MITSUBISHI CNC

700/70 Series

Programming Manual (Lathe System)
MELDAS is registered trademarks of Mitsubishi Electric Corporation. Other company and product names that appear in this manual are trademarks or registered trademarks of the respective companies.
Introduction

This manual is a guide for using the MITSUBISHI CNC 700/70 Series. Programming is described in this manual, so read this manual thoroughly before starting programming. Thoroughly study the "Precautions for Safety" on the following page to ensure safe use of this NC unit.

Details described in this manual

⚠️ CAUTION

⚠️ For items described as "Restrictions" or "Usable State" in this manual, the instruction manual issued by the machine tool builder takes precedence over this manual.
⚠️ Items not described in this manual must be interpreted as "not possible".
⚠️ This manual is written on the assumption that all option functions are added. Refer to the specifications issued by the machine tool builder before starting use.
⚠️ Refer to the Instruction Manual issued by each machine tool builder for details on each machine tool.
⚠️ Some screens and functions may differ depending on the NC system (or its version), and some functions may not be possible. Please confirm the specifications before use.

General precautions

(1) Refer to the following documents for details on handling
MITSUBISHI CNC 700/70 Series Instruction Manual IB-1500042
Precautions for Safety

Always read the specifications issued by the machine tool builder, this manual, related manuals and attached documents before installation, operation, programming, maintenance or inspection to ensure correct use.

Understand this numerical controller, safety items and cautions before using the unit.

This manual ranks the safety precautions into "DANGER", "WARNING" and "CAUTION".

<table>
<thead>
<tr>
<th>DANGER</th>
<th>When the user may be subject to imminent fatalities or major injuries if handling is mistaken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>When the user may be subject to fatalities or major injuries if handling is mistaken.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>When the user may be subject to injuries or when physical damage may occur if handling is mistaken.</td>
</tr>
</tbody>
</table>

Note that even items ranked as " CAUTION", may lead to major results depending on the situation.

In any case, important information that must always be observed is described.

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Not applicable in this manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Not applicable in this manual.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>1. Items related to product and manual</td>
</tr>
<tr>
<td></td>
<td>For items described as "Restrictions" or "Usable State" in this manual, the instruction manual issued by the machine tool builder takes precedence over this manual.</td>
</tr>
<tr>
<td></td>
<td>Items not described in this manual must be interpreted as "not possible".</td>
</tr>
<tr>
<td></td>
<td>This manual is written on the assumption that all option functions are added. Refer to the specifications issued by the machine tool builder before starting use.</td>
</tr>
<tr>
<td></td>
<td>Refer to the Instruction Manual issued by each machine tool builder for details on each machine tool.</td>
</tr>
<tr>
<td></td>
<td>Some screens and functions may differ depending on the NC system (or its version), and some functions may not be possible. Please confirm the specifications before use.</td>
</tr>
<tr>
<td>CAUTION</td>
<td></td>
</tr>
</tbody>
</table>

2. Items related to operation

- **⚠️** Before starting actual machining, always carry out dry run operation to confirm the machining program, tool offset amount and workpiece offset amount, etc.
- **⚠️** If the workpiece coordinate system offset amount is changed during single block stop, the new setting will be valid from the next block.
- **⚠️** Turn the mirror image ON and OFF at the mirror image center.
- **⚠️** If the tool offset amount is changed during automatic operation (including during single block stop), it will be validated from the next block or blocks onwards.
- **⚠️** Do not make the synchronous spindle rotation command OFF with one workpiece chucked by the basic spindle and synchronous spindle during the spindle synchronization. Failure to observe this may cause the synchronous spindle stop, and hazardous situation.

