>
<td></td>
<td>Version 2.06G or later</td>
</tr>
<tr>
<td>Q10UDH/Q20UDH CPU</td>
<td>Single CPU system</td>
<td>Version 8.78G or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13UDH/Q26UDH CPU</td>
<td>Single CPU system</td>
<td>Version 8.62Q or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q03UDE/Q04UDEH/Q06UDEH/Q13UDEH/Q26UDEH CPU</td>
<td>Single CPU system</td>
<td>Version 8.68W or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10UDEH/Q20UDEH CPU</td>
<td>Single CPU system</td>
<td>Version 8.78G or later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU modules other than the above</td>
<td>Single CPU system</td>
<td>Not supported</td>
<td></td>
<td>Not supported</td>
</tr>
<tr>
<td>If installed in a MELSECNET/H remote I/O station</td>
<td>Single CPU system</td>
<td>Version 6 or later</td>
<td>Version 2.06G or later</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the GX Works2 Version 1 Operating Manual (Common).
2.2 Precautions on System Configuration

(1) Using Q66DA-G with Redundant CPU

(a) Dedicated instructions
 Dedicated instructions cannot be used.

(b) GX Configurator-DA
 GX Configurator-DA cannot be used when accessing the Redundant CPU via an intelligent function module on an extension base unit from GX Developer. Connect a personal computer to the Redundant CPU with a communication path indicated below.
2.3 Checking Function Version, Serial Number and Software Version

(1) Checking the function version and serial number of the Q66DA-G
The serial number and function version of the Q66DA-G are described in the rating plate, on the front part of the module, or displayed in the system monitor dialog box of GX Developer.

(a) Checking on the rating plate located on the side of the Q66DA-G

(b) Checking on the front of the module
The serial number and function version on the rating plate is shown on the front (at the bottom) of the module.
2.3 Checking Function Version, Serial Number and Software Version

(c) Checking on the System monitor dialog box (Product Information List)

To display the system monitor, select [Diagnostics] → [System monitor] and click the Product Information List button of GX Developer.

1) Displaying the product No.

Since the Q66DA-G does not support the display function, ",-" is displayed in the "Product No." field.

Point

The serial number displayed in the Product Information List dialog box of GX Developer may differ from that on the rating plate and on the front of the module.

- The serial number on the rating plate and front part of the module indicates the management information of the product.
- The serial number displayed in the Product Information List dialog box of GX Developer indicates the function information of the product.

The function information of the product is updated when a new function is added.
(2) Checking the software version of GX Configurator-DA
The software version of GX Configurator-DA can be checked by selecting [Help]-
[Product information] in GX Developer.

![Product Information Dialog Box](image.png)

Software version

(In the case of GX Developer Version 8)
3.1 Performance Specifications

3.1.1 Performance specifications list

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog outputs</td>
<td>6 points (6 channels)</td>
</tr>
<tr>
<td>Digital input</td>
<td>16-bit signed binary (normal resolution mode: -4096 to 4095, high resolution mode: -12288 to 12287, -16384 to 16383)</td>
</tr>
<tr>
<td>Using scaling function</td>
<td>16-bit signed binary (-32768 to 32767)</td>
</tr>
<tr>
<td>Analog output</td>
<td>Voltage: -12 to 12VDC (External load resistance: 1k to 1MΩ)</td>
</tr>
<tr>
<td></td>
<td>Current: 0 to 20mADC (External load resistance: Please refer to *3)</td>
</tr>
<tr>
<td></td>
<td>0 to 22mADC (External load resistance: Please refer to *3)</td>
</tr>
</tbody>
</table>

Table 3.1 Performance specifications list

<table>
<thead>
<tr>
<th>Analog output range</th>
<th>Normal resolution mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Digital input value</td>
<td>Maximum resolution</td>
</tr>
<tr>
<td>0 to 5V</td>
<td>0 to 4000</td>
<td>1.25mV</td>
</tr>
<tr>
<td>1 to 5V</td>
<td>1.0mV</td>
<td>0.333mV</td>
</tr>
<tr>
<td>-10 to 10V</td>
<td>-4000 to 4000</td>
<td>2.5mV</td>
</tr>
<tr>
<td>1 to 5V (Extended mode)</td>
<td>-1000 to 4500</td>
<td>1.0mV</td>
</tr>
<tr>
<td>User range setting 2</td>
<td>-4000 to 4000</td>
<td>0.75mV</td>
</tr>
<tr>
<td>User range setting 3</td>
<td>0.375mV</td>
<td>0.210mV</td>
</tr>
<tr>
<td>Current</td>
<td>Digital input value</td>
<td>Maximum resolution</td>
</tr>
<tr>
<td>0 to 20mA</td>
<td>0 to 4000</td>
<td>5μA</td>
</tr>
<tr>
<td>4 to 20mA</td>
<td>4μA</td>
<td>1.33μA</td>
</tr>
<tr>
<td>4 to 20mA (Extended mode)</td>
<td>-1000 to 4500</td>
<td>4μA</td>
</tr>
<tr>
<td>User range setting 1</td>
<td>-4000 to 4000</td>
<td>1.5μA</td>
</tr>
<tr>
<td>Accuracy (Accuracy relative to maximum analog output value)</td>
<td>Reference accuracy *1: ± 0.1% (Voltage: ±10mV, Current: ±20μA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature coefficient *2: ±80ppm/ °C (0.008%/ °C)</td>
<td></td>
</tr>
<tr>
<td>Conversion speed</td>
<td>6ms/ channels</td>
<td></td>
</tr>
<tr>
<td>Absolute maximum</td>
<td>Voltage: ±13V</td>
<td></td>
</tr>
<tr>
<td>output</td>
<td>Current: 23mA</td>
<td></td>
</tr>
<tr>
<td>Maximum number of writes to flash memory</td>
<td>Up to 50,000 times</td>
<td></td>
</tr>
<tr>
<td>Output short-circuit protection</td>
<td>Available</td>
<td></td>
</tr>
</tbody>
</table>

Isolation specifications

<table>
<thead>
<tr>
<th>Specific isolated area</th>
<th>Isolation method</th>
<th>Dielectric withstand Voltage</th>
<th>Insulation resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between the output terminal and programmable controller power supply</td>
<td>Transformer isolation</td>
<td>500VAC rms, 1min</td>
<td>500VDC</td>
</tr>
<tr>
<td>Between analog output channels</td>
<td>Transformer isolation</td>
<td>1000VAC rms, 1min</td>
<td>10MΩ or more</td>
</tr>
<tr>
<td>Between external supply power and analog output channel</td>
<td>Transformer isolation</td>
<td>500VAC rms, 1min</td>
<td></td>
</tr>
</tbody>
</table>

Number of I/O occupied points	16 points (I/O assignment: Intelligent 16 points)
External wiring connection system	40-pin connector
Applicable wire size	0.3mm² (22 AWG) or less (for A6CON1, A6CON4)
	0.088mm² to 0.24mm² (28 to 24 AWG) (for A6CON2)
Connectors for external devices	A6CON1, A6CON2, A6CON4 (Sold separately)
Table 3.1 Performance specifications list

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>External supply power</td>
<td>24VDC, +20%, -15%</td>
</tr>
<tr>
<td></td>
<td>Ripple, spike within 500 mV-P</td>
</tr>
<tr>
<td></td>
<td>Inrush current: 4.8A, within 400μs</td>
</tr>
<tr>
<td>Internal current consumption</td>
<td>0.22A</td>
</tr>
<tr>
<td>(5 VDC)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.22kg</td>
</tr>
</tbody>
</table>

*1 Accuracy of offset/gain setting at ambient temperature
 The Q66DA-G needs to be powered on 30 minutes prior to operation for compliance to the specification (accuracy).
*2 Accuracy per temperature change of 1 °C
 Example: Accuracy when temperature changes from 25 to 30 °C
 0.1% (Reference accuracy) + 0.008%/ °C (temperature coefficient) × 5 °C (temperature change difference) = 0.14%
*3 The following indicates the external load resistance when output current is 20mA or more.

\[
\begin{array}{c}
\text{Output current} \\
22\text{mA} \\
20\text{mA} \\
500\Omega \\
600\Omega \\
\end{array}
\]

External load resistance

*4 For the details of the I/O conversion characteristic, refer to Section 3.2.1.
*5 GX Configurator-DA is not available with extended mode range settings.

Remark
Refer to the user’s manual for the CPU module being used for the general specifications for the Q66DA-G.

3.1.2 I/O conversion characteristics

I/O conversion characteristics are used for converting the digital value written from the programmable controller CPU to an analog output value (voltage or current output), and represented by inclined straight lines when offset and gain values are included.

Offset value
The offset value is an analog output value (voltage or current) when a digital input value set from the programmable controller CPU is 0.

Gain value
The gain value is an analog output value (voltage or current) when a digital input value set from the programmable controller CPU is 4000 (in normal resolution mode),
12000 (when 1 to 5V, 0 to 5V, 4 to 20 mA, 0 to 20 mA or the user range setting 1 to 3 is selected in high resolution mode), or
16000 (when -10 to 10V is selected in high resolution mode).
3 SPECIFICATIONS

3.1 Performance Specifications

3.1.2 I/O conversion characteristics

(1) Voltage output characteristic

Fig 3.1 shows a graph of the voltage output characteristic.

1) 1 to 5V

2) 0 to 5V

3) -10 to 10V

4) 1 to 5V (Expanded mode)

Fig 3.1 Voltage output characteristic (1/2)
(1) Use the module within the digital input range and analog output range for each output range setting. If these ranges are exceeded, the maximum resolution and accuracy may not fall within the performance specifications. (Avoid using the dotted line area shown in Fig3.1.)

(2) In user range setting 3, the maximum and minimum output values are 6V and -6V respectively. Obtain these values as follows using the gain and offset values.

Maximum analog output value = Gain value
Minimum analog output value = (Offset value - (Gain value - Offset value))
If a maximum or minimum value exceeds the output range, use user range setting 2.

(3) Set the offset/gain values for the user range setting 2 within a range in which the following conditions are satisfied.

(a) Setting range is from -12 to 12 V.
(b) \(\{ (\text{Gain value}) - (\text{Offset value}) \} > \text{Value of A} \)

<table>
<thead>
<tr>
<th>Normal resolution mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0V</td>
<td>5.0V</td>
</tr>
</tbody>
</table>

(4) Set the offset/gain values for the user range setting 3 within a range in which the following conditions are satisfied.

(a) Setting range is from -0.5 to 6 V.
(b) \(\{ (\text{Gain value}) - (\text{Offset value}) \} > \text{Value of A} \)

<table>
<thead>
<tr>
<th>Normal resolution mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5V</td>
<td>2.6V</td>
</tr>
</tbody>
</table>
3 SPECIFICATIONS

3.1 Performance Specifications

3.1.2 I/O conversion characteristics

(2) Current output characteristic

Fig 3.2 shows a graph of the current output characteristic.

1) 4 to 20mA

2) 0 to 20mA

3) 4 to 20mA (Expanded mode)
Point

(1) Use the module within the digital input range and analog output range for each output range setting.
If these ranges are exceeded, the maximum resolution and accuracy may not fall within the performance specifications. (Avoid using the dotted line area shown in Fig3.2.)

(2) Set the offset/gain values for the user range setting 1 within a range in which the following conditions are satisfied.
(a) Setting range is from 0 to 22 mA
(b) \((\text{Gain value}) - (\text{Offset value}) \) > A

<table>
<thead>
<tr>
<th>Normal resolution mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0mA</td>
<td>11.5mA</td>
</tr>
</tbody>
</table>
3.1.3 Accuracy

The reference accuracy is the accuracy at the ambient temperature for offset/gain setting.
The temperature coefficient is the accuracy per temperature variation of 1°C.
The reference accuracy is the accuracy relative to the maximum value of the analog output value.
Even if the offset/gain setting or analog output range is changed to change the output characteristic, the reference accuracy and temperature coefficient do not vary and are kept within the ranges given in the performance specifications.

Example) Accuracy when the temperature varies from 25°C to 30°C
0.1% (reference accuracy) + 0.008%/°C (temperature coefficient) × 5°C
(difference in temperature variation) = 0.14%

3.1.4 Conversion speed

The conversion speed for the Q66DA-G is "6ms × the number of conversion enabled channels".
By setting the unused channels to D/A conversion disabled (Refer to Section 3.4.2), the conversion speed can be increased.
3.2 Function List

Table 3.2 shows the functions of the Q66DA-G.

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Reference section</th>
</tr>
</thead>
</table>
| D/A conversion enable/disable function | • Specifies whether to enable or disable the D/A conversion for each channel.
• Disabling D/A conversion of unused channels can increase the conversion speed. | Section 3.4.2 |
| D/A output enable/disable function | • Specifies whether to output the D/A converted value or output the offset value for each channel.
• Regardless of the output enable/disable setting, the conversion speed is “6ms x number of conversion-enabled channels”. | Section 3.3.1 |
| Analog output HOLD/CLEAR function | • The output analog value can be retained when the programmable controller CPU is placed in the STOP status or when an error occurs. | Section 3.2.1 |
| Analog output test during programmable controller CPU STOP | • When CH□ Output enable/disable flag (Y1 to Y6) is forced on during programmable controller CPU STOP, the D/A converted analog value is output. | Section 3.2.2 |
| Warning output function | • A warning is output if a digital input value falls outside the setting range. | Section 3.2.3 |
| Rate control function | • The increase and decrease in analog output values per conversion cycle of one station (6ms) can be limited.
• Using this function prevents rapid change of analog output values. | Section 3.2.4 |
| Resolution mode | • The resolution mode can be changed according to the application, and a resolution setting can be selected from 1/4000, 1/12000 and 1/16000.
• The resolution mode setting is applicable to all channels in block.
• Refer to Section 3.1.1 for the digital input values and maximum resolution in normal resolution mode and high resolution mode. | Section 3.1.1, Section 4.5 |
| Scaling function | • The input range of digital values can be changed to any given range between -32000 and 32000. | Section 3.2.5 |
| Online module change | • The module can be changed without the system being stopped.
However, if a module in the analog output range extended mode is replaced with a module that does not support the mode, an intelligent function module switch error occurs. | Chapter 7 |
3.2.1 Analog output HOLD/CLEAR function

1. For the case where the programmable controller CPU is placed in STOP or in a stop error status, whether to hold (HOLD) or clear (CLEAR) the analog output value can be set.

2. Set HOLD or CLEAR in "Switch 3" (HOLD/CLEAR function setting) of Switch setting for I/O and intelligent function module dialog box. (Refer to Section 4.5 (1).)

3. Depending on combinations of the HOLD/CLEAR setting, D/A conversion enable/disable setting (Un\G0), and CH\ Output enable/disable flag (Y1 to Y6), the analog output status varies as shown in Table 3.3.

<table>
<thead>
<tr>
<th>Execution status</th>
<th>Setting combination</th>
<th>D/A conversion enable/disable setting (Un\G0)</th>
<th>Enable</th>
<th>Disable</th>
<th>Enable or disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output status when programmable controller CPU is RUN</td>
<td>HOLD/CLEAR setting</td>
<td>Outputs analog values converted from digital values.*2</td>
<td>Offset</td>
<td>0 V/0 mA</td>
<td></td>
</tr>
<tr>
<td>Analog output status when programmable controller CPU is STOP</td>
<td>Hold</td>
<td>Offset</td>
<td>Offset</td>
<td>0 V/0 mA</td>
<td></td>
</tr>
<tr>
<td>Analog output status when a programmable controller CPU stop error occurs</td>
<td>Hold</td>
<td>Offset</td>
<td>Offset</td>
<td>0 V/0 mA</td>
<td></td>
</tr>
<tr>
<td>Analog output status when a watchdog timer error*1 occurs in Q66DA-G</td>
<td>0 V/0 mA</td>
<td>0 V/0 mA</td>
<td>0 V/0 mA</td>
<td>0 V/0 mA</td>
<td></td>
</tr>
</tbody>
</table>

*1 This occurs when program operations are not completed within the scheduled time due to a hardware problem of the Q66DA-G. When a watchdog timer error occurs, Module READY (X0) turns off and the Q66DA-G RUN LED turns off.

*2 The rate control function and the scaling function are operable.
The following conditions should be satisfied when the analog output HOLD/CLEAR function is used on a MELSECNET/H remote I/O station.

- The master module of function version D or later and the remote I/O module of function version D or later are required.
- Validate the station unit block guarantee of the send side cyclic data.
- The setting for holding the Q66DA-G output in the case of a link error must be made in the "Error time output mode in the I/O assignment setting". (Refer to Section 4.5 (2).) The HOLD/CLEAR setting by the intelligent function module switch is invalid. This setting is validated on a per-module basis, and is not made on a per-channel basis. Therefore, to make the output status at a stop error or STOP of the programmable controller CPU matched with the output status at a link error, set the same HOLD/CLEAR setting to all channels. (Refer to the table below.)

<table>
<thead>
<tr>
<th>Error time output mode</th>
<th>HOLD/CLEAR setting (Same setting to all channels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold analog output</td>
<td>Hold</td>
</tr>
<tr>
<td>Clear analog output</td>
<td>Clear</td>
</tr>
<tr>
<td>(Output offset value)</td>
<td>CLEAR</td>
</tr>
</tbody>
</table>

For the station unit block guarantee of the cyclic data, refer to the Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
3.2.2 Analog output test during programmable controller CPU STOP

(1) While the programmable controller CPU is in STOP, an analog output test as shown in Table 3.4 can be performed.

(2) To conduct an analog output test, perform the following on Device test of GX Developer or on the relevant test screens of Configurator-DA (Refer to Section 5.6.1.).

(a) Set D/A conversion enable/disable setting (Un\G0) of the channel to be tested to enable.

(b) Turn on Operating condition setting request (Y9).

(c) Check that Operating condition setting completed flag (X9) has turned off. Then turn off Operating condition setting request (Y9).

(d) Sets CH Output enable/disable flag (Y1 to Y6) for the channel to be tested to enable (off → on).

(e) Write digital values equivalent to analog values that are to be output to CH Digital value (Un\G1 to Un\G6).

<table>
<thead>
<tr>
<th>Setting combination</th>
<th>D/A conversion enable/disable setting (Un\G0)</th>
<th>Enable</th>
<th>Disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D/A conversion enable/disable setting (Un\G0)</td>
<td>Enable</td>
<td>Disable</td>
</tr>
<tr>
<td>CH Output enable/disable flags (Y1 to Y6)</td>
<td>Allowed</td>
<td>Not allowed</td>
<td>Not allowed *1</td>
</tr>
</tbody>
</table>

*1 Perform the analog output test after changing D/A conversion enable/disable setting (Un\G0) to enable.

Point

When the digital input value is set to be written to CH Digital value (Un\G1 to Un\G6) from the CPU device at the automatic refresh setting of GX Configurator-DA, write digital input value to the CPU device where the setting is performed. The automatic refresh can be performed while the programmable controller CPU is in STOP.
3.2.3 Warning output function

1. If a digital input value is greater than the warning output upper limit value or less than the warning output lower limit value, Warning output flag (Un\G48), Warning output signal (XE), and the ALM LED will turn on, informing the warning. Warning is output for a D/A-conversion-enabled channel only.

2. The analog output value of warning occurrence is the value converted from the digital value at the warning output upper limit value or warning output lower limit value.

3. Warning output flag (Un\G48) and Warning output signal (XE) turn off when Operating condition setting request (Y9) or Warning output clear request (YE) turns on.

4. To use this function, the following settings are required for each setting.
 - Enable the warning output function: Warning output setting (Un\G47)
 - Set the warning output upper and lower limit values: CH _ Warning output upper/ lower limit values (Un\G86 to Un\G97)

5. When the scaling function is used, input values converted within the scaling range are checked for warning output.
3.2 Function List

3.2.3 Warning output function

Point

(1) If a warning is output immediately after D/A conversion is enabled, make Warning output clear request after writing a digital value that is less than the warning output upper limit value and greater than the warning output lower limit value.

(2) During an analog output test, the warning output function is disable.
3.2.4 Rate control function

(1) The increase and decrease in analog output values per 6ms\(^1\) can be limited, which can prevent rapid change of the values.
\[\text{\(6ms\) is the D/A conversion cycle per channel.}\]

(2) To use this function, the following settings are required for each setting.
- Enable the rate control function: Rate control enable/disable setting (Un\(G46\))
- Set the increase/decrease of analog output value per 6ms: CH\(\square\) Increase/decrease digital limit value (Un\(G70\) to Un\(G81\))

(3) Although values on a per-6ms basis are set in CH\(\square\) Increase/decrease digital limit value (Un\(G70\) to Un\(G81\)), the actual cycle in which the Q66DA-G updates analog values is (6ms x number of conversion-enabled channels).
Therefore, the maximum increase/decrease in analog output values under the rate control is a D/A converted value of (Increase/decrease digital limit value x No. of conversion-enabled channels).

[Example Control of channel 3 when No. of conversion-enabled channels is 1 to 3]
- Output range: -10 to 10V
- Increase digital limit value: 100
- Decrease digital limit value: 100

When the digital input value changes, the analog output value increases or decreases in update cycles as follows:
1st time: D/A converted value of the upper/lower digital limit value
2nd time or later: D/A converted value of (Increase/decrease digital limit value x No. of conversion-enabled channels)
(4) If the operation of the programmable controller CPU varies at the setting of D/A conversion enable, D/A output enable and analog output CLEAR, the rate control functions operate as indicated below.

- If the programmable controller CPU has switched from RUN to STOP (error): Rate control does not function.
- If the programmable controller CPU has switched from STOP (error) to RUN: Rate control functions.

(5) When the scaling function is used, digital input values converted within the scaling range are limited.
3.2.5 Scaling function

The digital input value range can be changed to any given range between -32000 and 32000.
To use this function, the following settings are required for each channel.

- Enable the scaling function: Scaling enable/disable setting (Un\G53)
- Set the scaling upper and lower limit values: CH Scaling upper/lower limit value (Un\G54 to Un\G65)

CH Scaling upper/lower limit value setting vary depending on the output range. (Refer to (1) and (2) below.)

(1) When using the factory default setting for the output range

(a) As the scaling upper and lower limit values, set digital values equivalent to the upper and lower limit values of analog output respectively.

[Example] When the output range is “0 to 5V” or “1 to 5V” and “-10 to 10V”

(b) The D/A conversion uses values calculated from the following formula.

\[
\text{Digital values actually used for D/A conversion} = \frac{D_{\text{Max}} - D_{\text{Min}}}{S_H - S_L} \times (D_X - S_L) + D_{\text{Min}}
\]

\[
D_X : \text{Digital input value}
\]
\[
D_{\text{Max}} : \text{Maximum digital input value of the output range used}
\]
\[
D_{\text{Min}} : \text{Minimum digital input value of the output range used}
\]
\[
S_H : \text{Scaling upper limit value}
\]
\[
S_L : \text{Scaling lower limit value}
\]

[Example]
When a digital input value of 7000 is input under the following setting:
- Output range: -10 to 10V, High resolution mode,
- Scaling upper limit value: 14000, Scaling lower limit value: 2000

Digital values actually used for D/A conversion

\[
= \frac{16000-(-16000)}{14000-2000} \times (7000-2000) + (-16000)
\]

\[
= \frac{-2666.66 \ldots \ldots}{-2666}
\]

Fractional part is rounded down.
(2) When using the user range setting for the output range

(a) Set a digital value, which is equivalent to the analog gain value to be output, as the scaling upper limit value. Also, set a digital value, which is equivalent to the analog offset value to be output, as the scaling lower limit value.

