3. Signal layout of connector for external devices

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
</tr>
</tbody>
</table>

5. Information and services

For further information and services, please consult your local Mitsubishi representative.

Before Using the Product

Before using the product, please read this manual. Make sure that the end users read this manual and the manual in a suitable place for future reference.

1. Relevant manuals

- Manual correspondants
- Module Manual
- User’s Manual
- Instruction Manual
- Warranty
- Safety Precautions

2. Packing list

- Item
- 1. Manuals correspondants
- 2. Module
- 4. Instruction Manual
- 5. Warranty
- 6. Safety Precautions

3. Calculation of the target failure measure (PFDavg/PFH)

The SRM can be a SIL2 Process CPU for a SIL2 system with multiple points to 0.463 by using the following formula. If the SRM is used to configure a safety path, including safety input devices through safety output devices.

\[
(PFDavg/PFH) = \frac{2}{(PFDavg of A) \times (PFDavg of B) \times \text{number of safety inputs} \times \text{number of safety outputs}}
\]

\[
\begin{align*}
\text{PFH} & = 10^{-3} \times (1 - \text{PFH of SRM}) \times (1 - \text{PFH of SRM}) \\
\text{PFDavg} & = 10^{-5} \times (1 - \text{PFDavg of SRM}) \times (1 - \text{PFDavg of SRM})
\end{align*}
\]

- PFH: Probability of failure on demand
- PFDavg: Probability of failure on demand

Example:

- For a SIL2 Process CPU with multiple inputs and outputs, multiply the PFDavg/PFH of these modules by the number of safety inputs and outputs to calculate the overall PFH for the system.

Application:

- Before using the product, please consult your local Mitsubishi representative.