3. Items related to programming

- **⚠️** The commands with "no value after G" will be handled as "G00".
- **⚠️** ";" "EOB" and "%" "EOR" are expressions used for explanation. The actual codes are: For ISO: "CR, LF", or "LF" and ".%".
- Programs created on the Edit screen are stored in the NC memory in a "CR, LF" format, but programs created with external devices such as the FLD or RS-232C may be stored in an "LF" format.
- The actual codes for EIA are: "EOB (End of Block)" and "EOR (End of Record)".
- **⚠️** When creating the machining program, select the appropriate machining conditions, and make sure that the performance, capacity and limits of the machine and NC are not exceeded. The examples do not consider the machining conditions.
- **⚠️** Do not change fixed cycle programs without the prior approval of the machine tool builder.
- **⚠️** When programming the multi-part system, take special care to the movements of the programs for other part systems.
CONTENTS

1. Control Axes ... 1
 1.1 Coordinate Words and Control Axes ... 1
 1.2 Coordinate Systems and Coordinate Zero Point Symbols ... 2

2. Least Command Increments .. 3
 2.1 Input Command Increments ... 3
 2.2 Indexing Increment .. 5

3. Data Formats .. 6
 3.1 Tape Codes ... 6
 3.2 Program Formats ... 9
 3.3 Tape Memory Format ... 12
 3.4 Optional Block Skip .. 12
 3.4.1 Optional Block Skip; / ... 12
 3.4.2 Optional Block Skip Addition ; /n .. 13
 3.5 Program/Sequence/Block Nos.; O, N ... 15
 3.6 Parity H/V ... 16
 3.7 G Code Lists ... 17
 3.8 Precautions before Starting Machining ... 23

4. Buffer Register ... 24
 4.1 Input Buffer ... 24
 4.2 Pre-read Buffers ... 25

5. Position Commands ... 26
 5.1 Incremental/Absolute Value Commands .. 26
 5.2 Radius/Diameter Commands .. 27
 5.3 Inch/Metric Conversion; G20, G21 ... 28
 5.4 Decimal Point Input ... 30

6. Interpolation Functions .. 34
 6.1 Positioning (Rapid Traverse); G00 ... 34
 6.2 Linear Interpolation; G01 .. 41
 6.3 Circular Interpolation; G02, G03 .. 44
 6.4 R Specification Circular Interpolation; G02, G03 ... 49
 6.5 Plane Selection; G17, G18, G19 ... 51
 6.6 Thread Cutting ... 53
 6.6.1 Constant Lead Thread Cutting; G33 .. 53
 6.6.2 Inch Thread Cutting; G33 ... 58
 6.6.3 Continuous Thread Cutting .. 60
 6.6.4 Variable Lead Thread Cutting; G34 ... 61
 6.6.5 Circular Thread Cutting; G35, G36 ... 64
 6.7 Helical Interpolation; G17, G18, G19, and G02, G03 .. 68
 6.8 Milling Interpolation; G12.1 .. 71
 6.8.1 Selecting Milling Mode .. 73
 6.8.2 Milling Interpolation Control and Command Axes ... 74
 6.8.3 Selecting a Plane during the Milling Mode .. 76
 6.8.4 Setting Milling Coordinate System .. 78
 6.8.5 Preparatory Functions .. 80
 6.8.6 Switching from Milling Mode to Turning Mode; G13.1 .. 85
 6.8.7 Feed Function .. 85
 6.8.8 Program Support Functions .. 85
 6.8.9 Miscellaneous Functions ... 86
 6.8.10 Tool Offset Functions .. 87
 6.8.11 Interference Check ... 103
 6.9 Cylindrical Interpolation; G07.1 (6 and 7 only in G code list) ... 111
 6.10 Polar Coordinate Interpolation; G12.1, G13.1/G112, G113 (Only 6, 7 in G code list) 119
6.11 Exponential Interpolation; G02.3, G03.3 .. 126