[Example] User range setting 2, Offset value: 1V, Gain value: 8V

(b) The D/A conversion uses values calculated from the following formula.

Digital values actually used for D/A conversion = \(\frac{D_{\text{Max}}}{S_{\text{H}} - S_{\text{L}}} \times (D_X - S_{\text{L}}) \)

- \(D_X \): Digital input value
- \(D_{\text{Max}} \): Maximum digital input value of the output range used
- \(S_{\text{H}} \): Scaling upper limit value
- \(S_{\text{L}} \): Scaling lower limit value

[Example]
When a digital input value of 4000 is input under the following setting:
Output range: User range setting 2, High resolution mode,
Scaling upper limit value: 13000, Scaling lower limit value: 2000

Digital values actually used for D/A conversion

\[
= \frac{12000}{13000 - 2000} \times (4000 - 2000) \\
= 2181.81 \\
= 2181
\]

Fractional part is rounded down.
Point

(1) Even if the digital value input range is enlarged, the resolution will not be more than the one applied when the scaling function is not used. As the digital value input range is narrowed, the resolution is lowered.

(2) When a digital value input range not including zero (0), such as "1000 to 6000", is specified, turn on CH□ Output enable/disable flag (Y1 to Y6) after setting values within the input range in CH□ Digital value (Un\G1 to Un\G6). If CH□ Output enable/disable flag (Y1 to Y6) is turned on with the default value (0) set in CH□ Digital value (Un\G1 to Un\G6), an error will occur and an error code will be stored in Error code (Un\G19).

(3) The check of the settable range is performed for “digital values actually used for D/A conversion”.

(4) Depending on whether to use the scaling function or not, the analog output value varies on the boundary between the inside and outside of the digital input value setting range.

[Example 1]
Output range: 4 to 20mA, Normal resolution mode, and not using the scaling function
By the conditions of the output range and resolution mode, the available digital input value setting range is –96 to 4095.
When a digital value is the upper limit of the settable range, 4095 or higher, an analog value equivalent to 4095 is output, which means the same analog value is output for the digital values within and outside the setting range.

[Example 2]
Output range: 4 to 20mA, Normal resolution mode (same as Example 1), and using the scaling function with:
Scaling upper limit value: 3000, Scaling lower limit value: 1000
When a digital value is the upper limit of the settable range, 3047 (4094 after calculation), an analog value equivalent to 4094 is output.
On the other hand, if it is out of the settable range, which is 3048 or higher (calculated value is 4096 or higher), an analog value equivalent to 4095 is output.
As a result, the analog output value converted from the upper limit digital value of the settable range is different from the one converted from the value outside the settable range by 1 digit.

(5) When a gap between the scaling upper and lower limit values is too large in the output range setting of 4 to 20mA (Extended mode) or 1 to 5V (Extended mode), digital values in the extended range may exceed the range of -32768 to 32767 and thus cannot be set.
3.3 I/O Signals for the Programmable Controller CPU

3.3.1 List of I/O signals

Table 3.5 shows a list of the I/O signals for the Q66DA-G.

Table 3.5 List of I/O signal

<table>
<thead>
<tr>
<th>Signal direction</th>
<th>Q66DA-G → CPU module</th>
<th>Signal direction</th>
<th>CPU module → Q66DA-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device No.</td>
<td>Signal name</td>
<td>Device No.</td>
<td>Signal name</td>
</tr>
<tr>
<td>X0</td>
<td>Module READY</td>
<td>Y0</td>
<td>Use prohibited *1</td>
</tr>
<tr>
<td>X1</td>
<td>Use prohibited *1</td>
<td>Y1</td>
<td>CH1 Output enable/disable flag</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>Y2</td>
<td>CH2 Output enable/disable flag</td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td>Y3</td>
<td>CH3 Output enable/disable flag</td>
</tr>
<tr>
<td>X4</td>
<td></td>
<td>Y4</td>
<td>CH4 Output enable/disable flag</td>
</tr>
<tr>
<td>X5</td>
<td></td>
<td>Y5</td>
<td>CH5 Output enable/disable flag</td>
</tr>
<tr>
<td>X6</td>
<td></td>
<td>Y6</td>
<td>CH6 Output enable/disable flag</td>
</tr>
<tr>
<td>X7</td>
<td>External power supply READY</td>
<td>Y7</td>
<td>Use prohibited *1</td>
</tr>
<tr>
<td>X8</td>
<td>High resolution mode status flag</td>
<td>Y8</td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>Operating condition setting completed flag</td>
<td>Y9</td>
<td>Operating condition setting request</td>
</tr>
<tr>
<td>XA</td>
<td>Offset/gain setting mode flag</td>
<td>YA</td>
<td>User range writing request</td>
</tr>
<tr>
<td>XB</td>
<td>Channel change completed flag</td>
<td>YB</td>
<td>Channel change request</td>
</tr>
<tr>
<td>XC</td>
<td>Set value change completed flag</td>
<td>YC</td>
<td>Set value change request</td>
</tr>
<tr>
<td>XD</td>
<td>Use prohibited *1</td>
<td>YD</td>
<td>Use prohibited *1</td>
</tr>
<tr>
<td>XE</td>
<td>Warning output signal</td>
<td>YE</td>
<td>Warning output clear request</td>
</tr>
<tr>
<td>XF</td>
<td>Error flag</td>
<td>YF</td>
<td>Error clear request</td>
</tr>
</tbody>
</table>

Point

*1 These signals cannot be used by the user since they are used by the system. If these are turned on/off by the sequence program, the function of the Q66DA-G cannot be guaranteed.
3.3.2 Details of I/O signals

I/O signals for the Q66DA-G are explained in detail below.

(1) Input signals

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
</table>
| X0 | Module READY | (1) When the programmable controller CPU is powered on or reset, this signal turns ON when the initial processings in the Q66DA-G are all completed.
| | | (2) When Module READY (X0) signal is off, D/A conversion processing is not performed. Module READY (X0) turns off in the following situations:
| | | - During offset/gain setting mode
| | | - When the Q66DA-G has a watchdog timer error
| X7 | External power supply READY | (1) This signal turns on 100ms after turning on the external power supply.
| | | (2) In normal mode, when Module READY (X0) is off, this signal does not turn on even if 100ms have elapsed after turning on the external power supply.
| | | In this case, as soon as Module READY (X0) turns on, this signal (X7) turns on.
| | | (3) In Offset/gain setting mode, when Offset/gain setting mode flag (XA) is off, this signal does not turn on even if 100ms have elapsed after turning on the external power supply.
| | | In this case, as soon as Offset/gain setting mode flag (XA) turns on, External power supply READY (X7) turns on.
| | | (4) D/A conversion is performed after External power supply READY (X7) turns on.
| | | (5) When the external power is not supplied or has been supplied for less than 100ms, X7 is off and no D/A conversion is performed.
| | | At this time, the analog output value is “0mA/0V” regardless of other settings, and no invalid digital value error detection or no warning output is performed.
| | | (6) X7 might not turn on when the external power supply does not meet the requirements shown in the performance specifications (Refer to Table3.1.).
| | | (7) The following time chart shows that the external power supply is turned on after power-on of a programmable controller CPU.
| | | Power supply of a programmable controller CPU
| | | In normal mode :(X0)
| | | In offset/gain setting mode :(XA)
| | | External power supply
| | | External power supply READY(X7)
| | | 100ms
| | | D/A conversion is not performed
| | | D/A conversion is performed
| | | Digital value write command
| | | X0 X7
| | | [MOV K4000 G1] |

(8) When performing D/A output, X0 and X7 must be on as shown below.

| X8 | High resolution mode status flag | (1) This turns on at the high resolution mode. |

Important Note: All specifications and details provided are based on the information available in the document and are intended to be accurate. For the most current and accurate information, please refer to the official manual or documentation provided by the manufacturer.
3.3 I/O Signals for the Programmable Controller CPU

3.3.2 Details of I/O signals

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
</table>
| X9 | Operating condition setting | (1) This is used as an interlock condition for turning on/off Operating condition setting request (Y9) when any of the following settings is changed. | - D/A conversion enable/disable setting (Un\G0)
- Rate control enable/disable setting (Un\G46)
- Warning output setting (Un\G47)
- Scaling enable/disable setting (Un\G53)
- CH Scaling upper/lower limit value (Un\G54 to Un\G65)
- CH Increase/decrease digital limit value (Un\G70 to Un\G81)
- CH Warning output upper/lower limit value (Un\G86 to Un\G97) | (2) Under the following conditions, Operating condition setting completed flag (X9) turns off.
- When Operating condition setting request (Y9) is on
 ![Diagram](image1.png)
 ![Diagram](image2.png) |
| XA | Offset/gain setting mode flag | (1) This is used as an interlock condition for turning on/off User range writing request (YA) when registering the value after adjustment of the offset/gain settings have been completed. | ![Diagram](image3.png)
 ![Diagram](image4.png) (2) Refer to Section 4.6 regarding the offset/gain settings.
 ![Diagram](image5.png)
 ![Diagram](image6.png) |
| | | [In normal mode] |
| | | (1) This is used as an interlock condition to turn on/off User range writing request (YA) when the user range is restored. |
| | | (2) Refer to Chapter 7 regarding the user range restoration. | ![Diagram](image7.png)
 ![Diagram](image8.png) |
| | | [In offset/gain setting mode] |
| | | (1) This is used as an interlock condition for turning on/off User range writing request (YA) when the user range is restored. |
| | | (2) Refer to Section 4.6 regarding the offset/gain settings. | ![Diagram](image9.png)
 ![Diagram](image10.png) |
3.3 I/O Signals for the Programmable Controller CPU

3.3.2 Details of I/O signals

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
</table>
| X | Channel change completed flag | (1) This is used as an interlock condition for turning on/off Channel change request (YB) when specifying the user range and channel to perform offset/gain settings.
(2) Refer to Section 4.6 regarding the offset/gain settings.
Offset/gain setting mode Offset/gain specifications (Un\G22, Un\G23)
Offset/gain range setting (Un\G25)
Channel change completed flag (XB)
Channel change request (YB) |
| X | Set value change completed flag | (1) This is used as an interlock condition for turning on/off Set value change request (YC) when adjusting the offset/gain settings.
(2) Refer to Section 4.6 regarding the offset and gain settings.
Set value change completed flag (XC)
Set value change request (YC) |
| X | Warning output signal | (1) This turns on if the digital input value on any of the channels enabled for D/A conversion rises to or above the Warning output upper limit value or falls below the Warning output lower limit value.
(2) Turning on Warning output clear request (YE) or Operating condition setting request (Y9) turns off Warning output signal (XE).
Warning output signal (XE)
Warning output clear request (YE) |
| X | Error flag | (1) Error flag (XF) turns on when a write error occurs.
(2) To turn Error flag (XF) off, remove the cause of the error and turn on Error clear request (YF).
Error code (Un\G19) changes to 0 and the ERR. LED turns off.
Error code (Un\G19)
Error flag (XF)
Error clear request (YF) |
(2) Output signals

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 to Y6</td>
<td>CH[Output enable/disable flag</td>
<td>(1) Specify whether to output the D/A converted value or output the offset value for each channel. On: D/A converted value Off: Offset value (2) The D/A conversion speed is 6ms X the number conversion-enabled channels regardless of whether the output enable/disable flag is on or off.</td>
</tr>
</tbody>
</table>
| Y9 | Operating condition setting request | (1) Turn on and off this signal when changing any of the following settings and making the setting valid.
- D/A conversion enable/disable setting (Un\[G0)
- Rate control enable/disable setting (Un\[G46)
- Warning output setting (Un\[G47)
- Scaling enable/disable setting (Un\[G53)
- CH\[Scaling upper/lower limit value (Un\[G54 to Un\[G65)
- CH\[Increase/decrease digital limit value (Un\[G70 to Un\[G81)
- CH\[Warning output upper/lower limit value (Un\[G86 to Un\[G97) (2) Refer to the X9 column for the on/off timing. |
| YA | User range writing request | [In offset/gain setting mode]
(1) Turn on this signal when the values for the adjusted offset/gain settings are registered in the Q66DA-G.
(2) Refer to the XA column for the on/off timing.
Refer to Section 4.6 for offset/gain settings. |
| | | [In normal mode]
(1) Turn on this signal when restoring the user range.
(2) Refer to the XA column for the on/off timing.
Refer to Chapter 7 for the user range restoration. |
| YB | Channel change request | (1) Turn on this signal when specifying the user range and channel to perform Offset/gain setting.
(2) Refer to the XB column for the on/off timing. |
| YC | Set value change request | (1) Turn on/off this signal when increasing or decreasing the analog output value during adjustment of the offset/gain settings.
(2) The analog output is incremented or decremented depending on the value set to Offset/gain adjustment value specification (Un\[G24). |
| YE | Warning output clear request | (1) Turn on this signal when clearing the warning output.
(2) Refer to the XE column for the on/off timing. |
| YF | Error clear request | (1) Turn on this signal when clearing a write error.
(2) Refer to the XF column for the on/off timing. |
3.3 I/O Signals for the Programmable Controller CPU

3.3.2 Details of I/O signals

Point

When User range writing request (YA) is turned on with D/A conversion enabled in the normal mode, the Q66DA-G restores the user range.

- Offset/gain setting mode flag (XA)
- User range writing request (YA)
- Restoration processing
- Conversion enable/disable
- Operating condition setting completed flag (X9)
- Operating condition setting request(Y9)

During restoration: D/A conversion disable
After restoration: D/A conversion processing can be executed in the restored user range
3.4 Buffer Memory

3.4.1 Buffer memory assignment

Table 3.6 indicates the buffer memory assignment of the Q66DA-G.

Point

Do not write data from system area or sequence program to the buffer memory area where writing is disabled. Doing so may cause malfunction.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Default *1</th>
<th>Read/write *2</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0H</td>
<td>D/A conversion enable/disable setting</td>
<td>003FH</td>
<td>R/W</td>
<td>Section 3.4.2</td>
</tr>
<tr>
<td>1H</td>
<td>CH1 Digital value</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.3</td>
</tr>
<tr>
<td>2H</td>
<td>CH2 Digital value</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>3H</td>
<td>CH3 Digital value</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>4H</td>
<td>CH4 Digital value</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>5H</td>
<td>CH5 Digital value</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>6H</td>
<td>CH6 Digital value</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>7H to AH</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BH</td>
<td>CH1 Set value check code</td>
<td>0</td>
<td>R</td>
<td>Section 3.4.4</td>
</tr>
<tr>
<td>CH</td>
<td>CH2 Set value check code</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>CH3 Set value check code</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>EH</td>
<td>CH4 Set value check code</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>FH</td>
<td>CH5 Set value check code</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>10H</td>
<td>CH6 Set value check code</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>11H</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12H</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13H</td>
<td>Error code</td>
<td>0</td>
<td>R</td>
<td>Section 3.4.5</td>
</tr>
<tr>
<td>14H</td>
<td>Setting range (CH1 to CH4)</td>
<td>0</td>
<td>R</td>
<td>Section 3.4.6</td>
</tr>
<tr>
<td>15H</td>
<td>Setting range (CH5, CH6)</td>
<td>0</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>16H</td>
<td>Offset/gain setting mode</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.7</td>
</tr>
<tr>
<td>17H</td>
<td>Offset/gain setting mode</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>18H</td>
<td>Offset/gain adjustment value specification</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.8</td>
</tr>
<tr>
<td>19H</td>
<td>Offset/gain range setting</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.9</td>
</tr>
<tr>
<td>1AH to 2DH</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2EH</td>
<td>Rate control enable/disable setting</td>
<td>003FH</td>
<td>R/W</td>
<td>Section 3.4.10</td>
</tr>
<tr>
<td>2FH</td>
<td>Warning output setting</td>
<td>003FH</td>
<td>R/W</td>
<td>Section 3.4.11</td>
</tr>
<tr>
<td>30H</td>
<td>Warning output flag</td>
<td>0</td>
<td>R</td>
<td>Section 3.4.12</td>
</tr>
<tr>
<td>31H</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*1 This is the initial value set after the power is turned on or the programmable controller CPU is reset.

*2 Indicates whether reading from and writing to a sequence program are enabled.

R : Reading enabled W : Writing enabled
3.4 Buffer Memory

3.4.1 Buffer memory assignment

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Default *1</th>
<th>Read/write *2</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>35H</td>
<td>53</td>
<td>Scaling enable/disable setting</td>
<td>003FH</td>
<td>R/W</td>
</tr>
<tr>
<td>36H</td>
<td>54</td>
<td>CH1 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>37H</td>
<td>55</td>
<td>CH1 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>38H</td>
<td>56</td>
<td>CH2 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>39H</td>
<td>57</td>
<td>CH2 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3AH</td>
<td>58</td>
<td>CH3 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3BH</td>
<td>59</td>
<td>CH3 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3CH</td>
<td>60</td>
<td>CH4 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3DH</td>
<td>61</td>
<td>CH4 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3EH</td>
<td>62</td>
<td>CH5 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>3FH</td>
<td>63</td>
<td>CH5 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>40H</td>
<td>64</td>
<td>CH6 Scaling lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>41H</td>
<td>65</td>
<td>CH6 Scaling upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>42H</td>
<td>66</td>
<td>System area</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45H</td>
<td>69</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>46H</td>
<td>70</td>
<td>CH1 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>47H</td>
<td>71</td>
<td>CH1 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>48H</td>
<td>72</td>
<td>CH2 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>49H</td>
<td>73</td>
<td>CH2 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4AH</td>
<td>74</td>
<td>CH3 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4BH</td>
<td>75</td>
<td>CH3 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4CH</td>
<td>76</td>
<td>CH4 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4DH</td>
<td>77</td>
<td>CH4 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4EH</td>
<td>78</td>
<td>CH5 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>4FH</td>
<td>79</td>
<td>CH5 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>50H</td>
<td>80</td>
<td>CH6 Increase digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>51H</td>
<td>81</td>
<td>CH6 Decrease digital limit value</td>
<td>64000</td>
<td>R/W</td>
</tr>
<tr>
<td>52H</td>
<td>82</td>
<td>System area</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55H</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>56H</td>
<td>86</td>
<td>CH1 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>57H</td>
<td>87</td>
<td>CH1 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>58H</td>
<td>88</td>
<td>CH2 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>59H</td>
<td>89</td>
<td>CH2 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5AH</td>
<td>90</td>
<td>CH3 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5BH</td>
<td>91</td>
<td>CH3 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5CH</td>
<td>92</td>
<td>CH4 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5DH</td>
<td>93</td>
<td>CH4 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5EH</td>
<td>94</td>
<td>CH5 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>5FH</td>
<td>95</td>
<td>CH5 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>60H</td>
<td>96</td>
<td>CH6 Warning output upper limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>61H</td>
<td>97</td>
<td>CH6 Warning output lower limit value</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

*1 This is the initial value set after the power is turned on or the programmable controller CPU is reset.

*2 Indicates whether reading from and writing to a sequence program are enabled.

R : Reading enabled W : Writing enabled
Table 3.6 Buffer memory assignment (3/3)

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Decimal</th>
<th>Description</th>
<th>Default *1</th>
<th>Read/write *2</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>62H to 9DH</td>
<td>98 to 157</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9EH</td>
<td>158</td>
<td>Mode switching setting</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.17</td>
</tr>
<tr>
<td>9FH</td>
<td>159</td>
<td></td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>A0H to C7H</td>
<td>160 to 199</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C8H</td>
<td>200</td>
<td>Pass data classification setting *3</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.18</td>
</tr>
<tr>
<td>C9H</td>
<td>201</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAH</td>
<td>202</td>
<td>CH1 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CBH</td>
<td>203</td>
<td>CH1 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CCH</td>
<td>205</td>
<td>CH2 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CCH</td>
<td>206</td>
<td>CH2 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>CCH</td>
<td>207</td>
<td>CH3 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D0H</td>
<td>208</td>
<td>CH3 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D1H</td>
<td>209</td>
<td>CH4 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D2H</td>
<td>210</td>
<td>CH4 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D3H</td>
<td>211</td>
<td>CH5 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D4H</td>
<td>212</td>
<td>CH5 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D5H</td>
<td>213</td>
<td>CH6 Industrial shipment settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D6H</td>
<td>214</td>
<td>CH6 Industrial shipment settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td>Section 3.4.19</td>
</tr>
<tr>
<td>D7H</td>
<td>215</td>
<td>CH1 User range settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D8H</td>
<td>216</td>
<td>CH1 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>D9H</td>
<td>217</td>
<td>CH2 User range settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DAH</td>
<td>218</td>
<td>CH2 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DBH</td>
<td>219</td>
<td>CH3 User range settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DCCH</td>
<td>220</td>
<td>CH3 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DDH</td>
<td>221</td>
<td>CH4 User range settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DEH</td>
<td>222</td>
<td>CH4 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>DFH</td>
<td>223</td>
<td>CH5 User range settings offset value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>E0H</td>
<td>224</td>
<td>CH5 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>E1H</td>
<td>225</td>
<td>CH6 User range settings gain value *3</td>
<td>0</td>
<td>R/W</td>
<td></td>
</tr>
</tbody>
</table>

*1 This is the initial value set after the power is turned on or the programmable controller CPU is reset.

*2 Indicates whether reading from and writing to a sequence program are enabled.

 R : Reading enabled W : Writing enabled

*3 Areas used to restore the user range settings offset/gain values when online module change is made.

Refer to Chapter 7 for details of online module change.
3.4.2 D/A conversion enable/disable setting (Un\G0)

1. Set whether D/A conversion is enabled or disabled for each channel.

2. To validate the setting, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

3. By default, all channels are set to D/A conversion disabled.

<table>
<thead>
<tr>
<th>b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0</th>
<th>CH 6</th>
<th>CH 5</th>
<th>CH 4</th>
<th>CH 3</th>
<th>CH 2</th>
<th>CH 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

b6 to b15 information is fixed at 0.

1: D/A conversion disabled
0: D/A conversion enabled

Point

Design the system so that D/A conversion enable/disable setting (Un\G0) changes to "Enable" after the external power (Refer to Section 4.3) is supplied. Analog output may not be performed properly if the external power is not at the specified voltage.

3.4.3 CH Digital value (Un\G1 to Un\G6)

1. This area is used to write digital values from the programmable controller CPU as 16-bit signed binary code.

2. If a value outside the settable range is written, the upper or lower limit value of the range is used for D/A conversion. (Refer to Table3.7.) Also, if this happens, a check code and an error code will be stored in the CH Set value check code (Un\G11 to Un\G16) and Error code (Un\G19) respectively.

Table3.7 Output range settings and settable range

<table>
<thead>
<tr>
<th>Output range setting</th>
<th>Normal resolution mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.96 to 4095</td>
<td>Digital value that is set when a value outside the settable range is written</td>
<td>Settable range (practical range)</td>
</tr>
<tr>
<td>(Practical range: 0 to 4000)</td>
<td>4096 or larger: 4095 -0.97 or smaller: -96</td>
<td>-288 to 12287 (Practical range: 0 to 12000)</td>
</tr>
<tr>
<td>0: 4 to 20 mA</td>
<td>1: 0 to 20 mA</td>
<td>2: 1 to 5 V</td>
</tr>
<tr>
<td>4: -10 to 10 V</td>
<td>4: 4 to 20 mA (Extended mode)</td>
<td>A: 4 to 20 mA (Extended mode)</td>
</tr>
<tr>
<td>-1096 to 4595</td>
<td>-1096 to 4595</td>
<td>-1096 to 4595</td>
</tr>
<tr>
<td>(Practical range: -1000 to 4500)</td>
<td>(Practical range: -1000 to 4500)</td>
<td>(Practical range: -1000 to 4500)</td>
</tr>
<tr>
<td>4596 or larger: 4595</td>
<td>-4097 or smaller: -4096</td>
<td>-4096 or larger: 4095</td>
</tr>
<tr>
<td>-3288 to 13787</td>
<td>-3288 to 13787</td>
<td>-3288 to 13787</td>
</tr>
<tr>
<td>(Practical range: -3000 to 13500)</td>
<td>(Practical range: -3000 to 13500)</td>
<td>(Practical range: -3000 to 13500)</td>
</tr>
<tr>
<td>13788 or larger: 13788</td>
<td>13788 or larger: 13788</td>
<td>13788 or larger: 13788</td>
</tr>
<tr>
<td>-3289 or smaller: -3289</td>
<td>-3289 or smaller: -3289</td>
<td>-3289 or smaller: -3289</td>
</tr>
<tr>
<td>C: User range setting</td>
<td>D: User range setting</td>
<td>E: User range setting</td>
</tr>
<tr>
<td>-4096 to 4095</td>
<td>-4096 to 4095</td>
<td>-4096 to 4095</td>
</tr>
<tr>
<td>(Practical range: -4000 to 4000)</td>
<td>(Practical range: -4000 to 4000)</td>
<td>(Practical range: -4000 to 4000)</td>
</tr>
<tr>
<td>4096 or larger: 4095</td>
<td>-4097 or smaller: -4096</td>
<td>4096 or larger: 4095</td>
</tr>
<tr>
<td>-12288 to 12287</td>
<td>-12288 to 12287</td>
<td>-12288 to 12287</td>
</tr>
<tr>
<td>(Practical range: -12000 to 12000)</td>
<td>(Practical range: -12000 to 12000)</td>
<td>(Practical range: -12000 to 12000)</td>
</tr>
<tr>
<td>12288 or larger: 12287</td>
<td>12288 or larger: 12287</td>
<td>12288 or larger: 12287</td>
</tr>
<tr>
<td>-12289 or smaller: -12289</td>
<td>-12289 or smaller: -12289</td>
<td>-12289 or smaller: -12289</td>
</tr>
</tbody>
</table>
3.4.4 CH\[\] Set value check code (Un\[G11 to Un\[G16)

(1) Digital values set in CH\[\] Digital value (Un\[G1 to Un\[G6) are checked and if any of them is outside the settable range, the check result is stored in this area.

(2) When a digital value outside the settable range (Refer to Table3.7) is written, one of the check codes listed in Table3.8 is stored.

Table3.8 Check code list

<table>
<thead>
<tr>
<th>Check code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000FH</td>
<td>A digital value exceeding the settable range is written.</td>
</tr>
<tr>
<td>00F0H</td>
<td>A digital value that falls short of the settable range is written.</td>
</tr>
<tr>
<td>00FFH</td>
<td>A digital value that either falls short or exceeds the settable range was written. For example, the 00FFH check code is stored if a digital value exceeding the valid range is written, and then, without the check code being reset, a digital value that falls short of the settable range is written.</td>
</tr>
</tbody>
</table>

(3) Once a check code is stored, it will not be reset even if the digital value is within the settable range.

(4) To reset CH\[\] Set value check code, set Error clear request (YF) to on after rewriting the digital value so that it is within the settable range.

(5) When the scaling function is used, digital values converted from the digital values set in CH\[\] Digital value (Un\[G1 to Un\[G6) are checked. (Refer to Section 3.2.5.)

3.4.5 Error code (Un\[G19)

(1) This area stores the error codes detected by the Q66DA-G.

(2) Refer to Section 8.1 for more details of the error codes.
3.4.6 Setting range (Un\G20, Un\G21)

(1) This area is used to confirm the setting range of the Q66DA-G.

Output range Storing value
4 to 20mA 0H
0 to 20mA 1H
1 to 5V 2H
0 to 5V 3H
-10 to 10V 4H
4 to 20mA (Extended mode) AH
1 to 5V (Extended mode) BH
User range setting 3 DH
User range setting 2 EH
User range setting 1 FH

Point

The output range cannot be changed by using Setting range (Un\G20, Un\G21). Change the output range in the switch setting for I/O and intelligent function module dialog box. (Refer to Section 4.5)
3.4.7 Offset/gain setting mode Offset/gain specification (Un\G22, Un\G23)

(1) Specifies the channel to be adjusted for the offset/gain settings.

(2) Channel change request (YB) must be turned on/off to validate the offset/gain setting. (Refer to Section 3.3.2.)

(3) Specification can be made for 1 channel only. If more than one channel is set at the same time, an error occurs and an error code is stored in Error code (Un\G19).

(4) Refer to Section 4.6 for the details of the offset/gain settings.

<table>
<thead>
<tr>
<th></th>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 6</td>
<td>0</td>
<td>CH 5</td>
<td>CH 4</td>
<td>CH 3</td>
<td>CH 2</td>
<td>CH 1</td>
</tr>
<tr>
<td>CH 5</td>
<td>0</td>
<td>CH 4</td>
<td>CH 3</td>
<td>CH 2</td>
<td>CH 1</td>
<td></td>
</tr>
</tbody>
</table>

b6 to b15 information is fixed at 0.

1: Channel to be set
0: Invalid

3.4.8 Offset/gain adjustment value specification (Un\G24)

(1) This area is used to set the amount of adjustment for analog output values in the offset/gain setting mode.

(2) Turning Set value change request (YC) from off to on increments or decrements the analog output value by the adjustment value.

(3) The settable input range is from -3000 to 3000. When the set value is 1000, the analog output values can be adjusted by following value.

<table>
<thead>
<tr>
<th>Output range</th>
<th>Adjustment when set value is 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>User range setting1</td>
<td>Approx. 0.86mA</td>
</tr>
<tr>
<td>User range setting2</td>
<td>Approx. 0.38V</td>
</tr>
<tr>
<td>User range setting3</td>
<td>Approx. 0.19V</td>
</tr>
</tbody>
</table>

(4) Refer to Section 4.6 for details of offset/gain setting.
3.4.9 Offset/gain range setting (Un\G25)

(1) This area is used to change the output range in the offset/gain setting mode. Turning on Channel change request (YB) changes the output range into the set one. If any value outside the setting range is set, an error occurs and the corresponding Error code (Un\G19) is stored.

<table>
<thead>
<tr>
<th>Output range</th>
<th>Set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User range setting 1</td>
<td>0000H</td>
</tr>
<tr>
<td>User range setting 2</td>
<td>000EH</td>
</tr>
<tr>
<td>User range setting 3</td>
<td>000DH</td>
</tr>
</tbody>
</table>

(2) Channel change request (YB) must be turned on/off to validate the offset/gain range setting. (Refer to Section 3.3.2.)

(3) Refer to Section 4.6 for details of offset/gain setting.

3.4.10 Rate control enable/disable setting (Un\G46)

(1) Set whether to enable or disable the rate control on each channel.

(2) To validate the setting, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

(3) The default setting is all-channel rate control disable.

(4) Refer to Section 3.2.4 for details of rate control function.

3.4.11 Warning output setting (Un\G47)

(1) Set whether to enable or disable the warning output on each channel.

(2) To validate the setting, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

(3) The default setting is all-channel warning output disable.

(4) Refer to Section 3.2.3 for details of warning output function.
3.4.12 Warning output flag (Un\G48)

(1) When the digital input value falls outside CH\□ Warning output upper/lower limit value (Un\G86 to Un\G97) range, the bit corresponding to each channel turns to "1".

(2) Whether the warning is the upper or lower limit value warning can be checked on each channel.

(3) If the warning is detected on any of the channels enabled for conversion, Warning output signal (XE) turns on.

(4) Turning on Operating condition setting request (Y9) or Warning output clear request (YE) clears Warning output flag.

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CH6 lower limit value</td>
<td>CH6 upper limit value</td>
<td>CH5 lower limit value</td>
<td>CH5 upper limit value</td>
<td>CH4 lower limit value</td>
<td>CH4 upper limit value</td>
<td>CH3 lower limit value</td>
<td>CH3 upper limit value</td>
<td>CH2 lower limit value</td>
<td>CH2 upper limit value</td>
</tr>
</tbody>
</table>

b12 to b15 information is fixed at 0

1: Warning output
0: Normal

(5) Refer to Section 3.2.3 for details of warning output function.

3.4.13 CH\□ Scaling enable/disable setting (Un\G53)

(1) Set whether to enable or disable the scaling on each channel.

(2) To validate the setting, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

(3) The default setting is all-channel scaling disable.

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CH6</td>
<td>CH5</td>
<td>CH4</td>
<td>CH3</td>
</tr>
</tbody>
</table>

b6 to b15 information is fixed at 0

1: Scaling disable
0: Scaling enable

(4) Refer to Section 3.2.5 for details of warning output function.
3.4.14 CH[] Scaling upper/lower limit value (Un\G54 to Un\G65)

(1) When the scaling function is used, set a digital value input range. (Refer to Section 3.2.5.)

(2) The setting range is -32000 to 32000. Set them so that the scaling upper limit value is greater than the scaling lower limit value. If any value outside the setting range is set, an error occurs and the corresponding Error code (Un\G19) is stored.

(3) To validate the settings, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

3.4.15 CH[] Increase/decrease digital limit value (Un\G70 to Un\G81)

(1) For rate control, set the range where the digital value can be incremented and decremented in a conversion cycle per channel (6ms). (Refer to Section 3.2.4.)

(2) The setting range is 0 to 64000 (0H to FA00H). If any value outside the setting range is set, an error occurs and the corresponding error code is stored in Error code (Un\G19).

(3) To validate the settings, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)

Point

When setting CH[] Increase/decrease digital limit value (Un\G70 to Un\G81) from the sequence program, values from 0 to 32767 can be set as decimal numbers without change. Note that this is not applicable to 32768 to 65535. These values must be converted to hexadecimal numbers before setting.

3.4.16 CH[] Warning output upper/lower limit value (Un\G86 to Un\G97)

(1) Set the upper and lower limit values of the digital input value for providing the warning output. (Refer to Section 3.2.3.)

(2) The setting range is -32000 to 32000. Make setting so that the upper limit value is greater than the lower limit value. If any value outside the setting range is set, an error occurs and the corresponding error code (Un\G19) is stored.

(3) To validate the settings, turn on and off Operating condition setting request (Y9). (Refer to Section 3.3.2.)
3.4.17 Mode switching setting (Un\G158, Un\G159)

(1) Set the values of the mode to switch.

(2) After setting the values, turning Operation condition setting request (Y9) from off to on enables mode switching.

(3) When mode switching is performed, this area is cleared to zero and Operating condition setting completed flag (X9) turns off. After confirming that Operating condition setting completed flag (X9) has turned off, turn off Operating condition setting request (Y9).

<table>
<thead>
<tr>
<th>Mode to be switched to</th>
<th>Set values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>Buffer memory address 158: 0964H, Buffer memory address 159: 4144H</td>
</tr>
<tr>
<td>Offset/gain setting mode</td>
<td>Buffer memory address 158: 4144H, Buffer memory address 159: 0964H</td>
</tr>
</tbody>
</table>

Point

If the values written are other than the above, mode switching is not performed and only the operating condition is changed.

3.4.18 Pass data classification setting (Un\G200)

(1) Areas used to restore the user range settings offset/gain values when online module change is made. Refer to Chapter 7 for details of online module change.

(2) Specify the user range setting to be saved/restored when saving/restoring the offset/gain values of any of the user range settings 1 to 3.

<table>
<thead>
<tr>
<th>Un\G200</th>
<th>b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 0 0 CH6 CH5 CH4 CH3 CH2 CH1</td>
</tr>
<tr>
<td></td>
<td>b12 to b15 information is fixed at 0</td>
</tr>
</tbody>
</table>

Point

Refer to Section 4.6 for the offset/gain value setting method.
3.4.19 Industrial shipment settings and user range settings offset/gain values (Un\G202 to Un\G225)

(1) Areas used to restore the user range settings offset/gain values when online module change is made. Refer to Chapter 7 for details of online module change.

(2) When the offset/gain values of the user range setting are restored, the data to be used are stored (saved) when:
 • Initial setting is written by the utility;
 • The operating condition is set (Y9 turns from off to on*1);
 • The offset/gain values are written in the offset/gain setting mode (YA turns from off to on).

*1 The data are not saved when the set values have been written to Mode switch setting (Un\G158, Un\G159).

(3) When restoring the offset/gain values of the user range setting, set the data saved in this area similarly into the corresponding area of the module where the data will be restored.

(4) Buffer memory saving record procedure for online module change

1) Set Pass data classification setting (Un\G200).
2) Turn on and off Operating condition setting request (Y9).
3) Compare the offset/gain values of CH□ Industrial shipment and User range settings (Un\G202 to Un\G217) with the range reference table. Refer to Section 7.4 for the range reference table.
4) If the values are proper, record the data in Pass data classification setting, Industrial shipment settings, and User range settings.

Point

Refer to Section 4.6 for the offset/gain value setting method.
4.1 Handling Precautions

(1) Do not drop the module case or subject it to heavy impact.

(2) Do not remove the PCB of the module from its case. Doing so may cause the module failure.

(3) Be careful not to let foreign materials such as swarf or wire chips enter the module. They may cause a fire, mechanical failure or malfunction.

(4) The top surface of the module is covered with a protective film to prevent foreign materials such as wire chips from entering the module during wiring. Do not remove this film until the wiring is completed. Before operating the system, be sure to remove the film to provide adequate heat radiation.

(5) Before handling the module, touch a grounded metal object to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.

(6) Tighten the screws such as module fixing screws within the following ranges. Loose screws may cause short circuits, failures or malfunctions.

<table>
<thead>
<tr>
<th>Screw location</th>
<th>Tightening torque range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module fixing screw (M3 screw)*1</td>
<td>0.36 to 0.48 N·m</td>
</tr>
<tr>
<td>Connector screw (M2.6 screw)</td>
<td>0.20 to 0.29 N·m</td>
</tr>
<tr>
<td>FG Terminal screw (M3 screw)</td>
<td>0.42 to 0.58 N·m</td>
</tr>
</tbody>
</table>

*1: The module can be easily fixed onto the base unit using the hook at the top of the module. However, it is recommended to secure the module with the module fixing screw if the module is subject to significant vibration.

(7) To mount the module, while pressing the module mounting lever located in the lower part of the module, fully insert the module fixing projection(s) into the hole(s) in the base unit until it stops. Improper mounting may result in malfunction, breakdown or the module coming loose and dropping.
(8) Fix the Q66DA-G with module fixing bracket after the Q66DA-G is mounted to the base unit.

Point
Make sure that the hook at the tip of the module fixing bracket is hooked on the 3rd slit viewed from the front of Q66DA-G. Tighten the module fixing screw by the specified torque.
4.2 Setup and Procedures Before Operation

Start

Module mounting
Mounting the Q66DA-G in the specified slot

Wiring
Wire external devices to the Q66DA-G
(Refer to Section 4.3, 4.4)

Intelligent functional module switch settings
Perform settings using GX Developer
(Refer to Section 4.5)

Use user range settings?

Use user range settings

Offset/gain setting
If user range settings are used, perform the offset and gain settings
(Refer to Section 4.6)

Use the utility package?

Initial setting and automatic refresh setting
The program can be simplified if the utility package is used for setting
(Refer to Chapter 5).

Programming and debugging
Create and check sequence program.
(Refer to Chapter 6)
4.3 Part Names

Parts of the Q66DA-G are listed below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>RUN LED*1</td>
<td>Displays the operating status of the Q66DA-G.</td>
</tr>
<tr>
<td></td>
<td>On: Normal operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flashing: During offset/gain setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off: 5V power switched off, watchdog timer error occurred, or online module change enabled.</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>ERR. LED</td>
<td>Displays the error status of the Q66DA-G.</td>
</tr>
<tr>
<td></td>
<td>On: Error (Refer to Section 8.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flashing: Error in switch settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Switch No. 5 of the intelligent function module has been set to a value other than zero "0".</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off: Normal operation</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>ALM LED</td>
<td>Indicates the warning status of the Q66DA-G.</td>
</tr>
<tr>
<td></td>
<td>On: During warning output occurrence (Refer to Section 3.2.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off: Normal operation</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>Serial number plate</td>
<td>Indicates the serial No. of the Q66DA-G.</td>
</tr>
<tr>
<td>5)</td>
<td>FG terminal L-Shaped metal fitting</td>
<td>Metal fitting to wire for FG of the Q66DA-G.</td>
</tr>
</tbody>
</table>

*1: When the module is mounted on a MELSECNET/H remote I/O station, the RUN LED stays off until a data link starts normally, even after the power is turned on.

Point

When two or more errors have occurred, these LEDs indicate the latest error found by the Q66DA-G.
SETUP AND PROCEDURES BEFORE OPERATION

4.3 Part Names

Terminal number	Signal name	Terminal number	Signal name
A1 | CH1 V + | B1 | CH1 COM
A2 | CH1 I + | B2 | -
A3 | - | B3 | -
A4 | CH2 V + | B4 | CH2 COM
A5 | CH2 I + | B5 | -
A6 | - | B6 | -
A7 | CH3 V + | B7 | CH3 COM
A8 | CH3 I + | B8 | -
A9 | - | B9 | -
A10 | CH4 V + | B10 | CH4 COM
A11 | CH4 I + | B11 | -
A12 | - | B12 | -
A13 | CH5 V + | B13 | CH5 COM
A14 | CH5 I + | B14 | -
A15 | - | B15 | -
A16 | CH6 V + | B16 | CH6 COM
A17 | CH6 I + | B17 | -
A18 | - | B18 | -
A19 | 24VDC | B19 | 24VDC
A20 | 24GDC | B20 | 24GDC

(1) Connector for external wiring

The connectors for use with the Q66DA-G should be purchased separately by the user. The following tables show the connector types and the crimp-contact tool.

(a) Connector types

<table>
<thead>
<tr>
<th>Type</th>
<th>Model name</th>
<th>Applicable wire size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering type (straight out)</td>
<td>A6CON1</td>
<td>0.3mm² (22 AWG) (stranded)</td>
</tr>
<tr>
<td>Crimp-contact type (straight out)</td>
<td>A6CON2</td>
<td>0.088 to 0.24mm² (28 to 24 AWG) (stranded)</td>
</tr>
<tr>
<td>Soldering type (straight out/diagonal out)</td>
<td>A6CON4</td>
<td>0.3mm² (22 AWG) (stranded)</td>
</tr>
</tbody>
</table>

*1The A6CON3 (pressure-displacement type, straight out) connector cannot be used for the Q66DA-G.

(b) Crimp-contact tool

<table>
<thead>
<tr>
<th>Type</th>
<th>Model name</th>
<th>Applicable wire size</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimp-contact tool</td>
<td>FCN-363T-T005/H</td>
<td>0.088 to 0.24mm² (28 to 24 AWG)</td>
<td>FUJITSU COMPONENT LIMITED www.fujitsu.com/jp/group/fcl/en</td>
</tr>
</tbody>
</table>
4.4 Wiring

The wiring precautions and examples of module connection are provided below.

4.4.1 Wiring precautions

In order to optimize the functions of the Q66DA-G and ensure system reliability, external wiring that is protected from noise is required. The following shows the precautions for external wiring.

1. Use separate cables for the alternating-current control circuit and the external output signals and external supply power of the Q66DA-G in order to avoid AC surges and induction effects.

2. Do not mount the cables close to or bundle them with the main circuit line, a high-voltage cable or a load cable from other than the programmable controller. This may increase the effects of noise, surges and induction.

3. Perform a one-point grounding for shielded lines and the shields of shielded cables.

4. When the wiring of the module mounted right to the Q66DA-G is difficult, perform wiring after removing the Q66DA-G.
4.4.2 External wiring

(1) For voltage output

- For wire, use the shielded twisted pair cable.
- If noise or ripple occurs for external wiring, connect a capacitor with the value of 0.1 to 0.47 μF (withstand voltage 25V or higher) to the input terminal of an external device.

(2) For current output

- For wire, use the shielded twisted pair cable.
- If noise or ripple occurs for external wiring, connect a capacitor with the value of 0.1 to 0.47 μF (withstand voltage 25V or higher) to the input terminal of an external device.

Point

The Q66DA-G needs to be powered on 30 minutes prior to operation for compliance to the specification (accuracy).
Similarly, power on 30 minutes prior to offset/gain setting or after online module replacement.

4 - 7
4.4 Wiring
4.4.2 External wiring
4.4.3 Connector/terminal block converter module

For the following products, please consult your local Mitsubishi Electric sales office or representative.

<table>
<thead>
<tr>
<th>Product</th>
<th>Model</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated cable</td>
<td>FA-CBL□□Q66DAG1</td>
<td>Mitsubishi Electric Engineering Co., Ltd.</td>
</tr>
<tr>
<td>Connector/terminal block converter module</td>
<td>FA-LTB40DAG</td>
<td>Mitsubishi Electric Engineering Co., Ltd.</td>
</tr>
</tbody>
</table>

1 ☐☐ shows the cable length (05: 0.5m, 10: 1.0m, 20: 2.0m, 30: 3.0m).

Point

The offset/gain setting is adjusted in the Q66DA-G at the industrial shipment setting of the module. Therefore an error may occur for the conversion characteristic because of the influence such as the conductor resistance when a dedicated cable or connector/terminal block converter module is used. If a problem occurs by the influence, perform the offset/gain setting by using the user range setting. (Refer to Section 4.6.)
4.5 Intelligent Function Module Switch Setting

The intelligent function module switches are set in the I/O assignment setting of GX Developer.

(1) Setting items
The intelligent function module switches, 1 to 5, are set using 16 bit data. The default value for switches 1 to 5 is 0.

<table>
<thead>
<tr>
<th>Table 4.1 Switch setting item for intelligent function module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Switch 2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Switch 3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Switch 4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*1 Setting any value within the setting range provides the same operation. When the setting range is 1H to Fr, set 1H for example.
Point

(1) The switch 3 is set in binary. Setting will be easy if the input format is changed to binary number.