7. Feed Functions .. 132

7.1 Rapid Traverse Rate .. 132

7.2 Cutting Feed Rate ... 132

7.3 F1-digit Feed ... 133

7.4 Feed Per Minute/Feed Per Revolution (Asynchronous Feed/Synchronous Feed); G94, G95135

7.5 Feed Rate Designation and Effects on Control Axes .. 137

7.6 Thread Cutting Mode ... 141

7.7 Automatic Acceleration/Deceleration ... 142

7.8 Rapid Traverse Constant Inclination Acceleration/Deceleration 143

7.9 Speed Clamp ... 145

7.10 Exact Stop Check; G09 .. 146

7.11 Exact Stop Check Mode; G61 .. 149

7.12 Deceleration Check .. 150

7.12.1 G1 -> G0 Deceleration Check .. 152

7.12.2 G1 -> G1 Deceleration Check .. 153

7.13 Automatic Corner Override; G62 ... 154

7.14 Tapping Mode; G63 .. 159

7.15 Cutting Mode; G64 .. 159

8. Dwell ... 160

8.1 Per-second Dwell; G04 .. 160

9. Miscellaneous Functions ... 162

9.1 Miscellaneous Functions (M8-digits BCD) ... 162

9.2 2nd Miscellaneous Functions (A8-digits, B8-digits or C8-digits) 164

9.3 Index Table Indexing ... 165

10. Spindle Functions ... 167

10.1 Spindle Functions (S2-digits BCD) ... During Standard PLC Specifications 167

10.2 Spindle Functions (S6-digits Analog) ... 167

10.3 Spindle Functions (S8-digits) ... 168

10.4 Constant Surface Speed Control; G96, G97 ... 169

10.5 Spindle Clamp Speed Setting; G92 ... 170

10.6 Spindle/C Axis Control ... 171

10.7 Spindle Synchronization .. 174

10.7.1 Spindle Synchronization Control I .. 175

10.7.2 Spindle Synchronization II .. 185

10.7.3 Precautions for Using Spindle Synchronization Control 190

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon); G114.2 192

10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon); G51.2 200

10.10 Tool Spindle Synchronization IC (Spindle-NC Axis, Polygon); G51.2 208

10.11 Tool Spindle Synchronization II (Hobbing); G114.3 ... 211

10.12 Multiple-spindle Control .. 226

10.12.1 Multiple-spindle Control I (multiple spindle command) 227

10.12.2 Multiple-spindle Control I (spindle selection command) 228

10.12.3 Multiple-spindle Control II .. 231

11. Tool Functions ... 234

11.1 Tool Functions (T8-digits BCD) ... 234

12. Tool Offset Functions .. 235

12.1 Tool Offset ... 235

12.1.1 Tool Offset Start ... 236

12.1.2 Expanded Method at Starting Tool Offset ... 238

12.2 Tool Length Offset .. 240

12.3 Tool Nose Wear Offset ... 242
12.4 Tool Nose Radius Compensation; G40, G41, G42, G46 .. 243
12.4.1 Tool Nose Point and Compensation Directions ... 245
12.4.2 Tool Nose Radius Compensation Operations ... 249
12.4.3 Other Operations during Tool Nose Radius Compensation ... 267
12.4.4 G41/G42 Commands and I, J, K Designation ... 275
12.4.5 Intermittent during Tool Nose Radius Compensation ... 280
12.4.6 General Precautions for Tool Nose Radius Compensation ... 282
12.4.7 Interference Check ... 283
12.5 Compensation Data Input by Program; G10, G11 .. 288
12.6 Tool Life Management II .. 291
12.6.1 Counting the Tool Life .. 294
13. Program Support Functions .. 296
13.1 Fixed Cycles for Turning Machining .. 296
13.1.1 Longitudinal Cutting Cycle; G77 ... 297
13.1.2 Thread Cutting Cycle; G78 .. 299
13.1.3 Face Cutting Cycle; G79 .. 302
13.2 Fixed Cycle for Turning Machining (MITSUBISHI CNC special format) 305
13.3 Compound Type Fixed Cycle for Turning Machining ... 306
13.3.1 Longitudinal Rough Cutting Cycle; G71 ... 307
13.3.2 Face Rough Cutting Cycle; G72 ... 323
13.3.3 Formed Material Rough Cutting Cycle; G73 ... 325
13.3.4 Finishing Cycle; G70 ... 329
13.3.5 Face Cut-off Cycle; G74 .. 330
13.3.6 Longitudinal Cut-off Cycle; G75 ... 332
13.3.7 Compound Thread Cutting Cycle; G76 .. 334
13.3.8 Precautions for Compound Type Fixed Cycle for Turning Machining; G70 to G76 338
13.4 Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format) 341
13.5 Fixed Cycle for Drilling; G80 to G89 .. 346
13.5.1 Face Deep Hole Drilling Cycle 1; G83 (Longitudinal deep hole drilling cycle 1; G87).... 354
13.5.2 Face Tapping Cycle; G84 (Longitudinal tapping cycle; G88) .. 356
13.5.3 Face Boring Cycle; G85 (Longitudinal boring cycle; G89) ... 359
13.5.4 Deep Hole Drilling Cycle 2; G83.2 .. 359
13.5.5 Fixed Cycle for Drilling Cancel; G80 .. 362
13.5.6 Precautions When Using a Fixed Cycle for Drilling ... 362
13.6 Fixed Cycle for Drilling; G80 to G89 (MITSUBISHI CNC special format) 364
13.6.1 Initial Point and R Point Level Return; G98, G99 ... 383
13.6.2 Setting of Workpiece Coordinates in Fixed Cycle Mode ... 384
13.7 Subprogram Control; M98, M99, M198 .. 385
13.7.1 Calling Subprogram with M98 and M99 Commands .. 385
13.7.2 Calling Subprogram with M198 Commands .. 390
13.8 Variable Commands ... 391
13.9 User Macro .. 396
13.9.1 User Macro Commands; G65, G66, G66.1, G67 .. 396
13.9.2 Macro Call Instruction .. 397
13.9.3 ASCII Code Macro .. 405
13.9.4 Variables .. 410
13.9.5 Types of Variables .. 412
13.9.6 Operation Commands ... 450
13.9.7 Control Commands .. 456
13.9.8 External Output Commands .. 459
13.9.9 Precautions ... 461
13.10 Mirror Image for Facing Tool Posts .. 463
13.11 Corner Chamfering/Corner Rounding I ... 473
13.11.1 Corner Chamfering ",C_", (or ",I_", ",K_", ",C_") .. 473
13.11.2 Corner Rounding ",R_" (or ",R_") .. 475
1. Control Axes

1.1 Coordinate Words and Control Axes

Function and purpose

In the case of a lathe, the axis parallel to the spindle is known as the Z axis and its forward direction is the direction in which the turret moves away from the spindle stock while the axis at right angles to the Z axis is the X axis and its forward direction is the direction in which it moves away from the Z axis, as shown in the figure below.

![Diagram of lathe axes](image)

Coordinate axes and polarities

Since coordinates based on the right hand rule are used with a lathe, the forward direction of the Y axis in the above figure which is at right angles to the X-Z plane is downward. It should be borne in mind that an arc on the X-Z plane is expressed as clockwise or counterclockwise as seen from the forward direction of the Y axis. (Refer to the section on circular interpolation.)

![Diagram of coordinate polarities](image)

Relationship between coordinates

- Spindle nose
- Machine zero point
- Workpiece zero points (G54 to G59)
- Local coordinate system (Valid in G54 to G59)
- 2nd reference position
- Reference position
- (+Y)
- +Z
- +X
1.2 Coordinate Systems and Coordinate Zero Point Symbols

Function and purpose

- **Reference position**
- **Machine coordinate origin**
- **Workpiece coordinate zero points** (G54 to G59)

Upon completion of the reference position return, the parameters are referred to and automatically set for the basic machine coordinate system and workpiece coordinate systems (G54 to G59). The basic machine coordinate system is set so that the first reference position is at the position designated by the parameter from the basic machine coordinate zero point (machine zero point).

The local coordinate system (G52) is valid on the coordinate systems designated by the commands for the workpiece coordinate systems 1 to 6. Using the G92 command, the basic machine coordinate system can be shifted and made the hypothetical machine coordinate system. At the same time, workpiece coordinate systems 1 to 6 are also shifted.
2. Least Command Increments

2.1 Input Setting Units

Function and purpose

The input setting units are, as with the compensation amounts, the units of setting data used in common for all axes. The command units are the movement amounts in the program which are commanded with MDI inputs or command tape. These are expressed with mm, inch or degree (°) units.