<table>
<thead>
<tr>
<th>Input format</th>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting value</td>
<td>00110100</td>
<td>34H</td>
</tr>
</tbody>
</table>

(2) If the offset/gain setting mode is set using intelligent function module switch 4, the resolution mode will be ignored.

(3) Perform the offset/gain settings after checking the RUN LED flashes in offset/gain setting mode. If the RUN LED does not flash, check if the switch 4 setting is correct.

(4) Since the analog output value differs considerably depending on the resolution mode setting, thoroughly check the settings for the intelligent function module switches before performing the analog output processing.

[Example Analog output value when the setting range is -10 to 10V and the digital input value is set to 4000.]

<table>
<thead>
<tr>
<th>Analog output value</th>
<th>High resolution mode</th>
<th>Normal resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output value</td>
<td>About 2.5 V</td>
<td>About 10.0 V</td>
</tr>
</tbody>
</table>

(2) Operating procedure

Start the configuration from GX Developer’s I/O assignment setting screen.
(a) I/O assignment setting screen
Set the following for the slot in which the Q66DA-G is mounted.
The type setting is required; set other items as needed.
Type : Select "intelli."
Model name : Enter the module model name.
Points : Select 16 points.
Start XY : Enter the start I/O signal for the Q66DA-G.

Detailed setting:

1) When using in the standard system configuration (on the main or extension base), specify the control CPU of the Q66DA-G.
The analog output status of when an error has occurred in the Q66DA-G is determined according to the setting of "HOLD/CLEAR function setting" of the switch setting for intelligent function module. Therefore, the setting of "Error time output mode" is invalid.

2) When using on a remote I/O station, if the analog output is to be held in the case of a link error, "Error time output mode" must be set to "Hold".

3) Switch setting for intelligent function module dialog box
Click on [Switch setting] on the I/O assignment setting dialog box to display the dialog box shown below, then set switches 1 to 5.
The switches can easily be set if values are entered in hexadecimal. Change the entry format to hexadecimal and then enter the values.
4.6 Offset/Gain Settings

When the user range setting is used, perform the offset and gain settings according to the following procedure.

When the industrial shipment setting is used, offset/gain setting is not necessary.

If the utility package is installed, perform the offset/gain settings according to the procedure described in Section 5.6.2.

1 Offset/gain setting procedure

1) **Turn the channel change request signal (YB) to ON.**

 - Verify that the channel change completed flag (XB) is ON.

2) **Adjust other channels?**

 - **NO**
 - **YES**

3) **Switch to the normal setting mode.**

1 The mode switching (normal mode to offset/gain setting mode to normal mode) method is given below.

- Dedicated instruction (G(P).OFFGAN) Refer to Section 4.6 (2), (a)
- Setting made to mode switching setting (Un\(\text{G158, G159} \)) and turning the operation condition setting request (Y9) from OFF→ON→OFF Refer to Section 4.6 (2), (b)
- Intelligent function module switch setting Refer to Section 4.5, Section 4.6 (2), (c)
 (After intelligent function module switch setting, reset the programmable controller CPU or switch power OFF, then ON.)

2 Do not perform the following during operation of "**2". Doing so may cause a flash memory data error, resulting in malfunction of the Q66DA-G.

- Power-off of the programmable controller CPU
- Reset of the programmable controller CPU

*2 Do not perform the following during operation of "**2". Doing so may cause a flash memory data error, resulting in malfunction of the Q66DA-G.
SETUP AND PROCEDURES BEFORE OPERATION

4.6 Offset/Gain Settings

- **Point**
 1. Set the offset/gain values in the range that satisfies the conditions specified in Section 3.1.2, (1) and (2). When the setting exceeds this range, the maximum resolution or total accuracy may not be within the range indicated in the performance specification.
 2. Set the offset/gain values separately for each channel. If channels are set in Un\G22 and Un\G23 at the same time, an error will occur and the ERR. LED will be lit.
 3. After the offset and gain settings are completed, verify that the offset and gain values have been set correctly under actual usage conditions.
 4. The offset and gain values are stored into the flash memory and are not erased at power-off.
 5. At the time of offset/gain setting, turn on User range writing request (YA) to write the values to the flash memory. Data can be written to the flash memory up to 100 thousand times. To prevent unnecessary write to the flash memory, an error (Error code: 162) occurs when data are written 26 times continuously.
 6. If an error (Error code: 40\(^1\)) occurs during offset/gain setting, re-set the correct offset/gain value.
 7. Module READY (X0) turns from off to on when the offset/gain setting mode switches to the normal mode by the dedicated instruction (G(P).OFFGAN) or the setting of Mode switching setting (Un\G158, Un\G159). Note that initial setting processing will be executed if there is a sequence program that makes initial setting when Module READY (X0) turns on.
 8. D/A conversion is discontinued if the mode is switched (from the normal mode to the offset/gain setting mode, or from the offset/gain setting mode to the normal mode) by the dedicated instruction (G(P).OFFGAN) or by setting a value to Mode switching setting (Un\G158, Un\G159). To resume D/A conversion, switch the mode to the normal mode if it is set to the offset/gain setting mode, and then turn on and off Operating condition setting request (Y9).
 9. Un\G200, Un\G202 to Un\G217 are the areas used to restore the user range settings offset/gain values when online module change is made. Refer to Chapter 7 for details of online module change.
(2) Program examples

The program in the dotted area of (a) is common to (a), (b) and (c).
In this example, the I/O signals for the Q66DA-G are X/Y0 to X/YF.

- Channel selection... M0
- Offset/gain range setting.. M1
- Offset setting ... M2
- Gain setting ... M3
- Channel change command .. M4
- Writing the adjustment amount .. M5
- Analog output value adjust command M6
- Offset/gain setting value write command to the module M7
- Mode switching.. M8
- Normal mode checking signal ... M50
- Channel designation storage device.................................. D0
- Dedicated instruction (G(P).OFFGAN) setting storage device D2
- Offset/gain adjustment storage device............................... D1
(a) When switching the mode using the dedicated instruction (G(P).OFFGAN)
The following sample program switches to the offset/gain setting mode with the
dedicated instruction (G(P).OFFGAN), changes the channel where offset/gain
setting will be made, adjusts the offset/gain values, and writes the offset/gain val-
ues to the Q66DA-G.

Switch to offset/gain setting mode

1. Switch to the channel where offset/gain settings will be performed

2. Set the amount of each change within the range from -3000 to 3000 during adjustment

3. Adjust the analog output value

4. Register the result of offset/gain settings in the module

5. Switch to normal mode

* The program in the dotted area is a common program.
(b) When switching the mode using the setting of Mode switching setting (Un\G158, Un\G159) and Operating condition setting request (Y9)

- **Normal mode initial setting**
 - Switches to offset/gain setting mode
 - M100
 - M50
 - M51
 - Y9
 - X9
 - [SET M100]
 - [MOV P H0 U0 Q0]
 - DI/A conversion enable/disable setting
 - Adding initial setting items
 - [SET Y9]
 - [RST M100]
 - Turns on Operating condition setting request (Y9).

- **Common program**
 - Switches to normal mode
 - M8
 - M50
 - Y9
 - X9
 - [MOV H4144 U0 G158]
 - Sets 4144H to buffer memory address 158.
 - [MOV H964 U0 G159]
 - Sets 964H to buffer memory address 159.
 - [SET Y9]
 - [RST M50]
 - Turns off Operating condition setting request (Y9).

- **1-second timer**
 - M51
 - [RST Y9]
 - [RST M51]
 - [END]

*1 Normal mode initial setting
*2 Adding initial setting items
*3 Switches to offset/gain setting mode
*4 Switches to normal mode
*5 When switching the mode using the setting of Mode switching setting (Un\G158, Un\G159) and Operating condition setting request (Y9)
Point

When running this program together with the normal-mode D/A conversion program (Refer to Section 6.2.3), use*1 of this program as the initial setting program. To utilize each function of the Q66DA-G for D/A conversion in normal mode, add an appropriate initial setting item to the part marked*2. (Refer to an example below.)

*2 Example of adding initial setting items (Rate control function)

<table>
<thead>
<tr>
<th></th>
<th>U01</th>
<th>U01</th>
<th>U01</th>
<th>U01</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>K3E</td>
<td>MOV</td>
<td>K100</td>
<td>MOV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate control enable/disable setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1 Increase digital limit value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH1 Decrease digital limit value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note) When adding this program to the normal-mode D/A conversion program (Refer to Section 6.2.3), replace the existing initial setting program with the program marked*1.

(c) When switching the mode by making intelligent function module switch setting Only the common program is necessary.

Precautions

Do not perform the following operations of (a), (b), and (c) in the offset/gain setting mode. (If performed, an error occurs in the flash memory data and the Q66DA-G may not operate properly.)

(a) Powering the programmable controller CPU.

(b) Resetting the programmable controller CPU.

(c) Performing an online module change.
5 UTILITY PACKAGE (GX Configurator-DA)

5.1 Utility Package Functions

Table 5.1 shows an overview of the utility package functions.

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial setting*1</td>
<td>(1) Set the following items that require initial setting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• D/A conversion enable/disable setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scaling enable/disable setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scaling upper limit value/lower limit value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rate control enable/disable setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increase/decrease digital limit value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disconnection detection setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Warning output setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Warning output upper limit value/lower limit value</td>
</tr>
<tr>
<td></td>
<td>(2) The data for which initial setting has been completed is registered in the parameters for the programmable controller CPU, and automatically written to the Q66DA-G when the programmable controller CPU changes to RUN status.</td>
<td></td>
</tr>
<tr>
<td>Automatic refresh setting</td>
<td>(1) Sets automatic refresh for the Q66DA-G buffer memory.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) The buffer memory that was set for automatic refresh is automatically read and written to the specified device when the END command for the programmable controller CPU is executed.</td>
<td></td>
</tr>
<tr>
<td>Monitor/Test</td>
<td>(1) Monitor/Test</td>
<td>The buffer memory and I/O signals for the Q66DA-G are monitored and tested.</td>
</tr>
<tr>
<td></td>
<td>(2) Operating condition setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes the initial setting during operation.</td>
</tr>
<tr>
<td></td>
<td>(3) Offset/gain setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When setting the offset/gain to a value selected by the user (when the analog output range setting is user range setting), the offset and gain can be easily set while viewing the screen.</td>
</tr>
<tr>
<td></td>
<td>(4) Pass data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The pass data (Pass data classification setting, Industrial shipment settings offset/gain value, User range settings offset/gain value) can be monitored and set.</td>
</tr>
<tr>
<td>FB conversion</td>
<td>Generates FB automatically from the intelligent function module parameter (initial setting/auto refresh setting).</td>
<td></td>
</tr>
</tbody>
</table>

Section 5.4

Section 5.5

Section 5.6

Section 5.7
5.2 Installing and Uninstalling the Utility Package

For how to install or uninstall the utility package, refer to "Method of installing the MELSOFT Series" included in the utility package.

5.2.1 Handling precautions

The following explains the precautions on using the GX Configurator-DA:

(1) For safety
Since GX Configurator-DA is add-in software for GX Developer, read “Safety Precautions” and the basic operating procedures in the GX Developer Operating Manual.

(2) About installation
GX Configurator-DA is add-in software for GX Developer Version 4 or later. Therefore, GX Configurator-DA must be installed on the personal computer that has already GX Developer Version 4 or later installed.

(3) Screen error of Intelligent function module utility
Insufficient system resource may cause the screen to be displayed inappropriately while using the Intelligent function module utility. If this occurs, close the Intelligent function module utility, GX Developer (program, comments, etc.) and other applications, and then start GX Developer and Intelligent function module utility again.

(4) To start the Intelligent function module utility
(a) In GX Developer, select "QCPU (Q mode)" for PLC series and specify a project. If any PLC series other than "QCPU (Q mode)" is selected, or if no project is specified, the Intelligent function module utility will not start.

(b) Multiple Intelligent function module utilities can be started. However, [Open parameters] and [Save parameters] operations under [Intelligent function module parameter] are allowed for one Intelligent function module utility only. Only the [Monitor/test] operation is allowed for the other utilities.
(5) Switching between two or more Intelligent function module utilities

When two or more Intelligent function module utility screens cannot be displayed side by side, select a screen to be displayed on the top of others using the task bar.

(6) Number of parameters that can be set in GX Configurator-DA

When multiple intelligent function modules are mounted, the number of parameter settings must not exceed the following limit.

<table>
<thead>
<tr>
<th>When intelligent function modules are installed to:</th>
<th>Maximum number of parameter settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial setting</td>
</tr>
<tr>
<td>Q00J/Q00/Q01CPU</td>
<td>512</td>
</tr>
<tr>
<td>Q02J/Q02H/Q06H/Q12H/Q25HCPU</td>
<td>512</td>
</tr>
<tr>
<td>Q02PH/Q06PH/Q12PH/Q25PHCPU</td>
<td>512</td>
</tr>
<tr>
<td>Q12PRH/Q25PRHCPU</td>
<td>512</td>
</tr>
<tr>
<td>Q00UJ/Q00UJ/Q01UCPU</td>
<td>2048</td>
</tr>
<tr>
<td>Q02UCPU</td>
<td></td>
</tr>
<tr>
<td>Q03UD/Q04UDH/Q06UDH/Q10UDH/Q13UDH/Q20UDH/Q26UDH/Q03UEH/Q04UDEH/Q06UDEH/Q10UDEH/Q13UDEH/Q20UDEH/Q26UDEHCPU</td>
<td>4096</td>
</tr>
<tr>
<td>MELSECNET/H remote I/O station</td>
<td>512</td>
</tr>
</tbody>
</table>

For example, if multiple intelligent function modules are installed to MELSECNET/H remote I/O stations, configure the settings in GX Configurator-DA so that the number of parameter settings for all the intelligent function modules does not exceed the limit of the MELSECNET/H remote I/O stations.

Calculate the total number of parameter settings separately for the initial setting and for the auto refresh setting.

The number of parameters that can be set for one module in GX Configurator-DA is as shown below.

<table>
<thead>
<tr>
<th>Target module</th>
<th>Initial setting</th>
<th>Auto refresh setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q66DA-G</td>
<td>5 (Fixed)</td>
<td>14 (Max.)</td>
</tr>
</tbody>
</table>

Example) Counting the number of parameter settings in Auto refresh setting

This one row is counted as one setting. Blank rows are not counted. Count up all the setting items on this screen, and add the total to the number of settings for other intelligent function modules to get a grand total.
This section explains the operating environment of the personal computer that runs GX Configurator-DA.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation (Add-in) target*1</td>
<td>Add-in to GX Developer Version 4 (English version) or later*2</td>
</tr>
<tr>
<td>Computer</td>
<td>A personal computer with any of the operating systems below</td>
</tr>
<tr>
<td>CPU</td>
<td>Refer to the next page "Operating system and performance required for personal computer".</td>
</tr>
<tr>
<td>Required memory</td>
<td>For installation 65 MB or more</td>
</tr>
<tr>
<td>Hard disk space</td>
<td>For operation 20 MB or more</td>
</tr>
<tr>
<td>Display</td>
<td>800 x 600 dots or more resolution*3</td>
</tr>
</tbody>
</table>

Operating system
- Microsoft® Windows® 95 Operating System (English version)
- Microsoft® Windows® 98 Operating System (English version)
- Microsoft® Windows® Millennium Edition Operating System (English version)
- Microsoft® Windows NT® Workstation Operating System Version 4.0 (English version)
- Microsoft® Windows® 2000 Professional Operating System (English version)
- Microsoft® Windows® XP Professional Operating System (English version) SP1 or later
- Microsoft® Windows® XP Home Edition Operating System (English version) SP1 or later
- Microsoft® Windows Vista® Home Basic Operating System (English version)
- Microsoft® Windows Vista® Home Premium Operating System (English version)
- Microsoft® Windows Vista® Business Operating System (English version)
- Microsoft® Windows Vista® Ultimate Operating System (English version)
- Microsoft® Windows Vista® Enterprise Operating System (English version)
- Microsoft® Windows® 7 Starter Operating System (English version)*4
- Microsoft® Windows® 7 Home Basic Operating System (English version)*4
- Microsoft® Windows® 7 Home Premium Operating System (English version)*4
- Microsoft® Windows® 7 Professional Operating System (English version)*4
- Microsoft® Windows® 7 Ultimate Operating System (English version)*4
- Microsoft® Windows® 7 Enterprise Operating System (English version)*4

*1: Install GX Configurator-DA in GX Developer Version 4 or higher of the same language. GX Developer (English version) and GX Configurator-DA (Japanese version) cannot be used in combination, and GX Developer (Japanese version) and GX Configurator-DA (English version) cannot be used in combination.

*2: GX Configurator-DA is not applicable to GX Developer Version 3 or earlier. In addition, GX Developer Version 8 or later is necessary to use the FB conversion function.

*3: When Windows® Vista or Windows® 7 is used, resolution of 1024 × 768 dots or more is recommended.

*4: When 32-bit Windows® 7 is used, add GX Configurator-DA Version 2.11M or later in GX Developer Version 8.91V or later.
When 64-bit Windows® 7 is used, add GX Configurator-DA Version 2.11M or later in GX Developer Version 8.98C or later.
5.2 Installing and Uninstalling the Utility Package

5.2.2 Operating environment

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Performance required for personal computer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU</td>
</tr>
<tr>
<td>Windows® 95</td>
<td>Pentium® 133MHz or more</td>
</tr>
<tr>
<td>Windows® 98</td>
<td>Pentium® 133MHz or more</td>
</tr>
<tr>
<td>Windows® Me</td>
<td>Pentium® 150MHz or more</td>
</tr>
<tr>
<td>Windows NT® Workstation 4.0</td>
<td>Pentium® 133MHz or more</td>
</tr>
<tr>
<td>Windows® 2000 Professional</td>
<td>Pentium® 133MHz or more</td>
</tr>
<tr>
<td>Windows® XP</td>
<td>Pentium® 300MHz or more</td>
</tr>
<tr>
<td>Windows Vista®</td>
<td>Pentium® 1GHz or more</td>
</tr>
<tr>
<td>Windows® 7</td>
<td>Pentium® 1GHz or more</td>
</tr>
</tbody>
</table>

Point

1. The functions shown below are not available for Windows® XP, Windows Vista®, and Windows® 7.
 If any of the following functions is attempted, this product may not operate normally.
 - Start of application in Windows® compatible mode
 - Fast user switching
 - Remote desktop
 - Large fonts (Details setting of Display Properties)
 - DPI setting other than 100%
 Also, GX Configurator-DA is not supported by 64-bit Windows® XP and 64-bit Windows Vista®.
2. A user with USER authority or higher can access GX Configurator-DA for Windows Vista® and Windows® 7.
3. When Windows® 7 is used, the following functions are not available.
 - Windows XP Mode
 - Windows Touch
5.3 Utility Package Operation

5.3.1 Common utility package operations

(1) **Control keys**

Special keys that can be used for operation of the utility package and their applications are shown in the table below.

<table>
<thead>
<tr>
<th>Key</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esc</td>
<td>Cancels the current entry in a cell. Closes the window.</td>
</tr>
<tr>
<td>Tab</td>
<td>Moves between controls in the window.</td>
</tr>
<tr>
<td>Ctrl</td>
<td>Used in combination with the mouse operation to select multiple cells for test execution.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the character where the cursor is positioned. When a cell is selected, clears all of the setting contents in the cell.</td>
</tr>
<tr>
<td>Back Space</td>
<td>Deletes the character where the cursor is positioned.</td>
</tr>
<tr>
<td>↑ ↓ ← →</td>
<td>Moves the cursor.</td>
</tr>
<tr>
<td>Page Up</td>
<td>Moves the cursor one page up.</td>
</tr>
<tr>
<td>Page Down</td>
<td>Moves the cursor one page down.</td>
</tr>
<tr>
<td>Enter</td>
<td>Completes the entry in the cell.</td>
</tr>
</tbody>
</table>
(2) Data created with the utility package

The following data or files that are created with the utility package can be also handled in GX Developer. Fig5.1 shows respective data or files are handled in which operation.

(a) Intelligent function module parameter

This represents the data created in Auto refresh setting, and they are stored in an intelligent function module parameter file in a project created by GX Developer.
(b) Text files

A text file can be created by clicking the **Make text file** button on the initial setting, Auto refresh setting, or Monitor/Test screen. The text files can be utilized to create user documents.

![Diagram showing data flow]

Fig5.1 Correlation chart for data created with the utility package

Steps 1) to 3) shown in Fig5.1 are performed as follows:

1) **From GX Developer, select:**
 - [Project] → [Open project] / [Save] / [Save as]

2) **On the intelligent function module selection screen of the utility, select:**
 - [Intelligent function module parameter] → [Open parameters] / [Save parameters]

3) **From GX Developer, select:**
 - [Online] → [Read from PLC] / [Write to PLC] "Intelligent function module parameters"
 - Alternatively, from the intelligent function module selection screen of the utility, select:
 - [Online] → [Read from PLC] / [Write to PLC]
5.3.2 Operation overview

Initial setting

Enter "Start I/O No.", and select "Module type" and "Module model name".

Auto refresh setting

Refer to Section 5.5.

Refer to Section 5.4.
5.3 Utility Package Operation

5.3.2 Operation overview

1) Selecting monitor/test module screen

[Online] - [Monitor/Test]

FB conversion screen

<<FB support parameter>> tab

FB conversion

Refer to Section 5.7.

Monitor/Test screen

Select a module to be monitored/tested.

Refer to Section 5.6.

Selecting monitor/test module

Module name

Module representation status

Monitor/Test

Start UI No.

Module name/Name

Select a module to be monitored/tested.

Refer to Section 5.6.
5.3.3 Starting the Intelligent function module utility

[Operating procedure]
Intelligent function module utility is started from GX Developer.
Tools → [Intelligent function utility] → [Start]

[Setting screen]
Displayed when the <<FB support parameter>> tab is selected

[Explanation of items]

(1) Activation of other screens
The following screens can be displayed from the intelligent function module utility screen.
Common operations to the <<Intelligent function module parameter>> and <<FB support parameter>> tabs

(a) Initial setting screen
"Start I/O No.*1" → "Module type" → "Module model name" → Initial setting

(b) Auto refresh setting screen
"Start I/O No.*1" → "Module type" → "Module model name" → Auto refresh

(c) Select monitor/test module screen
[Online] → [Monitor/Test]
*1 Enter the start I/O No. in hexadecimal.

On the <<FB support parameter>> tab

(a) FB conversion screen
<<FB support parameter>> tab → FB conversion
For details, refer to Section 5.7.
Point

The <<FB support parameter>> tab is displayed when the project which is being edited is a label project.
(2) Command buttons

Common operations to the <<Intelligent function module parameter>> and <<FB support parameter>> tabs

- **Delete**

 Deletes the initial setting and auto refresh setting of the selected module.

 However, with any initial setting and auto refresh setting present, selecting the cell of "initial setting" or "auto refresh" and executing it will delete only the setting of the selected cell.

- **Exit**

 Closes this screen.