With the parameters, the command units are decided for each axis, and the input setting units are decided commonly for all axes.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Linear axis</th>
<th>Rotation axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Millimeter</td>
<td>Inch</td>
</tr>
<tr>
<td>Input setting unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1003 iunit</td>
<td>= B</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>= C</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>= D</td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>= E</td>
<td>0.000001</td>
</tr>
<tr>
<td>Command unit</td>
<td></td>
<td>Follow #1003 iunit</td>
</tr>
<tr>
<td>#1015 cunit</td>
<td>= 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 1</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>= 10</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>= 100</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>= 1000</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>= 10000</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) Inch/metric changeover is performed in either of 2 ways: conversion from the parameter screen (#1041 I_inch: valid only when the power is turned ON) and conversion using the G command (G20 or G21). However, when a G command is used for the conversion, the conversion applies only to the input command increments and not to the input setting units. Consequently, the tool offset amounts and other compensation amounts as well as the variable data should be preset to correspond to inches or millimeters.

(Note 2) The millimeter and inch systems cannot be used together.

(Note 3) During circular interpolation on an axis where the input command increments are different, the center command (I, J, K) and the radius command (R) can be designated by the input setting units. (Use a decimal point to avoid confusion.)
2. Least Command Increments

2.1 Input Setting Units

Detailed description

(1) Units of various data
These input setting units determine the parameter setting unit, program command unit and the external interface unit for the PLC axis and handle pulse, etc. The following rules show how the unit of each data changes when the input setting unit is changed. This table applies to the NC axis and PLC axis.

<table>
<thead>
<tr>
<th>Data</th>
<th>Unit system</th>
<th>Setting value</th>
<th>Input setting unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1µm (B)</td>
</tr>
<tr>
<td>Speed data</td>
<td>Milli- metre</td>
<td>20000 (mm/min)</td>
<td>20000</td>
</tr>
<tr>
<td>Example: rapid</td>
<td></td>
<td>Setting range</td>
<td>1 to 999999</td>
</tr>
<tr>
<td></td>
<td>Inch</td>
<td>2000 (inch/min)</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting range</td>
<td>1 to 999999</td>
</tr>
<tr>
<td>Position data</td>
<td>Milli- metre</td>
<td>123.123 (mm)</td>
<td>123.123</td>
</tr>
<tr>
<td>Example: SoftLimit+</td>
<td></td>
<td>Setting range</td>
<td>±99999.999</td>
</tr>
<tr>
<td></td>
<td>Inch</td>
<td>12.1234 (inch)</td>
<td>12.1234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting range</td>
<td>±9999.9999</td>
</tr>
<tr>
<td>Interpolation unit data</td>
<td>Milli- metre</td>
<td>1 (µm)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting range</td>
<td>±9999</td>
</tr>
<tr>
<td></td>
<td>Inch</td>
<td>0.0001 (inch)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting range</td>
<td>±9999</td>
</tr>
</tbody>
</table>

(2) Program command
The program command unit follows the above table.
If the data has a decimal point, the number of digits in the integer section will remain and the number of digits in the decimal point section will increase as the input setting unit becomes smaller.
When setting data with no decimal point, and which is a position command, the data will be affected by the input setting increment and input command increment.
For the feed rate, as the input setting unit becomes smaller, the number of digits in the integer section will remain the same, but the number of digits in the decimal point section will increase.
2. Least Command Increments

2.2 Indexing Increment

Function and purpose

This function limits the command value for the rotary axis. This can be used for indexing the rotary table, etc. It is possible to cause a program error with a program command other than an indexing increment (parameter setting value).

Detailed description

When the indexing increment (parameter) for limiting the command value is set, the rotary axis can be positioned with that indexing increment. If a program other than the indexing increment setting value is commanded, a program error (P20) will occur. The indexing position will not be checked when the parameter is set to 0.

(Example) When the indexing increment setting value is 2 degrees, only command with the 2-degree increment are possible.

```
G90 G01 C102.000 ; ... Moves to the 102 degree angle.
G90 G01 C101.000 ; ... Program error
G90 G01 C102 ; ... Moves to the 102 degree angle. (Decimal point type II)
```

The following axis specification parameters are used.