When the <<FB support parameter>> tab is selected

- **<<Parameter**

 Moves the setting of the selected line to the <<Intelligent function module parameter>> tab.

When the <<Intelligent function module parameter>> tab is selected

- **FB parameter>>**

 Moves the setting of the selected line to the <<FB support parameter>> tab.

(3) Menu bar

(a) File menu

Intelligent function module parameters of the project opened by GX Developer are handled.

- **[Open parameters]**: Reads a parameter file.
- **[Close parameters]**: Closes the parameter file. If any data are modified, a dialog asking for file saving will appear.
- **[Save parameters]**: Saves the parameter file.
- **[Delete parameters]**: Deletes the parameter file.
- **[Open FB support parameters]**: Opens the FB support parameter file.
- **[Save as FB support parameters]**: Saves the FB support parameter file.
- **[Exit]**: Closes this screen.

(b) Online menu

- **[Monitor/Test]**: Activates the Select monitor/test module screen.
- **[Read from PLC]**: Reads intelligent function module parameters from the CPU module.
- **[Write to PLC]**: Writes intelligent function module parameters to the CPU module.
5.3 Utility Package Operation

5.3.3 Starting the Intelligent function module utility

Point

1. Saving intelligent function module parameters in a file
 Since intelligent function module parameters cannot be saved in a file by the project saving operation of GX Developer, save them on the shown module selection screen for intelligent function module parameter setting.

2. Reading/writing intelligent function module parameters from/to a programmable controller CPU using GX Developer
 (a) Intelligent function module parameters can be read from and written into a programmable controller after having been saved in a file.
 (b) Set a target programmable controller CPU in GX Developer: [Online] → [Transfer setup].
 (c) When the Q66DA-G is installed to the remote I/O station, use "Read from PLC" and "Write to PLC".

3. Checking the required utility
 While the start I/O is displayed on the Intelligent function module utility setting screen, "*" may be displayed for the model name.
 This means that the required utility has not been installed or the utility cannot be started from GX Developer.
 Check the required utility, selecting [Tools] - [Intelligent function utility] - [Utility list...] in GX Developer.
5.4 Initial Setting

[Purpose]
Set the following initial setting parameters.
- D/A conversion enable/disable setting
- Rate control enable/disable setting
- Increase/decrease digital limit value
- Disconnection detection setting
- Warning output setting
- Warning output upper/lower limit value

Setting parameters in the Initial setting screen can omit parameter settings in sequence programs.

[Operating procedure]
"Start I/O No." → "Module type" → "Module model name" → Initial setting

*1 Enter the start I/O No. in hexadecimal.

[Setting screen]

[Explanation of items]

(1) Setting contents
Set D/A conversion enable/disable setting, Rate control enable/disable setting and others for each channel.
5.4 Initial Setting

(2) Command buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make text file</td>
<td>Creates a file and writes the screen data in text file format.</td>
</tr>
<tr>
<td>End setup</td>
<td>Saves the set data and ends the operation.</td>
</tr>
<tr>
<td>Cancel</td>
<td>Cancels the setting and ends the operation.</td>
</tr>
</tbody>
</table>

Point

Initial setting data are stored in intelligent function module parameters. After being written to the CPU module, the initial setting data are made effective by operating either (1) or (2).

1. Change the RUN/STOP switch of the CPU module: STOP → RUN → STOP → RUN.
2. After setting the RUN/STOP switch to RUN, power the programmable controller OFF → ON or reset the CPU module.

When using a sequence program to write initial setting data, the data will be written when the CPU module is switched from STOP to RUN. Create a program so that initial setting is re-executed in the sequence program.
5.5 Auto Refresh Setting

[Purpose]
Configure the Q66DA-G's buffer memory for automatic refresh.

[Operating procedure]
"Start I/O No. *1" → "Module type" → "Module model name" → Auto refresh

*1 Enter the start I/O No. in hexadecimal.

[Setting screen]

![Auto refresh setting screen]

- Module information:
 - Module type: D/A Conversion Module
 - Module model name: Q66DA-G
 - Start I/O No.: 0000

- Setting item:
 - CH1 Digital value
 - CH2 Digital value
 - CH3 Digital value
 - CH4 Digital value
 - CH5 Digital value
 - CH6 Digital value
 - CH1 Set value check code
 - CH2 Set value check code
 - CH3 Set value check code

- Module side
 - Buffer size
 - Module side
 - Transfer word count
 - Transfer direction
 - PLC side
 - Device

- Action buttons:
 - Make test run
 - End setup
 - Cancel
[Explanation of items]

(1) Items

- **Module side Buffer size**: Displays the buffer memory size of the setting item (fixed at one word).
- **Module side Transfer word count**: Displays the number of words to be transferred to the CPU devices from the designated address (fixed at one word).
- **Transfer direction**:
 - "→" indicates that data are written from the device to the buffer memory.
 - "←" indicates that data are loaded from the buffer memory to the device.
- **PLC side Device**: Enter a CPU module side device that is to be automatically refreshed. Applicable devices are X, Y, M, L, B, T, C, ST, D, W, R, and ZR.
 - When using bit devices X, Y, M, L or B, set a number that can be divided by 16 points (examples: X10, Y120, M16, etc.)
 - Also, buffer memory data are stored in a 16-point area, starting from the specified device number.
 - For example, if X10 is entered, data are stored in X10 to X1F.
(2) Command buttons

- Make text file: Creates a file and writes the screen data in text file format.
- End setup: Saves the set data and ends the operation.
- Cancel: Cancels the setting and ends the operation.

Point

Auto refresh setting data are stored in intelligent function module parameters. After being written to the CPU module, the auto refresh setting data are made effective by operating either (1) or (2).

1. Change the RUN/STOP switch of the CPU module: STOP → RUN → STOP → RUN.
2. After setting the RUN/STOP switch to RUN, power the programmable controller OFF → ON or reset the CPU module.

The auto refresh settings cannot be changed from sequence programs. However, processing equivalent to auto refresh can be added using the FROM/TO instruction in the sequence program.
5.6 Monitoring/Test

5.6.1 Monitor/test screen

[Purpose]
Start buffer memory monitoring/testing, I/O signal monitoring/testing, operating condition setting, offset/gain settings (refer to Section 5.6.2) and pass data (refer to Section 5.6.3) from this screen.

[Operating procedure]
"Select monitor/test module" screen → "Start I/O No." "1" → "Module model name" → Monitor/test
*1 Enter the start I/O No. in hexadecimal.
The screen can also be started from System monitor of GX Developer Version 6 or later.
Refer to the GX Developer Operating Manual for details.

[Setting screen]
1) **Offset/gain setting**

2) **Conversion characteristic**

3) **Pass data**

5.6 Monitoring/Test

5.6.1 Monitor/test screen
5.6 Monitoring/Test

5.6.1 Monitor/test screen

[Explanation of items]

(1) Items

- **Setting item**: Displays buffer memory names.
- **Current value**: Monitors the present buffer memory values.
- **Setting value**: Enter or select values to be written into the buffer memory for test operation.

(2) Command buttons

- **Current Value**: Displays the current value of the item selected. (This is used to check the text that cannot be displayed in the current value field. However, in this utility package, all items can be displayed in the display fields.)
- **Make text file**: Creates a file and writes the screen data in text file format.
- **Start monitor / Stop monitor**: Selects whether or not to monitor current values.
- **Execute test**: Performs a test on the selected items. To select more than one item, select them while holding down the Ctrl key.
- **Close**: Closes the currently open screen and returns to the previous screen.

Point

(1) Turning on or off an output enable/disable flag or writing CH Digital value during test operation changes the analog output, so perform these after ensuring the safety.

(3) Example of using "Execute test"

The following explains the case of forcing CH1 Output enable/disable flag (Y1) to turn on.

(a) Click the **Operating setting** button in the Monitor/Test screen.

(b) Change the "Y1: CH1 Output enable/disable flag" setting to "ON: enable."
 At this point, this setting is not written to the Q66DA-G.

(c) Select the field, of which setting value was changed in step (b).
 (When multiple items were changed in (b), select the fields while holding down the Ctrl key. Multiple fields can be selected by dragging the mouse over them.)

(d) Click the **Execute test** button to write the data.
 After the writing is completed, the written values are displayed in the "Current value" field.
5.6.2 Offset/gain setting operation

Perform the offset/gain setting operation in the following sequence.

1. **Switch to the offset/gain setting screen**
 Perform the operation in Section 5.6.1 to display the offset/gain setting screen. At this point, a dialog box to confirm the transition of Q66DA-G’s operation mode (normal mode -> offset/gain setting mode) is displayed. Click the Yes button to transit to the offset/gain setting mode.

2. **Specify a channel**
 Specify the target channel of offset setting or gain setting on the channel No. combo box.

3. **Specify offset/gain setting**
 Specify either offset setting or gain setting on the channel specified on the channel No. combo box using the radio button.

4. **Specify the user range setting**
 Specify a user range used for the offset/gain setting of each channel on the combo box.
(5) Set up adjustment values
Set up an adjustment value of the offset value or gain value. Select "1", "10", "100", or "1000" on the combo box, however, you can also set up adjustment values by entering a number (1 to 3000).

(6) Fine adjustment of voltage output or current output
By clicking the \(\text{+} \) button or \(-\) button, the value of voltage output or current output for the prepared adjustment value is finely adjusted.

(7) Write settings into the Q66DA-G
Write the content set by operations (2) to (6) into the Q66DA-G by clicking the Registration button.

(a) Precautions
Do not perform the following operations during writing the content set by clicking the Registration button into the module. If performed, an error occurs in Flash memory data and the Q66DA-G may not operate properly.
- Power off the programmable controller CPU.
- Reset the programmable controller CPU.

(8) Switch to the normal mode
When the offset/gain setting screen is closed by clicking the Close button after the setting operation has finished, Q66DA-G’s operation mode transits to the normal mode.

Point
If an error code is displayed while performing the setting operation, the details and measure of the error can be confirmed by clicking the button to the right of the error code display area. In addition, the error code can be cleared by clicking the Error clear button.
5.6.3 Confirmation of Conversion Characteristic

[Purpose]

The converted value of digital-analog conversion can be confirmed according to the tilt of the graph, based on the offset/gain setting.

[Operating procedure]

Monitor/Test screen → <offset/gain setting> → Conversion characteristic

[Setting screen]

[Explanation of items]

(1) Items

I/O characteristic diagram: Displays the I/O conversion characteristic to the prepared offset/gain setting.

(2) Setting details

Analog and Range setting

Analog: Select the output (voltage/current) when a digital value is converted to an analog value.

Range setting: Select either "User range setting 2" or "User range setting 3". However, if "Current" is selected for the "Analog" item, only "User range setting 1" can be selected.

Offset/Gain setting

Offset value: Enter an offset value to display the I/O characteristic diagram.

Gain value: Enter a gain value to display the I/O characteristic diagram.
Analog/digital conversion: Select a conversion type shown below for confirming the correspondence between an analog value and a digital value caused by the conversion characteristic.
 • Digital → Analog
 • Analog → Digital

Analog value: <When converted to a digital value>
Enter an analog value to be converted to a digital value
<When converted to an analog value>
The analog value converted from a digital value is displayed.

Digital value: <When converted to a digital value>
The digital value corresponding to an entered analog value is displayed.
<When converted to an analog value>
Enter a digital value to be converted to an analog value.

Point

• The offset value is the analog output value (voltage or current) when a digital entry value of 0 is set from the programmable controller CPU.
• The gain value is the analog value (voltage or current) output when the digital input value set from the programmable controller CPU is as follows:

<table>
<thead>
<tr>
<th>Resolution Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal resolution mode</td>
<td>4000 (User range setting 1 to 3)</td>
</tr>
<tr>
<td>High resolution mode</td>
<td>12000 (User range setting 1 to 3)</td>
</tr>
</tbody>
</table>

(3) Command button

Range setting
The entered offset/gain value is determined, and the I/O characteristic diagram is updated.

Conversion
Conversion for the entered value is performed.
5.6.4 Pass data

Save and restore the user range data in the following sequence.

(1) **Switch to the Pass data screen**

Perform the operation in Section 5.6.1 to display the Pass data screen.

(2) **User range saving**

 (a) Set the user range to be used in the Setting value field of CH Pass data classification setting, and click the **Execute test** button.

 When the user range setting is completed, it is displayed in the Current value field of CH Pass data classification setting.

 (b) Change the Setting value field of Pass data read request to "Request", and click the **Execute test** button.

 When reading is completed, the values are displayed in the Current value fields of CH Industrial shipment settings offset/gain values/CH User range settings offset/gain values.

 (c) Compare the values with those in the range reference table, and record them if they are correct.

 Refer to Section 7.4 for the range reference table.
(3) User range restoration

(a) Set the user range to be used in the Setting value field of CH Pass data classification setting, and click the **Execute test** button. When the user range setting is completed, the set user range is displayed in the current value field of CH Pass data classification setting.

(b) Set the recorded values in the Setting value fields of CH Industrial shipment settings offset/gain values/user range settings offset/gain values.

(c) Select all the Setting value fields of CH Industrial shipment settings offset/gain values/user range settings offset/gain values, and click the **Execute test** button. When writing is completed, the set values are displayed in the Current value fields of CH Industrial shipment settings offset/gain values/CH User range settings offset/gain values.

(d) Change the Setting value field of Pass data write request to "Request", and click the **Execute test** button. Make sure that the indication in the Current value field of Pass data write request changes from "Request" to "OFF" on completion of writing.
5.7 FB Conversion of Initial Setting/Auto Refresh Setting

[Purpose]
FB is generated automatically from the intelligent function module parameter (initial setting/auto refresh setting).

[Operating procedure]
Intelligent Function Module Parameter Setting Module Selection Screen
<<FB Support Parameter>> tab → FB conversion

[Setting screen]

[Explanation of items]

(1) Items
Start I/O No : The start I/O No. of the information which is set up on the currently open intelligent function module parameter is displayed.
Module model name : The module model name of the information which is set up on the currently open intelligent function module parameter is displayed.
Initial setting : Set up whether to apply FB conversion to the parameter or not.
Check if you apply FB conversion to the parameter.
Auto refresh : Set up whether to apply FB conversion to the parameter or not.
Check if you apply FB conversion to the parameter.
FB program name : Set up the name of the converted FB program. Up to six single-byte characters can be set up as an FB program name. However, the characters and terms shown below cannot be set up as FB program name.

- Character: \, /, :, ;, *, ?, “, <, >, |, ,, ,.,
- Term: COM1 to COM9, LPT1 to LPT9, AUX, PRN, CON, NUL, CLOCK$

In addition, I- is added for initial setting and A- is added for auto refresh setting respectively to the top of the FB name setting to be registered in GX Developer after FB conversion is performed.

Ex.: If the FB program name is "ABCDE", the initial setting is "I-ABCDE" and the auto refresh setting is "A-ABCDE".

Title : Set up a title on a converted FB program. Up to 32 single-byte characters can be set up as a title.

(2) Command buttons

Conversion FB conversion is performed for the checked columns of initial setting and auto refresh setting.
5.8 Usage of FB

This section describes the procedure for using FB with GX Developer. Refer to the "GX Developer Version 8 Operating Manual (Function Block)" for details.

5.8.1 Outline

The procedure for creating FB is shown below.

1) Set up the intelligent function module parameter (initial setting/auto refresh setting).
2) Convert the intelligent function module parameter into FB.
3) Paste the FB to a sequence program.
4) Convert (compile) the sequence program.

Next, a flowchart of procedures 1) to 4) is shown below.
The initial setting/auto refresh setting of the intelligent function module can be performed by each of the following methods.

1. Set intelligent function parameters (Initial setting/Auto refresh setting) and write them to the programmable controller CPU.

2. Create an FB of the intelligent function module parameter (initial setting/auto refresh setting) and paste it to the sequence program.

In accordance with the specification of the system, perform the initial setting/auto refresh setting of the intelligent function module by one of the methods above. *1

*1 The following explains the case in which both of (1) and (2) are performed.

(a) Initial setting
 FB setting given in (2) is valid.

(b) Auto refresh setting
 • Both (1) and (2) are valid.
 • At the time of FB execution and in the END processing of the sequence program, automatic refresh is performed.

Therefore, an analog value corresponding to the specified digital value is output at each auto refresh time.
5.8.2 Paste an FB to a Sequence Program

[Purpose of operation]
Paste an FB in order to use it with a sequence program.

[Operation procedure]
Switch the <<Project>> tab into the <<FB>> tab on GX Developer, and drag & drop the FB to be used onto the sequence program.

Before pasting

After pasting
5.8.3 Convert (Compile) a Sequence Program

[Purpose of operation]
Convert (compile) the sequence program to which an FB was pasted so that it can be executed.

[Operation procedure]
Click the [Convert] menu → [Convert/Compile] menu of GX Developer.
This chapter describes the programs of the Q66DA-G. When applying any of the program examples introduced in this chapter to the actual system, verify the applicability and confirm that no problems will occur in the system control.

6.1 Programming Procedure

Create the program that will execute the digital-analog conversion of the Q66DA-G in the following procedure.

Start

- D/A conversion enable/disable setting

 - Will scaling function be performed?
 - Yes
 - Scaling enable/disable setting
 - Scaling upper/lower limit value setting
 - No

 - Will Rate control be performed?
 - Yes
 - Rate control enable/disable setting
 - Increase/decrease digital limit value setting
 - No

 - Will Warning output be provided?
 - Yes
 - Warning output setting
 - Warning output upper/lower limit value setting
 - No

Operating condition setting request (Y9) on

- Digital value write

- D/A output enable/disable setting

- Processing for Warning output
 - Processing for Error occurrence

End
6.2 For Use in Normal System Configuration

(1) System configuration

![System configuration diagram]

(2) Conditions for the intelligent function module switch setting

<table>
<thead>
<tr>
<th>Input range setting</th>
<th>HOLD/CLEAR function setting</th>
<th>Normal resolution mode/High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 4 to 20mA</td>
<td>CLEAR</td>
<td>High resolution mode</td>
</tr>
<tr>
<td>CH2 0 to 5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3 to CH6 not used</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(3) Program conditions

(a) CH1 uses the rate control function (Refer to Section 3.2.4.)
 - CH1 Increase digital limit value: 100
 - CH1 Decrease digital limit value: 30

(b) CH2 uses the warning output function (Refer to Section 3.2.4.)
 - CH2 Warning output upper limit value: 10000
 - CH2 Warning output lower limit value: 3000
 If a warning is output, the status of Warning output flag (Un\G48) is read and processing for the warning output is performed.

(c) If an error occurs in writing a digital value, an error code is displayed in binary coded decimal (BCD) form.
 Error code shall be reset after removing of the cause.
6.2.1 Before creating a program

Perform the following steps before creating a program.

(1) Wiring of external devices
Mount the Q66DA-G on the base unit and connect the external devices.
- CH1: run the cables for current output. (For details, refer to “4.4.2 (2).)
- CH2: run the cables for voltage output. (For details, refer to “4.4.2 (1).)
(2) Intelligent function module switch setting

Based on the setting conditions given in Section 6.2 (2), make the intelligent function module switch settings.

(a) Each switch setting

1) Switches 1 and 2: Output range setting

Based on the setting conditions given in Section 6.2 (2), make the intelligent function module switch settings.

(a) Each switch setting

1) Switches 1 and 2: Output range setting

2) Switch3: HOLD/CLEAR setting function

3) Switch4: Mode setting

4) Switch5: Use prohibited (0:Fixed*)

(b) Write the settings in (a) to the Q66DA-G.

On GX Developer’s “Parameter setting” screen, select the “I/O assignment” tab, click “Switch setting”, and make settings of Switch 1 to 5 on the screen shown below.
6.2.2 Program example using the utility package

(1) List of devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>D11*1</td>
<td>CH1 Digital value</td>
<td></td>
</tr>
<tr>
<td>D12*1</td>
<td>CH2 Digital value</td>
<td></td>
</tr>
<tr>
<td>D16*1</td>
<td>Warning output flag</td>
<td></td>
</tr>
<tr>
<td>D17*1</td>
<td>Error code</td>
<td></td>
</tr>
<tr>
<td>M20, M21</td>
<td>CH1 Warning output flag*2</td>
<td></td>
</tr>
<tr>
<td>M22, M23</td>
<td>CH2 Warning output flag</td>
<td></td>
</tr>
<tr>
<td>X0</td>
<td>Module READY</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>External power supply READY</td>
<td></td>
</tr>
<tr>
<td>XE</td>
<td>Warning output signal</td>
<td></td>
</tr>
<tr>
<td>XF</td>
<td>Error flag</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>CH1 Output enable/disable flag</td>
<td>Q66DA-G (X/Y0 to X/YF)</td>
</tr>
<tr>
<td>Y2</td>
<td>CH2 Output enable/disable flag</td>
<td></td>
</tr>
<tr>
<td>YE</td>
<td>Warning output clear request</td>
<td></td>
</tr>
<tr>
<td>YF</td>
<td>Error clear request</td>
<td></td>
</tr>
<tr>
<td>X11</td>
<td>Output enable</td>
<td>QX10 (X10 to X1F)</td>
</tr>
<tr>
<td>X12</td>
<td>Digital value write signal</td>
<td></td>
</tr>
<tr>
<td>X14</td>
<td>Warning output reset signal</td>
<td></td>
</tr>
<tr>
<td>X15</td>
<td>Error code reset signal</td>
<td></td>
</tr>
<tr>
<td>Y20 to Y2B</td>
<td>Error code display (BCD 3 digits)</td>
<td>QY10 (Y20 to Y2F)</td>
</tr>
</tbody>
</table>

*1 Devices used for the automatic refresh function of GX Configurator-DA.
*2 Although channel 1 does not use warning output, these devices are assigned to read out data of Warning output flag of both channel 1 and 2 at a time.
(2) Operation of utility package

(a) Initial settings (Refer to Section 5.4)
 - CH1, CH2 D/A conversion enable/disable setting "Enable"
 - CH1 Rate control enable/disable setting "Enable"
 - CH1 Increase digital limit value "100"
 - CH1 Decrease digital limit value "30"
 - CH2 Warning output setting "Enable"
 - CH2 Warning output upper limit value "10000"
 - CH2 Warning output lower limit value "3000"

(b) Automatic refresh setting (Refer to Section 5.5)
 - CH1, CH2 digital values D11, D12
 - Warning output D16
 - Error code D17
(c) Write of intelligent function module parameters (Refer to Section 5.3.3)
Write the intelligent function module parameters to the CPU module. Perform this operation on the parameter setting module selection screen.

(3) Program example

Write digital values

<table>
<thead>
<tr>
<th>X12</th>
<th>X0</th>
<th>X7</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>K2000</td>
<td>D11</td>
</tr>
<tr>
<td>MOV</td>
<td>K4000</td>
<td>D12</td>
</tr>
</tbody>
</table>

Set analog output enable

<table>
<thead>
<tr>
<th>X11</th>
<th>X0</th>
<th>X7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 Output enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH2 Output enable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Read warning output flag

<table>
<thead>
<tr>
<th>X16</th>
<th>X0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>D16</td>
</tr>
<tr>
<td>MOV</td>
<td>K100</td>
</tr>
<tr>
<td>MOV</td>
<td>K200</td>
</tr>
</tbody>
</table>

| CH1 Warning output (upper limit value) processing |
| CH2 Warning output (upper limit value) processing |

| CH2 Warning output clear request (YE) on |
| CH2 Warning output clear request (YE) off |

Error code display and reset processing

<table>
<thead>
<tr>
<th>X15</th>
<th>X0F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCD</td>
<td>D17</td>
</tr>
<tr>
<td>K100</td>
<td></td>
</tr>
</tbody>
</table>

| Error code output in BCD |
| Error clear request (YF) on |
| Error clear request (YF) off |

| END |

| CH1 Digital value setting |
| CH2 Digital value setting |

| CH1 Output enable |
| CH2 Output enable |

| CH1 Warning output (upper limit value) processing |
| CH2 Warning output (upper limit value) processing |

| CH2 Warning output clear request (YE) on |
| CH2 Warning output clear request (YE) off |

| Error code output in BCD |
| Error clear request (YF) on |
| Error clear request (YF) off |
6.2.3 Programming example without using the utility package

(1) List of devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Module READY check flag</td>
</tr>
<tr>
<td>M20, M21</td>
<td>CH1 Warning output flag<sup>1</sup></td>
</tr>
<tr>
<td>M22, M23</td>
<td>CH2 Warning output flag</td>
</tr>
<tr>
<td>X0</td>
<td>Module READY</td>
</tr>
<tr>
<td>X7</td>
<td>External power supply READY</td>
</tr>
<tr>
<td>X9</td>
<td>Operating condition setting completed flag</td>
</tr>
<tr>
<td>XE</td>
<td>Warning output signal</td>
</tr>
<tr>
<td>XF</td>
<td>Error flag</td>
</tr>
<tr>
<td>Y1</td>
<td>CH1 Output enable/disable flag</td>
</tr>
<tr>
<td>Y2</td>
<td>CH2 Output enable/disable flag</td>
</tr>
<tr>
<td>Y9</td>
<td>Operating condition setting request</td>
</tr>
<tr>
<td>YE</td>
<td>Warning output clear request</td>
</tr>
<tr>
<td>YF</td>
<td>Error clear request</td>
</tr>
<tr>
<td>X11</td>
<td>Output enable</td>
</tr>
<tr>
<td>X12</td>
<td>Digital value write signal</td>
</tr>
<tr>
<td>X14</td>
<td>Warning output reset signal</td>
</tr>
<tr>
<td>X15</td>
<td>Error code reset signal</td>
</tr>
<tr>
<td>Y20 to Y2B</td>
<td>Error code display (BCD 3 digits)</td>
</tr>
</tbody>
</table>

¹ Although channel 1 does not use warning output, these devices are assigned to read out data of Warning output flag of both channel 1 and 2 at a time.

Q66DA-G (X/Y0 to X/YF)
QX10 (X10 to X1F)
QY10 (Y20 to Y2F)
(2) Program example

Initial setting

<table>
<thead>
<tr>
<th>Channel</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0</td>
<td>SET M0</td>
</tr>
<tr>
<td>W0</td>
<td>MOV H0C 00</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV H0E 046</td>
</tr>
<tr>
<td>X0</td>
<td>MOV K100 070</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV K30 071</td>
</tr>
<tr>
<td>X0</td>
<td>MOV H30 047</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV K1000 088</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV K3000 089</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV SET Y9</td>
</tr>
<tr>
<td>Y0</td>
<td>MOV RST Y9</td>
</tr>
<tr>
<td>X0</td>
<td>RST M0</td>
</tr>
<tr>
<td>Y0</td>
<td>RST Y9</td>
</tr>
</tbody>
</table>

Write digital values

<table>
<thead>
<tr>
<th>Channel</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X12</td>
<td>MOV K2000 01</td>
</tr>
<tr>
<td>X0</td>
<td>MOV K4000 02</td>
</tr>
</tbody>
</table>

Set analog output enable

<table>
<thead>
<tr>
<th>Channel</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X11</td>
<td>CY1</td>
</tr>
<tr>
<td>X0</td>
<td>CY2</td>
</tr>
</tbody>
</table>

Read warning output flag

<table>
<thead>
<tr>
<th>Channel</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>XOE</td>
<td>MOV UC0 G4510</td>
</tr>
<tr>
<td>W02</td>
<td>MOV K1001</td>
</tr>
<tr>
<td>W03</td>
<td>MOV K1002</td>
</tr>
<tr>
<td>X14</td>
<td>SET YOE</td>
</tr>
<tr>
<td>XOE</td>
<td>RST YOE</td>
</tr>
</tbody>
</table>

Error code display and reset processing

<table>
<thead>
<tr>
<th>Channel</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X15</td>
<td>EXD UC5 G19 32</td>
</tr>
<tr>
<td>XOF</td>
<td>SET YOF</td>
</tr>
<tr>
<td>XOF</td>
<td>RST YOF</td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

- Turns on the module ready check flag
- D/A conversion enabled/disabled setting
- Rate control enabled/disabled setting
- CH1 Increase digital limit value
- CH1 Decrease digital limit value
- Warning output setting
- CH2 Warning output upper limit value setting
- CH2 Warning output lower limit value setting
- Operating condition setting request (Y9) on
- Turns off the module ready check flag
- Operating condition setting request (Y9) off
- CH1 Digital value setting
- CH2 Digital value setting
- CH1 Output enable
- CH2 Output enable
- Warning output channel check
- CH2 Warning output (upper limit value) processing
- CH2 Warning output (lower limit value) processing
- Warning output clear request (YE) on
- Warning output clear request (YE) off
- Error code output in BCD
- Error clear request (YF) on
- Error clear request (YF) off
6.3 For Use on Remote I/O Network

(1) System configuration

Remote master station (Network No.1) Remote I/O station (Station No.1)

Based on the setting conditions given in the above, make the intelligent function module switch settings.

Select the [I/O assignment] tab on the [Intelligent function module switch settings] screen, and click [Switch setting] to set the following values.

<table>
<thead>
<tr>
<th>Switch No.</th>
<th>Setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
<td>0030H</td>
</tr>
<tr>
<td>Switch 2</td>
<td>0000H</td>
</tr>
<tr>
<td>Switch 3</td>
<td>0000H (CH1, CH2: CLEAR)</td>
</tr>
<tr>
<td>Switch 4</td>
<td>0F00H (High resolution mode)</td>
</tr>
<tr>
<td>Switch 5</td>
<td>0000H (0: Fixed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input range setting</th>
<th>HOLD/CLEAR function setting</th>
<th>Normal/High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 4 to 20mA</td>
<td>CLEAR</td>
<td>High resolution mode</td>
</tr>
<tr>
<td>CH2 0 to 5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3 to CH6 not used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote master station (Network No.1) Remote I/O station (Station No.1)

QY10 (Y110 to Y11F)
Q66DA-G(X/Y120 to X/Y12F)
QY10 (Y110 to Y11F)
QX10 (X100 to X10F)
QJ72LP25
QX10 (X20 to X2F)
QJ71LP21
QY10 (Y30 to Y3F)
(3) Program conditions

(a) CH1 uses the rate control function (Refer to Section 3.2.4.)
 • CH1 Increase digital limit value: 100
 • CH1 Decrease digital limit value: 30

(b) CH2 uses the warning output function (Refer to Section 3.2.3.)
 • CH2 Warning output upper limit value: 10000
 • CH2 Warning output lower limit value: 3000
 If a warning is output, Warning output flag status is read and processing for the warning output is performed.

(c) If an error occurs in writing a digital value, an error code is displayed in binary coded decimal (BCD) form.
 Error code shall be reset after removing of the cause.

(4) List of devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>W11*1</td>
<td>CH1 Digital value</td>
</tr>
<tr>
<td>W12*1</td>
<td>CH2 Digital value</td>
</tr>
<tr>
<td>W116*1</td>
<td>Warning output flag</td>
</tr>
<tr>
<td>W117*1</td>
<td>Error code</td>
</tr>
<tr>
<td>M20,M21</td>
<td>CH1 Warning output flag*2</td>
</tr>
<tr>
<td>M22,M23</td>
<td>CH2 Warning output flag</td>
</tr>
<tr>
<td>X20</td>
<td>Initial setting request signal</td>
</tr>
<tr>
<td>X21</td>
<td>Output enable</td>
</tr>
<tr>
<td>X22</td>
<td>Digital value write signal</td>
</tr>
<tr>
<td>X24</td>
<td>Warning output reset signal</td>
</tr>
<tr>
<td>X25</td>
<td>Error code reset signal</td>
</tr>
<tr>
<td>Y30 to Y3B</td>
<td>Error code display (BCD 3 digits)</td>
</tr>
<tr>
<td>X120</td>
<td>Module READY</td>
</tr>
<tr>
<td>X127</td>
<td>External power supply READY</td>
</tr>
<tr>
<td>X129</td>
<td>Operating condition setting completed flag</td>
</tr>
<tr>
<td>X12E</td>
<td>Warning output signal</td>
</tr>
<tr>
<td>X12F</td>
<td>Error flag</td>
</tr>
<tr>
<td>Y121</td>
<td>CH1 Output enable/disable flag</td>
</tr>
<tr>
<td>Y122</td>
<td>CH2 Output enable/disable flag</td>
</tr>
<tr>
<td>Y129</td>
<td>Operating condition setting request</td>
</tr>
<tr>
<td>Y12E</td>
<td>Warning output clear request</td>
</tr>
<tr>
<td>Y12F</td>
<td>Error clear request</td>
</tr>
</tbody>
</table>

*1 Devices used for the automatic refresh function of GX Configurator-DA.
*2 Although channel 1 does not use warning output, these devices are assigned to read out data of Warning output flag of both channel 1 and 2 at a time.
*3 When the initial setting is made by GX Configurator-DA, X20 is not used.

Point

For details on the MELSECNET/H remote I/O network, refer to the Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O Network).
6.3.1 Program example using the utility package

(1) Operating GX Developer

(a) Network parameter setting

- Network type: MNET/H (remote master)
- Head I/O No.: 0000H
- Network No.: 1
- Total number of (slave) stations: 1
- Mode: Online
- Network range assignment:

```
+---------------------------------+----------+----------+----------+----------+----------+----------+----------+
| Station No.                   | Y Points | Y Start  | Y End    | X Points | X Start  | X End    |
+---------------------------------+----------+----------+----------+----------+----------+----------+
| 1                              | 295      | 0110     | OFF      | 295      | 0110     | OFF      |
+---------------------------------+----------+----------+----------+----------+----------+----------+
```

- Refresh parameters:

```
<table>
<thead>
<tr>
<th>Link side</th>
<th>Device</th>
<th>Points</th>
<th>Start</th>
<th>End</th>
<th>Device</th>
<th>Points</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans1: SE</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>SB</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
<tr>
<td>Trans1: SW</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>SN</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
<tr>
<td>Trans2: LW</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>LW</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
<tr>
<td>Trans3: LW</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>LW</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
<tr>
<td>Trans4: LW</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>X</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
<tr>
<td>Trans5: LW</td>
<td>51.2</td>
<td>0000</td>
<td>OFF</td>
<td></td>
<td>Y</td>
<td>51.2</td>
<td>0100</td>
<td>OFF</td>
</tr>
</tbody>
</table>
```

6.3 For Use on Remote I/O Network
6.3.1 Program example using the utility package
(2) Operating the utility package

(a) Initial setting (Refer to Section 5.4)
 CH1, CH2 D/A conversion enable/disable setting...... "Enable"
 CH1 Rate control enable/disable setting.............. "Enable"
 CH1 Increase digital limit value........................ "100"
 CH1 Decrease digital limit value....................... "30"
 CH2 Warning output setting............................ "Enable"
 CH2 Warning output upper limit value.................. "10000"
 CH2 Warning output lower limit value.................. "3000"

(b) Auto refresh setting (Refer to Section 5.5)
 CH1, CH2 digital values.................................. W11, W12
 Warning output... W116
 Error code.. W117

(c) Write of intelligent function module parameters (Refer to Section 5.3.3)
 The intelligent function module parameters are written to the remote I/O station.
 Perform this operation on the parameter setting module selection screen.
6.3 For Use on Remote I/O Network
6.3.1 Program example using the utility package

(3) Programming example

Write digital values

- **X20**
- **X22**
- **X127**

Set analog output enable

- **X21**
- **X120**
- **X127**

Read warning output flag

- **X126**
- **X72**
- **X73**
- **X125**
- **X129**

Error code display and reset processing

- **X57**
- **X7F**

Point

To write the intelligent function module parameters, set the target remote I/O station from [Online] - [Transfer setup] in GX Developer.

They can be written by:

- Directly connecting GX Developer to the remote I/O station.
- Connecting GX Developer to another device such as a CPU module and passing through the network.
6.3.2 Program example without using the utility package

(1) Operation of GX Developer (Network parameter setting)

- Network type: MNET/H (remote master)
- Head I/O No.: 0000H
- Network No.: 1
- Total number of (slave) stations: 1
- Mode: Online
- Network range assignment:

<table>
<thead>
<tr>
<th>Station No.</th>
<th>Y Station</th>
<th>R Station</th>
<th>X Station</th>
<th>M Station</th>
<th>R Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Points</td>
<td>Start</td>
<td>End</td>
<td>Points</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>536</td>
<td>0000</td>
<td>0000</td>
<td>536</td>
<td>0000</td>
</tr>
</tbody>
</table>

- Refresh parameters:

<table>
<thead>
<tr>
<th>Transfer S8</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer SW</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random cycle</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 1</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 2</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 3</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 4</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>0132</td>
<td>0132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 5</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfer 6</th>
<th>PLC Side</th>
<th>PLC Side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) Programming example

Remote I/O station operating status check

- Initial setting
- Master station baton pass status check
- Master station data link status check
- Remote I/O station baton pass status check
- Remote I/O station data link status check
- Remote I/O station parameter communication status check

- Remote module status check

- D/A conversion enable/disable setting
- Rate control enable/disable setting
- CH1 Increase digital limit value
- CH1 Decrease digital limit value
- Warning output setting
- CH2 Warning output upper limit value setting
- CH2 Warning output lower limit value setting
6.3 For Use on Remote I/O Network

6.3.2 Program example without using the utility package

```
<table>
<thead>
<tr>
<th>X102</th>
<th>X129</th>
<th>Y129</th>
</tr>
</thead>
<tbody>
<tr>
<td>W000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W040</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- W000 \[\rightarrow\] K1 \[\rightarrow\]
- W010 \[\rightarrow\] K2 \[\rightarrow\]
- W020 \[\rightarrow\] K3 \[\rightarrow\]
- W030 \[\rightarrow\] K4 \[\rightarrow\]

Operating condition setting request (Y9) on

Write digital values

CH1 Digital value setting
CH2 Digital value setting

Set analog output enable

CH1 Output enable
CH2 Output enable

Write to buffer memory

Operating condition setting request (Y9) off
```
Read warning output flag

- MOV W116 K180
- CH2 Warning output (lower limit value) processing
- CH2 Warning output (upper limit value) processing
- Warning output clear request (YE) on
- Warning output clear request (YE) off
- Read warning output flag

Error code display and reset processing

- MOV W117 K3130
- Error code output in BCD
- Error clear request (YF) on
- Error clear request (YF) off
- Read error code

Processing for warning output

- SET Y12E
- RST Y12E

Warning output channel check

- PROGRAMMING
7 ONLINE MODULE CHANGE

To perform online module change, read the section about online module change in the QCPU User’s Manual (Hardware Design, Maintenance and Inspection).

This chapter describes the specifications of an online module change.

(1) Perform an online module change by operating GX Developer.

(2) To ensure ease of offset/gain re-setting, there is a user range save/restoration function that is performed by executing the dedicated instruction or read/write from/to buffer memory.

Point

(1) Perform an online module change after making sure that the system outside the programmable controller will not malfunction.

(2) To prevent an electric shock and malfunction of operating modules, provide means such as switches for powering off each of the external power supply and external devices connected to the module to be replaced online.

(3) After the module has failed, data may not be saved properly. Referring to Section 3.4.18, therefore, prerecord the data to be saved (offset/gain values of the industrial shipment settings and user range settings in the buffer memory).

(4) It is recommended to perform an online module change in the actual system in advance to ensure that it would not affect the other modules by checking the following:
 - Means of cutting off the connection to external devices and its configuration are correct.
 - Switching on/off does not bring any undesirable effect.

(5) Do not install/remove the module to/from the base unit more than 50 times after the first use of the product. (IEC 61131-2 compliant)

 Failure to do so may cause malfunction.

(Note)

Dedicated instructions cannot be executed during online module change. When execution of a dedicated instruction is needed to save and restore data, execute it using another system*1.

If no other system exists, restore the data by writing them to the buffer memory.

*1 If the module is mounted on a remote I/O station, execute save/restoration on another system connected to the main base unit. (Saving and restoration cannot be executed by using a system connected to a remote I/O station.)
7.1 Online Module Change Conditions

The CPU, MELSECNET/H remote I/O module, Q66DA-G, GX Developer and base unit given below are needed to perform an online module change.

(1) **CPU**
The Process CPU or Redundant CPU are required. For precautions on multiple CPU system configuration, refer to the QCPU User’s Manual (Multiple CPU System). For precautions on redundant system configuration, refer to the QnPRHCPU User’s Manual (Redundant System).

(2) **MELSECNET/H remote I/O module**
The module of function version D or later is necessary.

(3) **GX Developer**
GX Developer of Version 7.10L or later is necessary. GX Developer of Version 8.18U or later is required to perform an online module change on the remote I/O station.

(4) **Base unit**
1) When the slim type main base unit (Q3SB) is used, an online module change cannot be performed.
2) When the power supply module unnecessary type extension base unit (Q5B) is used, online module change cannot be performed for the modules on all the base units connected.
7.2 Online Module Change Operations

The following gives the operations performed for an online module change.

<table>
<thead>
<tr>
<th>CPU operation</th>
<th>X/Y refresh</th>
<th>FROM/TO instruction</th>
<th>Dedicated instruction</th>
<th>Device test</th>
<th>Initial setting parameter</th>
<th>Monitor/test</th>
<th>(User operation)</th>
<th>(Intelligent function module operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>x</td>
<td>x</td>
<td>(1) Conversion disable: Turn off all Y signals that were turned on by a sequence program. *2</td>
<td>Module is operating as usual.</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>(2) Dismounting of module: Operate GX Developer to start an online module change</td>
<td>Module stops operating. RUN LED turns off. Conversion disabled. Analog output is 0V/0mA.</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>O</td>
<td>O</td>
<td>(3) Mounting of new module: After mounting the module, click the [Execution] button of GX Developer.</td>
<td>X/Y refresh resumes and the module starts. RUN LED turns on. Default operation (X0 remains off)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4) Operation check: Operation check before control start</td>
<td>When there are initial setting parameters, operation is performed according to the initial setting parameters at this point.</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>x</td>
<td>x</td>
<td>O</td>
<td>x</td>
<td>O</td>
<td>(5) Resumption of control: Operate GX Developer to resume the online module change mode, and click the [Execution] button to resume control.</td>
<td>Module operates according to test operation *4</td>
</tr>
</tbody>
</table>

*1 Access to the intelligent function module device (U□/G□) is included.

*2 Operating the intelligent function module switches (*3) starts the module and resumes X/Y refresh. When there are initial setting parameters, operation is performed according to the initial setting parameters.

Hence, if the Y signals are not turned off, analog outputs will be provided at this point. Therefore, always turn off the Y signals that were turned on by the sequence program.

*4 In the absence of the operation marked *, the operation of the intelligent function module is the operation performed prior to that.

*5 If a module in either of 4 to 20mA (Extended mode) or 1 to 5V (Extended mode) range is replaced online with a module that does not support the extended mode range, an intelligent function module switch error occurs and the extended mode range is not available.
7.3 Online Module Change Procedure

There are the following online module change procedures depending on whether the user range setting has been made or not, whether the initial setting of GX Configurator-DA has been made or not, and whether the other system exists or not.

<table>
<thead>
<tr>
<th>Range setting</th>
<th>Initial setting</th>
<th>Other system</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial shipment setting</td>
<td>GX Configurator-DA</td>
<td>-</td>
<td>Section 7.3.1</td>
</tr>
<tr>
<td>Industrial shipment setting</td>
<td>Sequence program</td>
<td>-</td>
<td>Section 7.3.2</td>
</tr>
<tr>
<td>User range setting</td>
<td>GX Configurator-DA</td>
<td>Present</td>
<td>Section 7.3.3</td>
</tr>
<tr>
<td>User range setting</td>
<td>Sequence program</td>
<td>Absent</td>
<td>Section 7.3.4</td>
</tr>
<tr>
<td>User range setting</td>
<td>Sequence program</td>
<td>Present</td>
<td>Section 7.3.5</td>
</tr>
<tr>
<td>User range setting</td>
<td>Sequence program</td>
<td>Absent</td>
<td>Section 7.3.6</td>
</tr>
</tbody>
</table>

7.3.1 When industrial shipment setting is used and initial setting was made with GX Configurator-DA

(1) Conversion disable

(a) Take the following steps to disable the conversion:

1) Set D/A conversion enable/disable setting (Un\G0) to All channel conversion disable (3FH).

2) Turn Operating condition setting request (Y9) from off to on to stop the conversion.

3) Operating condition setting completed flag (X9) turns off from on.

4) Check that the conversion is stopped by seeing the actual analog output value.

5) Turn Operating condition setting request (Y9) from on to off.
(2) Dismounting of module

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.

(b) Click the "Execution" button to enable a module change.

If the following error message appears, click the [OK] button, dismount the module as-is, and mount a new module.
7.3 Online Module Change Procedure

7.3.1 When industrial shipment setting is used and initial setting was made with GX Configurator-DA

(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point

Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.

(3) Mounting of new module

(a) Mount a new module to the same slot and install the connector.

(b) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.

(4) Operation check

(a) To make an operation check, click the [Cancel] button to cancel control resumption.
(b) Click the [OK] button to leave the "Online module change" mode.

(c) Click the [Close] button to close the System Monitor dialog box.

(d) Set a digital value to CH□ Digital value (Un\G1 to Un\G6), and turn on and off Operating condition setting request (Y9). Turn on Output enable/disable flag (Y1 to Y6) of a channel to be used, and check whether proper conversion has been made or not.
 (Be careful since corresponding analog signals will be actually output.)

(5) Resumption of control

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to display the "Online module change" screen again, click the [Execution] button to resume control. Module READY (X0) will be turned on.
7.3 Online Module Change Procedure

7.3.1 When industrial shipment setting is used and initial setting was made with GX Configurator-DA

(b) A message, "Online module change completed." appears.
7.3.2 When industrial shipment setting is used and initial setting was made with sequence program

(1) Conversion disable

(a) Take the following steps to disable the conversion:

1) Set D/A conversion enable/disable setting (Un\G0) to All channel conversion disable (3FH).
2) Turn Operating condition setting request (Y9) from off to on to stop the conversion.
3) Operating condition setting completed flag (X9) turns off from on.
4) Check that the conversion is stopped by seeing the actual analog output value.
5) Turn Operating condition setting request (Y9) from on to off.

![Image of device test interface]
(2) Dismounting of module

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.

(b) Click the "Execution" button to enable a module change.

If the following error message appears, click the [OK] button, dismount the module as-is, and mount a new module.
(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point

Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.

(3) Mounting of new module

(a) Mount a new module to the same slot and install the connector.

(b) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.
(4) **Operation check**

(a) To make an operation check, click the [Cancel] button to cancel control resumption.

(b) Click the [OK] button to leave the "Online module change" mode.

(c) Click the [Close] button to close the System Monitor dialog box.
(d) Enable conversion for a channel to be used by setting D/A conversion enable/disable setting (Un\G0). Set a digital value to CH\[Digital value (Un\G1 to Un\G6) and turn on and off Operating condition setting request (Y9). Turn on Output enable/disable flag (Y1 to Y6) of a channel to be used, and check whether proper conversion has been made or not. (Be careful since corresponding analog signals will be actually output.)

(e) Since the new module is in a default status, it must be initialized by a sequence program after control resumption. Before performing initialization, check whether the contents of the initialization program are correct or not.

1) Normal system configuration
 The sequence program should perform initialization on the leading edge of Module READY (X9) of the Q66DA-G.
 When control resumption is executed, Module READY (X0) turns on and initialization is performed. (If the sequence program performs initialization only for one scan after entering the RUN status, initialization is not performed.)

2) When used on remote I/O network
 Insert a user device that will execute initialization at any timing (initialization request signal) into the sequence program. After control resumption, turn on the initialization request signal to perform initialization. (If the sequence program performs initialization only one scan after a data link start of the remote I/O network, initialization is not performed.)
(5) Resumption of control

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to display the "Online module change" screen again, click the [Execution] button to resume control. Module READY (X0) will be turned on.

(b) A message, "Online module change completed" appears.
7.3.3 When user range setting is used and initial setting was made with GX Configurator-DA (other system is available)

(1) Conversion disable

(a) Take the following steps to disable the conversion:

1) Set D/A conversion enable/disable setting (Un\G0) to All channel conversion disable (3FH).

2) Turn Operating condition setting request (Y9) from off to on to stop the conversion.

3) Operating condition setting completed flag (X9) turns off from on.

4) Check that the conversion is stopped by seeing the actual analog output value.

5) Turn Operating condition setting request (Y9) from on to off.
(2) Dismounting of module

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.

(b) Click the "Execution" button to enable a module change.

If the following error message appears, the user range data cannot be saved. Click the [OK] button, and perform the operation in Section 7.3.4 (2) (c) and later.
(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point

Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.

(3) Mounting of new module

(a) Mount the dismounted module and new module to the other system.

(b) Using the G(P).OGLOAD instruction, save the user set values to the CPU device. Refer to Appendix 1.2 for the G(P).OGLOAD instruction.

(c) Using the G(P).OGSTOR instruction, restore the user set values to the module. Refer to Appendix 1.3 for the G(P).OGSTOR instruction.

(d) Dismount the new module from the other system, mount it to the slot from where the old module was dismounted in the original system, and install the connector.

(e) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.
(4) Operation check

(a) To make an operation check, click the [Cancel] button to cancel control resumption.

(b) Click the [OK] button to leave the "Online module change" mode.

(c) Click the [Close] button to close the System Monitor dialog box.
(d) Set a digital value to CH□ Digital value (Un\G1 to Un\G6), and turn on and off Operating condition setting request (Y9). Turn on Output enable/disable flag (Y1 to Y6) of a channel to be used, and check whether proper conversion has been made or not.
(Be careful since corresponding analog signals will be actually output.)

(5) Resumption of control

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to redisplay the "Online module change" dialog box, click the [Execution] button to resume control. Module READY (X0) will be turned on.

(b) A message, "Online module change completed" appears.
7.3.4 When user range setting is used and initial setting was made with GX Configurator-DA (other system is unavailable)

(1) Conversion disable

(a) In the Operating condition setting window of GX Configurator-DA, set "Disable" in the Setting value field of CH □ D/A conversion enable/disable setting, and click the Execute test button.

(b) After making sure that the indication in the Current value field of CH □ D/A conversion enable/disable setting is "Disable", change the Setting value field of Operating condition setting request to "Setting request", and click the Execute test button to stop conversion.

Confirm that conversion has stopped with the actual analog output value.
7.3 Online Module Change Procedure

7.3.4 When user range setting is used and initial setting was made with GX Configurator-DA (other system)

(c) If the saved buffer memory contents are not yet prerecorded, record them in the following procedure.

1) Display the pass data screen of GX Configurator-DA.

2) Select the user range used for Pass data classification setting, and make a pass data read request. (Refer to Section 5.6.4.)

3) Compare the current values of the industrial shipment settings and user range settings offset/gain values with those of the range reference table. Refer to Section 7.3.6 for the range reference table.

4) If the values are proper, record the offset/gain values of Pass data classification setting, Industrial shipment settings and User range settings offset/gain value.

Point

If the buffer memory values compared with the reference table are not proper, save and restoration of the user range cannot be executed.
Before executing module control resumption, make offset/gain setting in the GX Configurator-DA. (Refer to Section 5.6.2)
Note that if module control is resumed without offset/gain setting being made, operation will be performed with the default values.

(2) Dismounting of module

(a) After choosing [Diagnostic] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.
(b) Click the "Execution" button to enable a module change.

![Online module change dialog box]

If the following error message appears, the user range data cannot be saved. Click the [OK] button, and perform the operation in This Section (2) (c) and later.

![Error message dialog box]

(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point

Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.
(3) **Mounting of new module**

(a) Mount a new module to the same slot and install the connector.

(b) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.

(4) **Operation check**

(a) To make an operation check, click the [Cancel] button to cancel control resumption.

(b) Click the [OK] button to leave the "Online module change" mode.
(c) Click the [Close] button to close the System Monitor dialog box.

(d) On the pass data screen of GX Configurator-DA, set the prerecorded values and make a pass data write request. (Refer to Section 5.6.4.)

(e) In the Operating condition setting window of GX Configurator-DA, set "Enable" in the Setting value field of CH D/A conversion enable/disable setting for each channel used.

(f) In the Monitor/Test window of GX Configurator-DA, set a value in the setting value field of CH Digital value of the used channel, and click the [Execute test] button.
(g) Turn on Output enable/disable flag (Y1 to Y6) of the used channel and check whether proper conversion has been made or not.
(Be careful since corresponding analog signals will be actually output.)

(5) Resumption of control

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to redisplay the "Online module change" dialog box, click the [Execution] button to resume control. Module READY (X0) will be turned on.

(b) A message, "Online module change completed" appears.
7.3.5 When user range setting is used and initial setting was made with sequence program (other system is available)

(1) Conversion disable

(a) Take the following steps to disable the conversion:

1) Set D/A conversion enable/disable setting (Un\G0) to All channel conversion disable (3FH).
2) Turn Operating condition setting request (Y9) from off to on to stop the conversion.
3) Operating condition setting completed flag (X9) turns off from on.
4) Check that the conversion is stopped by seeing the actual analog output value.
5) Turn Operating condition setting request (Y9) from on to off.
(2) Dismounting of module

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.

![Online module change dialog box]

(b) Click the "Execution" button to enable a module change.

![Online module change window]

If the following error message appears, the user range data cannot be saved. Click the [OK] button, and perform the operation in Section 7.3.6 (2) (c) and later.

![Error message]
(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point

Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.

(3) Mounting of new module

(a) Mount the dismounted module and new module to the other system.

(b) Using the G(P).OGLOAD instruction, save the user set values to the CPU device. Refer to Appendix 1.2 for the G(P).OGLOAD instruction.

(c) Using the G(P).OGSTOR instruction, restore the user set values to the module. Refer to Appendix 1.3 for the G(P).OGSTOR instruction.

(d) Dismount the new module from the other system, mount it to the slot from where the old module was dismounted in the original system, and install the connector.

(e) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.
(4) **Operation check**

(a) To make an operation check, click the [Cancel] button to cancel control resumption.

(b) Click the [OK] button to leave the "Online module change" mode.

(c) Click the [Close] button to close the System Monitor dialog box.

(d) Enable conversion for a channel to be used by setting D/A conversion enable/disable setting (UnG0). Set a digital value to CH Digital value (UnG1 to UnG6) and turn on and off Operating condition setting request (Y9). Turn on Output enable/disable flag (Y1 to Y6) of a channel to be used, and check whether proper conversion has been made or not.

(Be careful since corresponding analog signals will be actually output.)
(e) Since the new module is in the default status, it must be initialized by a sequence program after control resumption. Before performing initialization, check whether the contents of the initialization program are correct or not.

1) Normal system configuration
The sequence program should perform initialization on the leading edge of Module READY (X9) of the Q66DA-G. When control resumption is executed, Module READY (X0) turns on and initialization is performed. (If the sequence program performs initialization only for one scan after entering the RUN status, initialization is not performed.)

2) When used on remote I/O network
Insert a user device that will execute initialization at any timing (initialization request signal) into the sequence program. After control resumption, turn on the initialization request signal to perform initialization. (If the sequence program performs initialization only one scan after a data link start of the remote I/O network, initialization is not performed.)

(5) Resumption of control
(a) After choosing [Diagnostics] - [Online module change] in GX Developer to redisplay the "Online module change" dialog box, click the [Execution] button to resume control. Module READY (X0) will be turned on.

(b) A message, "Online module change completed" appears.
7.3.6 When user range setting is used and initial setting was made with sequence program (other system is unavailable)

(1) Conversion disable

(a) Take the following steps to disable the conversion:
 1) Set D/A conversion enable/disable setting (Un\G0) to All channel conversion disable (3FH).
 2) Turn Operating condition setting request (Y9) from off to on to stop the conversion.
 3) Operating condition setting completed flag (X9) turns off from on.
 4) Check that the conversion is stopped by seeing the actual analog output value.
 5) Turn Operating condition setting request (Y9) from on to off.

 (b) If the saved buffer memory contents are not yet prerecorded, record them in the following procedure.
 1) Make Pass data classification setting (Un\G200).
 2) Turn on and off Operating condition setting request (Y9).
 3) Compare the offset/gain values of Industrial shipment settings and User range settings (Un\G214 to Un\G225) with the range reference table. Refer to Section 7.4 for the range reference table.
 4) If the values are proper, record the offset/gain values of Pass data classification setting, Industrial shipment settings, and User range settings.
Point

If the buffer memory values compared with the reference table are not proper, save and restoration of the user range cannot be executed.

Before executing module control resumption, follow the flowchart in Section 4.6 and make offset/gain setting in the device test of GX Developer.

To switch modes, set a value to Mode switching setting (Un\G158, Un\G159), and turn on and off Operating condition setting request (Y9).

Note that if module control is resumed without offset/gain setting being made, operation will be performed with the default values.
(2) Dismounting of module

(a) After choosing [Diagnostics] - [Online module change] in GX Developer to enter the "Online module change" mode, double-click the module to be changed online to display the "Online module change" dialog box.

(b) Click the "Execution" button to enable a module change.

If the following error message appears, the user range data cannot be saved. Click the [OK] button, and perform the operation in This Section (2) (c) and later.
(c) After confirming that the "RUN" LED of the module has turned off, remove the connector and dismount the module.

Point
Always perform the dismounting procedure. If mounting confirmation is made without the module being dismounted, the module will not start properly and the "RUN" LED will not be lit.

(3) **Mounting of new module**

(a) Mount a new module to the same slot and install the connector.

(b) After mounting the module, click the [Execution] button and make sure that the "RUN" LED is lit. Module READY (X0) remains off.

(4) **Operation check**

(a) To make an operation check, click the [Cancel] button to cancel control resumption.
(b) Click the [OK] button to leave the "Online module change" mode.

(c) Click the [Close] button to close the System Monitor dialog box.

(d) Choose [Online] - [Debug] - [Device test] on GX Developer and set the values prerecorded in Section (2) to the buffer memory.

(e) Turn User range writing request (YA) from off to on to restore the user set values to the module.
 After confirming Offset/gain setting mode flag (XA) is on, turn off User range writing request (YA).

(f) Enable conversion for a channel to be used by setting D/A conversion enable/disable setting (Un\G0). Set a digital value to CH\□ Digital value (Un\G1 to Un\G6) and turn on and off Operating condition setting request (Y9). Turn on Output enable/disable flag (Y1 to Y6) of a channel to be used, and check whether proper conversion has been made or not.
 (Be careful since corresponding analog signals will be actually output.)
(g) Since the new module is in a default status, it must be initialized by a sequence program after control resumption. Before performing initialization, check whether the contents of the initialization program are correct or not.

1) Normal system configuration
The sequence program should perform initialization on the leading edge of Module READY (X9) of the Q66DA-G. When control resumption is executed, Module READY (X0) turns on and initialization is performed. (If the sequence program performs initialization only for one scan after entering the RUN status, initialization is not performed.)

2) When used on remote I/O network
Insert a user device that will execute initialization at any timing (initialization request signal) into the sequence program. After control resumption, turn on the initialization request signal to perform initialization. (If the sequence program performs initialization only one scan after a data link start of the remote I/O network, initialization is not performed.)

(5) Resumption of control
(a) After choosing [Diagnostics] - [Online module change] in GX Developer to redisplay the "Online module change" dialog box, click the [Execution] button to resume control. Module READY (X0) will be turned on.

(b) A message, "Online module change completed" appears.
7.4 Range Reference Table

The range reference tables are given below.

(1) Reference table for CH□ Industrial shipment settings offset/gain value (Un\G202 to Un\G213)

The reference values change depending on the setting of Pass data classification setting (Un\G200).

<table>
<thead>
<tr>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
<th>CH5</th>
<th>CH6</th>
<th>Description</th>
<th>Pass data classification setting</th>
<th>Reference value (Hexadecimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>204</td>
<td>206</td>
<td>208</td>
<td>210</td>
<td>212</td>
<td>Industrial shipment settings offset value</td>
<td>User range setting 1 0mA</td>
<td>Approx. 7FFFH</td>
</tr>
<tr>
<td>202</td>
<td>204</td>
<td>206</td>
<td>208</td>
<td>210</td>
<td>212</td>
<td></td>
<td>User range setting 2 0V</td>
<td>Approx. 7FFFH</td>
</tr>
<tr>
<td>202</td>
<td>204</td>
<td>206</td>
<td>208</td>
<td>210</td>
<td>212</td>
<td></td>
<td>User range setting 3 0V</td>
<td>Approx. 7FFFH</td>
</tr>
</tbody>
</table>

(2) Reference table for CH□ User range settings offset/gain value (Un\G214 to Un\G225)

<table>
<thead>
<tr>
<th>Offset/gain value</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User range setting 1</td>
<td>0mA, 4mA, 20mA</td>
</tr>
<tr>
<td></td>
<td>Approx. 7FFFH, Approx. 6DB9H, Approx. 24A0H</td>
</tr>
<tr>
<td>User range setting 2</td>
<td>-10V, 0V, 10V</td>
</tr>
<tr>
<td></td>
<td>Approx. 1B36H, Approx. 7FFFH, Approx. E4C8H</td>
</tr>
<tr>
<td>User range setting 3</td>
<td>0V, 1V, 5V</td>
</tr>
<tr>
<td></td>
<td>Approx. 7FFFH, Approx. 9427H, Approx. E4C8H</td>
</tr>
</tbody>
</table>

[Example]

When using User range setting 3 in channel 1 and setting 1V to the offset value and 5V to the gain value, the following values are stored in the User range setting offset/gain value areas.

- CH1 User range settings offset value (Un\G214): Approx. 9427H
- CH1 User range settings gain value (Un\G215): Approx. E4C8H
7.5 Precautions for Online Module Change

The following are the precautions for online module change.

(1) Always perform an online module change in the correct procedure. Failure to do so can cause a malfunction or failure.

(2) If an online module change is made with the user range setting, the accuracy after that will fall to about less than three times of the accuracy before that. Re-set the offset/gain values as necessary.

(3) Do not perform the following operations during online module change. If performed, the Q66DA-G may not operate properly.

(a) Powering off the programmable controller CPU

(b) Resetting the programmable controller CPU
8 TROUBLESHOOTING

This chapter explains the types of errors that may occur when the Q66DA-G is used, and how to troubleshoot such errors.

8.1 Error Code List

If an error occurs in the Q66DA-G while reading/writing data from/to the programmable controller CPU, the applicable error code is written to Error code (Un\G19).

Table 8.1 Error code list (1/2)

<table>
<thead>
<tr>
<th>Error code (decimal)</th>
<th>Error description</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>The setting is outside the output range setting that can be made by the intelligent function module switch of the GX Developer. ☐ indicates the incorrectly specified channel number.</td>
<td>Reset to the correct parameter with GX Developer parameter setting. (Refer to Section 4.5.)</td>
</tr>
<tr>
<td>111</td>
<td>Hardware error of the module.</td>
<td>Turn the power on and off again. If the error occurs again, the module may be malfunctioning. Please consult your local Mitsubishi representative.</td>
</tr>
<tr>
<td>112</td>
<td>The value set to the intelligent function switch 5 is other than 0.</td>
<td>Re-set the correct parameter value in the parameter setting of GX Developer. (Refer to Section 4.5.)</td>
</tr>
<tr>
<td>120*1</td>
<td>An invalid value is set in the offset/gain setting. The number of the error channel cannot be identified.</td>
<td>Perform the offset/gain setting again for all of the channels that use the user range settings. If the error occurs again, the module may be malfunctioning. Please consult your local Mitsubishi representative.</td>
</tr>
<tr>
<td>120*1</td>
<td>An invalid value is set in the offset/gain setting. ☐ indicates the channel number set incorrectly.</td>
<td>Perform the offset/gain setting again for the error channel. If the error occurs again, the module may be malfunctioning. Please consult your local Mitsubishi representative.</td>
</tr>
<tr>
<td>161*2</td>
<td>The G(P).OGSTOR instruction was executed in the offset/gain setting mode.</td>
<td>Do not execute the G(P).OGSTOR instruction in the offset/gain setting mode.</td>
</tr>
<tr>
<td>162*3</td>
<td>• The G(P).OGSTOR instruction was executed consecutively. • At the time of offset/gain setting, a set value was written to the flash memory 26 or more times consecutively.</td>
<td>• Execute the G(P).OGSTOR instruction only once for one module. • At the time of offset/gain setting, write a set value only once at one time.</td>
</tr>
<tr>
<td>163*3</td>
<td>The G(P).OGSTOR instruction was executed for the model that differs from the model for which the G(P).OGLOAD instruction had been executed.</td>
<td>Execute the G(P).OGLOAD and G(P).OGSTOR instructions for the same model.</td>
</tr>
<tr>
<td>164*3</td>
<td>The value set to the G(P).OGLOAD instruction, G(P).OGSTOR instruction or Save data classification setting (Un\G200) is outside the range.</td>
<td>Set the value within the range.</td>
</tr>
</tbody>
</table>
8 - 2 8.1 Error Code List

Table 8.1 Error code list (2/2)

<table>
<thead>
<tr>
<th>Error code (decimal)</th>
<th>Error description</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 * 3</td>
<td>The offset value is equal to or larger than the gain value. □ indicates the channel number causing the error.</td>
<td>Reset so that the offset value is smaller than the gain value.</td>
</tr>
<tr>
<td>500 * 3</td>
<td>More than one channel was set at the same time during offset/gain settings.</td>
<td>Set the correct value in Offset/ gain setting mode offset/ gain specification (Un\G22, Un\G23).</td>
</tr>
<tr>
<td>60 □ * 3,4</td>
<td>The specified digital value is outside the range. □ indicates the channel number where the error occurred.</td>
<td>Set a value that is within the range.</td>
</tr>
<tr>
<td>61 □ * 3</td>
<td>The warning output upper/lower limit value setting is outside the range -32000 to 32000. □ indicates the channel number incorrectly set.</td>
<td>Correct the contents of CH□ Warning output upper/lower limit value (Un\G86 to Un\G97) to within the range -32000 to 32000.</td>
</tr>
<tr>
<td>62 □ * 3</td>
<td>The warning output lower limit value is equal to or greater than the warning output upper limit value. □ indicates the channel number incorrectly set.</td>
<td>Make setting so that the warning output upper limit value is greater than the warning output lower limit value.</td>
</tr>
<tr>
<td>700 * 3</td>
<td>The analog adjustment output in the offset/gain setting mode is outside the specified value range.</td>
<td>Change the contents of Offset/gain adjustment value specification (Un\G24) so that it is within the range from –3000 to 3000.</td>
</tr>
<tr>
<td>710 * 3</td>
<td>The value set for Offset/gain range setting is other than DH, EH, or FH.</td>
<td>Set either DH, EH, or FH for offset/gain range setting (Un\G25).</td>
</tr>
<tr>
<td>80 □ * 3</td>
<td>The increase/decrease digital limit value setting is outside the range 0 to 64000. □ indicates the channel number incorrectly set.</td>
<td>Correct the contents of CH□ Increase/decrease digital limit value (Un\G70 to Un\G81) to within the range 0 to 64000.</td>
</tr>
<tr>
<td>90 □ * 3</td>
<td>The scaling upper/lower limit value is set outside the range of –32000 to 32000. □ indicates the channel number incorrectly set.</td>
<td>Correct Scaling upper/lower limit value (Un\G54 to Un\G65) within the range of –32000 to 32000.</td>
</tr>
<tr>
<td>91 □ * 3</td>
<td>The scaling lower limit value is equal to or greater than the scaling upper limit value. □ indicates the channel number incorrectly set.</td>
<td>Set CH□ Scaling upper/lower limit value (Un\G54 to Un\G65) so that the scaling upper limit value is greater than the scaling lower limit value.</td>
</tr>
</tbody>
</table>

Point

1. When two or more errors occur, the latest error code is stored.
2. If Error code marked with *1 occurs, D/A conversions for all the channels stop. Therefore, after correcting the offset/gain setting, make the initial setting again.
3. Error code 161 marked with *2 is not stored in the Error code (Un\G19). It is written to the Completion status area, (S) + 1, of the G(P).OGSTOR instruction.
4. Error code marked with *3 can be cleared by turning on Error clear request (YF).
5. If an error marked with *4 occurs continuously, it is added to the error history of GX Developer for every conversion cycle.
8.2 Troubleshooting

8.2.1 When the "RUN" LED is flashing or turned off

(1) When flashing

<table>
<thead>
<tr>
<th>Check item</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the mode set to the offset/gain setting mode?</td>
<td>Reset switch 4 of the intelligent function module switch setting for GX Developer to the normal mode (Refer to Section 4.5).</td>
</tr>
</tbody>
</table>

(2) When off

<table>
<thead>
<tr>
<th>Check item</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is power being supplied?</td>
<td>Confirm that the supply voltage for the power supply module is within the rated range.</td>
</tr>
<tr>
<td>Is the capacity of the power supply module adequate?</td>
<td>Calculate the current consumption of the CPU module, I/O module and intelligent function module mounted on the base unit to see if the power supply capacity is adequate.</td>
</tr>
<tr>
<td>Has a watchdog timer error occurred?</td>
<td>Reset the programmable controller CPU and verify that it is lit. If the RUN LED does not light even after doing this, the module may be malfunctioning. Please consult your local Mitsubishi representative.</td>
</tr>
<tr>
<td>Is the module correctly mounted on the base unit?</td>
<td>Check the mounting condition of the module.</td>
</tr>
<tr>
<td>Is a module change enabled during an online module change?</td>
<td>Refer to Chapter 7 and take corrective action.</td>
</tr>
</tbody>
</table>

8.2.2 When the "ERR." LED is on or flashing

(1) When turning on

<table>
<thead>
<tr>
<th>Check item</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is an error being generated?</td>
<td>Confirm the error code and take corrective action described in Section 8.1.</td>
</tr>
</tbody>
</table>

(2) When flashing

<table>
<thead>
<tr>
<th>Check item</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is intelligent function module setting switch 5 set to "other than 0"?</td>
<td>Using GX Developer parameter setting, set intelligent function module setting switch 5 to "0" (Refer to Section 4.5).</td>
</tr>
</tbody>
</table>

8.2.3 When the "ALM" LED is turned on

<table>
<thead>
<tr>
<th>Check item</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the warning output occurred?</td>
<td>Check Warning output flag (UniG48).</td>
</tr>
</tbody>
</table>
8.2.4 When an analog output value is not output

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is 24VDC being supplied from the external power supply? (If not, "External power supply (X7)" is off.)</td>
<td>Verify that 24VDC voltage is being supplied to the external power supply terminals (between terminals No. A19 and A20 or B19 and B20).</td>
</tr>
<tr>
<td>Is there any fault with the analog signal lines such as broken or disconnected line?</td>
<td>Check for any abnormality on the signal lines by a visual check and a continuity check.</td>
</tr>
<tr>
<td>Is the CPU module in the STOP status?</td>
<td>Set the CPU module to the RUN status.</td>
</tr>
<tr>
<td>Are the offset/gain settings correct?</td>
<td>Check the on/off status of High resolution mode status flag (X8) in GX Developer system monitor. If the resolution mode setting is incorrect, redo the GX Developer intelligent function module switch setting. (Refer to Section 4.5).</td>
</tr>
<tr>
<td>Is the output setting range correct?</td>
<td>Check D/A conversion enable/disable setting (UnI20) in GX Developer monitor and set it to Enable using the sequence program or utility package (Refer to Section 3.4).</td>
</tr>
<tr>
<td>Is the resolution mode setting correct?</td>
<td>Check the on/off status of Operating condition setting request (Y9) using GX Developer, and check whether an analog value that is output is normal. If the analog value is normal, check whether descriptions related to Operating condition setting request (Y9) are correct on the sequence program (Refer to Section 3.3).</td>
</tr>
<tr>
<td>Is the D/A output enable/disable setting for the channel to be output set to Disable?</td>
<td>Verify the digital value (UnG1 to UnG6) in GX Developer monitor (Refer to Section 3.4).</td>
</tr>
<tr>
<td>Has Operating condition setting request (Y9) been executed?</td>
<td>Turn on and off Operating condition setting request (Y9) using GX Developer, and check whether an analog value that is output is normal.</td>
</tr>
</tbody>
</table>

Point

If the analog output value is not output after the proper corrective action is taken in accordance with the above check item, the possible cause is a module failure. Please consult your local Mitsubishi representative.
8.2.5 When the analog value is not within the reference accuracy of the theoretical value

<table>
<thead>
<tr>
<th>Check item</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using voltage output, is a small load resistance of the connected external device and a long wiring distance observed?</td>
<td>If observed, because a voltage drop due to the wiring impedance and load current is large and the voltage applied to the external device is low, the factory default range setting may not satisfy the reference accuracy. In this case, use User range setting and adjust the offset and gain values after wiring.</td>
</tr>
</tbody>
</table>

8.2.6 When analog output value is not "HOLD"

<table>
<thead>
<tr>
<th>Check item</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the HOLD/CLEAR setting correct?</td>
<td>Check the Switch 3 setting of the intelligent function module switch setting on GX Developer.</td>
</tr>
<tr>
<td>Is the Q66DA-G used on a MELSECNET/H remote I/O station?</td>
<td>Take action, referring to POINT in Section 3.2.1.</td>
</tr>
</tbody>
</table>

8.2.7 When External power supply READY (X7) does not turn on

<table>
<thead>
<tr>
<th>Check item</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the external power supply 24VDC supplied?</td>
<td>(1) Wire the external power supply by referring to the "External wiring". (Refer to Section 4.4.2) (2) Supply 24VDC within the range of the performance specifications. (Refer to Section 3.1.1)</td>
</tr>
<tr>
<td>(1) Is the external power supply correctly wired?</td>
<td></td>
</tr>
<tr>
<td>(2) Is the external power supply 24VDC supplied within the specified range?</td>
<td></td>
</tr>
<tr>
<td>The case other than the above</td>
<td>The possible cause is a failure of the Q66DA-G. Please consult your local Mitsubishi representative.</td>
</tr>
</tbody>
</table>
8.2.8 Checking the Q66DA-G status using GX Developer system monitor

When the Q66DA-G detail information is selected in GX Developer system monitor, function version, error code, LED on status and status of the intelligent function module switch setting can be checked.

(1) Operating the GX Developer

[Diagnostics] → [System monitor] → "Select Q66DA-G" →

Module’s Detailed Information

(2) Module Detailed Information

(a) Checking the function version

The function version of the Q66DA-G is displayed in the product information field.

(b) Checking Error code

Error code stored in buffer memory address 19 (Un\G19) of the Q66DA-G is displayed in the Present Error field.

(When the button Error History is pressed, the contents displayed in the Present Error field are displayed in the No.1 field.)
(3) H/W information

(a) H/W LED information
The LED status is displayed.

<table>
<thead>
<tr>
<th>No.</th>
<th>LED name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>RUN LED</td>
<td>0000H: Indicates that LED is unlit. 0001H: Indicates that LED is lit. 0000H and 0001H are displayed alternately: Indicates that LED is flashing.</td>
</tr>
<tr>
<td>2)</td>
<td>ERR. LED</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>ALM LED</td>
<td></td>
</tr>
</tbody>
</table>

(b) H/W SW information
The status of the intelligent function module switch setting is displayed.

<table>
<thead>
<tr>
<th>Item</th>
<th>Switch setting for intelligent function module</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE1</td>
<td>Switch 1</td>
</tr>
<tr>
<td>RANGE2</td>
<td>Switch 2</td>
</tr>
<tr>
<td>HOLD/CLEAR</td>
<td>Switch 3</td>
</tr>
<tr>
<td>MODE</td>
<td>Switch 4</td>
</tr>
<tr>
<td>-</td>
<td>Switch 5</td>
</tr>
</tbody>
</table>

(In the case of GX Developer Version 8)
Appendix 1 Dedicated Instruction List and Available Devices

(1) Dedicated instruction list
The following table lists the dedicated instructions that can be used with the Q66DA-G.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G(P).OFFGAN</td>
<td>Switches to the offset/gain setting mode. Switches to the normal mode.</td>
<td>Appendix 1.1</td>
</tr>
<tr>
<td>G(P).OGLOAD</td>
<td>Reads the offset/gain values of the user range setting to the CPU.</td>
<td>Appendix 1.2</td>
</tr>
<tr>
<td>G(P).OGSTOR</td>
<td>Restores the offset/gain values of the user range setting stored in the CPU to the Q66DA-G.</td>
<td>Appendix 1.3</td>
</tr>
</tbody>
</table>

Point
When the module is mounted to a MELSECNET/H remote station, the dedicated instructions cannot be used.

(2) Available devices
The following devices are available for the dedicated instructions:

<table>
<thead>
<tr>
<th>Internal devices</th>
<th>File register</th>
<th>Constant*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit *1</td>
<td>Word</td>
<td>R, ZR</td>
</tr>
<tr>
<td>X, Y, M, L, F, V, B</td>
<td>T, ST, C, D, W</td>
<td></td>
</tr>
</tbody>
</table>

*1 Word device bit designation can be used as bit data.
(Designation of bit numbers is done in hexadecimal.)

For example, bit 10 of D0 is designated as \[D0.A\].
However, there can be no bit designation for timers (T), retentive timers (ST) and counters (C).

*2 Available devices are given in each of the Constant field.
Appendix 1 G(P).OFFGAN

Switches the mode of the Q66DA-G. (Normal mode to offset/gain setting mode, offset/gain setting mode to normal mode)

<table>
<thead>
<tr>
<th>Setting data</th>
<th>Description</th>
<th>Setting range</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un</td>
<td>Start I/O number of the module</td>
<td>0 to FEH</td>
<td>Binary 16 bits</td>
</tr>
<tr>
<td>(S)</td>
<td>Mode switching</td>
<td>0, 1</td>
<td>Binary 16 bits</td>
</tr>
</tbody>
</table>

(1) Function
Switches the mode of the Q66DA-G.
- Normal mode to offset/gain setting mode (Offset/gain setting mode flag (XA) turns on.)
- Offset/gain setting mode to normal mode (Offset/gain setting mode flag (XA) turns off.)

Point
(1) When the offset/gain setting mode is switched to the normal mode, Module READY (X0) turns from off to on.
Note that initial setting processing will be executed if there is a sequence program that makes initial setting when Module READY (X0) turns on.
(2) D/A conversion is discontinued if the mode is switched (from the normal mode to the offset/gain setting mode or from the offset/gain setting mode to the normal mode).
To resume D/A conversion, switch the mode to the normal mode if it is set to the offset/gain setting mode, and then turn on and off Operating condition setting request (Y9).
(2) **Operation error**

No errors.

(3) **Program example**

The following program is designed to switch the Q66DA-G mounted in the position of I/O number X/Y0 to X/YF to the offset/gain setting mode when M10 is turned on, and to return it to the normal mode when M10 is turned off.
Appendix 1.2 G(P).OGLOAD

Reads the offset/gain values of the user range setting of the Q66DA-G to the CPU.

<table>
<thead>
<tr>
<th>Setting data</th>
<th>Description</th>
<th>Setting range</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S) Start I/O number of the module</td>
<td>0 to FEH</td>
<td>Binary 16 bits</td>
<td></td>
</tr>
<tr>
<td>(S) Start number of the device in which control data is stored.</td>
<td>Within the range of the specified device</td>
<td>Device name</td>
<td></td>
</tr>
<tr>
<td>(D) Device that is turned on 1 scan on completion of dedicated instruction processing.</td>
<td>Within the range of the specified device</td>
<td>Bit</td>
<td></td>
</tr>
</tbody>
</table>

Control data (1/2) *1

<table>
<thead>
<tr>
<th>Device</th>
<th>Item</th>
<th>Setting data</th>
<th>Setting range</th>
<th>Set by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(S) + 1</td>
<td>Completion status</td>
<td>Stores the status when the instruction is complete.</td>
<td>0 : Normal completion Other than 0: Abnormal completion</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 2</td>
<td>Pass data classification setting</td>
<td>Specify the user range setting where offset/gain values will be read.</td>
<td>000H: Use range setting 1 specified 011H: Use range setting 2 specified 101H: Use range setting 3 specified</td>
<td>User</td>
</tr>
<tr>
<td>(S) + 3</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(S) + 4</td>
<td>CH1 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 5</td>
<td>CH1 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 6</td>
<td>CH2 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 7</td>
<td>CH2 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
</tbody>
</table>
Control data (2/2) *1

<table>
<thead>
<tr>
<th>Device</th>
<th>Item</th>
<th>Set data</th>
<th>Setting range</th>
<th>Set by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S) + 7</td>
<td>CH2 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 8</td>
<td>CH3 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 9</td>
<td>CH3 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 10</td>
<td>CH4 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 11</td>
<td>CH4 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 12</td>
<td>CH5 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 13</td>
<td>CH5 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 14</td>
<td>CH6 Industrial shipment settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 15</td>
<td>CH6 Industrial shipment settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 16</td>
<td>CH1 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 17</td>
<td>CH1 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 18</td>
<td>CH2 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 19</td>
<td>CH2 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 20</td>
<td>CH3 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 21</td>
<td>CH3 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 22</td>
<td>CH4 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 23</td>
<td>CH4 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 24</td>
<td>CH5 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 25</td>
<td>CH5 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 26</td>
<td>CH6 User range settings offset value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 27</td>
<td>CH6 User range settings gain value</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 28 to (S) + 35</td>
<td>System area</td>
<td>-</td>
<td>-</td>
<td>System</td>
</tr>
</tbody>
</table>

*1 Set only Pass data classification setting (S)+2. If data is written to the area set by the system, the offset/gain values will not be read properly.

*2 The set value of Pass data classification setting, (S) + 2, varies depending on the module. Attention must be paid.

*3 An area of 36 words is required for (S).
(1) Functions

(a) Reads the offset/gain values of the user range setting of the Q66DA-G to the CPU.

(b) There are two types of interlock signals for the G(P).OGLOAD instruction: the completion device (D) and the status display device at completion (D) + 1.

1) Completion device
 Turns on in the END processing of the scan where the G(P).OGLOAD instruction is completed, and turns off in the next END processing.

2) Status display device at completion
 Turns on and off depending on the completion status of the G(P).OGLOAD instruction.
 - Normal completion : Stays off and does not change.
 - Abnormal completion : Turns on in the END processing of the scan where the G(P).OGLOAD instruction is completed, and turns off in the next END processing.

(2) Operation error
 In the following case, an error occurs and the corresponding error code is stored into the completion status area (S)+1.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Case resulting in operation error</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>The value set to Pass data classification setting (S)+2 is outside the range.</td>
</tr>
</tbody>
</table>

(3) Program example
 The following program is designed to read the offset/gain values of the Q66DA-G mounted in the position of I/O number X/Y0 to X/YF when M11 is turned on.
Appendix 1.3 G(P).OGSTOR

Restores the offset/gain values of the user range setting stored in the CPU to the Q66DA-G.

<table>
<thead>
<tr>
<th>Setting data</th>
<th>Internal device (System, user)</th>
<th>Link direct device</th>
<th>Intelligent function module device</th>
<th>Index register Z</th>
<th>Constant</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>Bit</td>
<td>Bit</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(D)</td>
<td>Word</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Instruction symbol]</th>
<th>[Execution condition]</th>
<th>Command</th>
<th>Description</th>
<th>Setting range</th>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.OGSTOR</td>
<td></td>
<td></td>
<td>Start I/O number of the module</td>
<td>0 to FEH</td>
<td>Binary 16 bits</td>
</tr>
<tr>
<td>(S)*1</td>
<td></td>
<td></td>
<td>Start number of the device in which control data is stored.</td>
<td>Within the range of the specified device</td>
<td>Device name</td>
</tr>
<tr>
<td>(D)</td>
<td></td>
<td></td>
<td>Device that is turned on 1 scan on completion of dedicated instruction processing. (D) + 1 also turns on at an abnormal completion.</td>
<td>Within the range of the specified device</td>
<td>Bit</td>
</tr>
</tbody>
</table>

*1 When executing the G(P).OGLOAD instruction, specify the device designated in (S). Do not change the data read with the G(P).OGLOAD instruction. If it is changed, normal operation cannot be guaranteed.
Control data *1

<table>
<thead>
<tr>
<th>Device</th>
<th>Item</th>
<th>Setting data</th>
<th>Setting range</th>
<th>Set by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>System area</td>
<td>Stores the status when the instruction is complete. 0: Normal completion Other than 0: Abnormal completion (error code)</td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 1</td>
<td>Completion status</td>
<td>The value set to pass data classification setting (S)+2 using the G(P).OGLOAD instruction is stored. 00H: Use range setting 1 specified 01H: Use range setting 2 specified 10H: Use range setting 3 specified</td>
<td>-</td>
<td>User</td>
</tr>
<tr>
<td>(S) + 3</td>
<td>System area</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(S) + 4</td>
<td>CH1 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 5</td>
<td>CH1 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 6</td>
<td>CH2 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 7</td>
<td>CH2 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 8</td>
<td>CH3 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 9</td>
<td>CH3 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 10</td>
<td>CH4 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 11</td>
<td>CH4 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 12</td>
<td>CH5 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 13</td>
<td>CH5 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 14</td>
<td>CH6 Industrial shipment settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 15</td>
<td>CH6 Industrial shipment settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 16</td>
<td>CH1 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 17</td>
<td>CH1 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 18</td>
<td>CH2 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 19</td>
<td>CH2 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 20</td>
<td>CH3 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 21</td>
<td>CH3 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 22</td>
<td>CH4 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 23</td>
<td>CH4 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 24</td>
<td>CH5 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 25</td>
<td>CH5 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 26</td>
<td>CH6 User range settings offset value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 27</td>
<td>CH6 User range settings gain value</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
<tr>
<td>(S) + 28 to (S) + 35</td>
<td>System area</td>
<td></td>
<td>-</td>
<td>System</td>
</tr>
</tbody>
</table>

*1 When executing the G.OGLOAD instruction, specify the device designated in (S).
Do not change the data read with the G.OGLOAD instruction.
If it is changed, normal operation cannot be guaranteed.

*2 The set value of the Pass data classification setting, (S) + 2, varies depending on the module.
Attention must be paid.

*3 An area of 36 words is required for (S).
(1) Functions

(a) Restores the offset/gain values of the user range setting stored in the CPU to the Q66DA-G.

(b) There are two types of interlock signals for the G(P).OGSTOR instruction: the completion device (D) and the status display device at completion (D) + 1.

1) Completion device

Turns on in the END processing of the scan where the G(P).OGSTOR instruction is completed, and turns off in the next END processing.

2) Status display device at completion

Turns on and off depending on the completion status of the G(P).OGSTOR instruction.

- Normal completion: Stays off and does not change.
- Abnormal completion: Turns on in the END processing of the scan where the G(P).OGSTOR instruction is completed, and turns off in the next END processing.

(c) When the offset/gain values are restored, the reference accuracy falls to about less than three times of the accuracy before that.

(2) Operation error

In any of the following cases, an error occurs and the corresponding error code is stored into the completion status area (S)+1.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Case resulting in operation error</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>The G(P).OGSTOR instruction was executed in the offset/gain setting mode.</td>
</tr>
<tr>
<td>162</td>
<td>The G(P).OGSTOR instruction was executed consecutively.</td>
</tr>
<tr>
<td>163</td>
<td>The G(P).OGSTOR instruction was executed for the model that differs from the model for which the G(P).OGLoad instruction had been executed.</td>
</tr>
<tr>
<td>164</td>
<td>The value set to the pass data classification setting (S)+2 is outside the range.</td>
</tr>
</tbody>
</table>

(3) Program example

The following program is designed to read the offset/gain values of the Q66DA-G mounted in the position of I/O number X/Y0 to X/YF when M11 is turned on.
Appendix 2 Functions Added or Changed Due to Version Upgrade

The Q66DA-G has been upgraded with new functions and specifications. The functions available for the Q66DA-G vary depending on the first five digits of the product number.

<table>
<thead>
<tr>
<th>Added function</th>
<th>Description</th>
<th>First 5 digits of product number</th>
<th>Reference section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output range extended mode</td>
<td>By selecting either of the following output ranges in the intelligent function module switch setting, the analog output ranges can be extended. • 4 to 20mA (Extended mode) • 1 to 5V (Extended mode) Some incompatible version products do not support the analog output range extended mode.</td>
<td>11032 or later</td>
<td>Section3.1.1 Section(4.5)</td>
</tr>
</tbody>
</table>
Appendix 3 External Dimensions

(Unit: mm (inch))

FG terminal screw (M3 screw)

89
97.5
130
177
47
27.4
23
9.3
INDEX

[A]
- Absolute maximum output 3-1
- Accuracy .. 3-1,3-7
- ALM LED .. 4-4
- Analog output ... 3-1
- Analog output HOLD/CLEAR function 3-8
- Analog output test during programmable controller CPU STOP .. 3-8

[B]
- Buffer memory .. 3-25

[C]
- CH Digital value (Un\G1 to Un\G6) ... 3-28
- CH Set value check code (Un\G11 to Un\G16) ... 3-29
- Channel change completed flag 3-19,3-22
- Channel change request 3-23
- Conversion speed .. 3-1
- Current output characteristic 3-5

[D]
- D/A conversion enable/disable function 3-8
- D/A conversion enable/disable setting (Un\G0) .. 3-28
- D/A output enable/disable function 3-8
- Dedicated Instruction .. App-1
- Digital input .. 3-1

[E]
- ERR. LED .. 4-4
- Error clear request ... 3-19
- Error code (Un\G19) .. 3-29
- Error code list .. 8-1
- Error flag .. 3-19
- External Dimensions ... App-11
- External supply power 3-2

[F]
- Function Version .. 2-4

[G]
- G(P).OFFGAN .. App-2
- G(P).OGLOAD .. App-4
- G(P).OGSTOR .. App-7
- GX Configurator-DA .. 2-2
- GX Developer .. A-13,2-2

[H]
- Handling Precautions 4-1

[I]
- Installing ... 5-2
- Internal current consumption 3-2

[L]
- List of I/O signals .. 3-19

[M]
- Maximum resolution .. 3-1
- Mode switching setting (Un\G158, Un\G159) 3-27
- Module ready .. 3-19
- Monitor/Test .. 5-1
- Multiple programmable controller system 2-1

[N]
- OFFGAN .. App-1
- Offset value .. 3-2
- Offset/gain adjustment value specification (Un\G24) .. 3-25
- Offset/gain setting mode 3-25
- Offset/gain setting mode flag 3-19
- OGSTOR .. App-7
- Online module change 7-1
- Operating condition setting completed flag 3-21
- Operating condition setting request 3-23
- Operating environment 5-4

[P]
- Part Identification Nomenclature 4-4
- Part identification nomenclature 4-4
- Pass data classification setting 3-35
- Pass data ... 5-27
- Programming .. 6-1

[Q]
- QCPU (Q mode) ... A-13

[R]
- Rate control enable/disable setting (Un\G46) 3-25
- Rate control function 3-8
- RUN LED .. 4-4

[S]
- Set value change completed flag 3-19
- Set value change request 3-23
- Setting range .. 3-25
- Setup and Procedures before Operation 4-1

[T]
- Troubleshooting .. 8-1

[U]
- Uninstalling ... 5-2
- User range writing request 3-19

[V]
- Voltage output characteristic 3-3
Warning output clear request .. 3-19
Warning output flag .. 3-25
Warning output function .. 3-8
Warning output signal .. 3-19
Weight .. 3-2
WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.

(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.
TRADEMARKS

Celeron, Intel, and Pentium are either registered trademarks or trademarks of Intel Corporation in the United States and/or other countries.

Microsoft, Microsoft Access, ActiveX, Excel, SQL Server, Visual Basic, Visual C++, Visual Studio, Windows, Windows NT, Windows Server, Windows Vista, and Windows XP are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as ™ or ® are not specified in this manual.
Specifications subject to change without notice.