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Contents</th>
<th>Setting range (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106</td>
<td>Index unit</td>
<td>Indexing increment</td>
<td>0 to 360 (°)</td>
</tr>
</tbody>
</table>

Precautions

- When the indexing increment is set, degree increment positioning takes place.
- The indexing position is checked with the rotary axis, and is not checked with other axes.
- When the indexing increment is set to 2 degrees, the rotary axis is set to the B axis, and the B axis is moved with JOG to the 1.234 position, an indexing error will occur if "G90B5." or "G91B5." is commanded.
3. Data Formats

3.1 Tape Codes

Function and purpose

The tape command codes used for this controller are combinations of alphabet letters (A, B, C, ..., Z), numbers (0, 1, 2, ..., 9) and signs (+, -, /, ...). These alphabet letters, numbers and signs are referred to as characters. Each character is represented by a combination of 8 holes which may, or may not, be present. These combinations make up what is called codes. This controller uses the ISO code (R-840).

(Note 1) If a code not given in the "Table of tape codes" is assigned during operation, a program error (P32) will result.

(Note 2) For the sake of convenience, a " ; " has been used in the CNC display to indicate the End of Block (EOB/LF) which separates one block from another. Do not use the " ; " key, however, in actual programming but use the keys in the following table instead.

CAUTION

" ; " "EOB" and " % " "EOR" are explanatory notations. The actual code is "Line feed" and "%". (ISO code (R-840))

Detailed description

(1) Use the keys in the following table for programming.

<table>
<thead>
<tr>
<th>EOB/EOR keys and displays</th>
<th>Code used</th>
<th>ISO</th>
<th>Screen display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key used</td>
<td>Code</td>
<td>ISO</td>
<td>Screen display</td>
</tr>
<tr>
<td>End of Block</td>
<td>LF or NL</td>
<td>;</td>
<td></td>
</tr>
<tr>
<td>End of Record</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

(2) Significant data section (label skip function)

All data up to the first EOB (;), after the power has been turned ON or after operation has been reset, are ignored during automatic operation based on tape, memory loading operation or during a search operation. In other words, the significant data section of a tape extends from the character or number code after the initial EOB (;) code after resetting to the point where the reset command is issued.
(3) **Control out, control in**

When the ISO code is used, all data between control out "(" and control in ")" (or ";") are ignored, although these data appear on the setting and display unit. Consequently, the command tape name, No. and other such data not directly related to control can be inserted in this section.

This information (except (B) in the “Table of tape codes”) will also be loaded, however, during tape loading. The system is set to the "control in" mode when the power is turned ON.

Example of ISO code

```
LC G00X - 85000Y - 64000 ( CUTTER ) RETURN
```

Operator information print-out example

Information in this section is ignored and nothing is executed.

(4) **EOR (%) code**

Generally, the End of Record code is punched at both ends of the tape. It has the following functions:

(a) Rewind stop when rewinding tape (with tape rewinder)
(b) Rewind start during tape search (with tape rewinder)
(c) Completion of loading during tape loading into memory

(5) **Tape preparation for tape operation (with tape rewinder)**

If a tape rewinder is not used, there is no need for the 2-meter dummy at both ends of the tape and for the head EOR (%) code.
The (A) codes are stored on tape but an error results (except when they are used in the comment section) during operation.
The (B) codes are non-working codes and are always ignored. (Parity V check is not executed.)

Table of tape codes
3.2 Program Formats

Function and purpose

The prescribed arrangement used when assigning control information to the controller is known as the program format, and the format used with this controller is called the "word address format".

Detailed description

(1) Word and address
A word is a collection of characters arranged in a specific sequence. This entity is used as the unit for processing data and for causing the machine to execute specific operations. Each word used for this controller consists of an alphabet letter and a number of several digits. (A + or - sign may be attached to the head of a number.)

```
<table>
<thead>
<tr>
<th>Word configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabet (address)</td>
</tr>
<tr>
<td>Numerals</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

The alphabet letter at the head of the word is the address. It defines the meaning of the numerical information which follows it.

For details of the types of words and the number of significant digits of words used for this controller, refer to "Format details".

(2) Blocks
A block is a collection of words. It includes the information which is required for the machine to execute specific operations. One block unit constitutes a complete command. The end of each block is marked with an EOB (End of Block) code.

(3) Programs
A program is a collection of several blocks.
3. Data Formats

3.2 Program Formats

Format Detail Abbreviations

<table>
<thead>
<tr>
<th>Program No.</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence No.</td>
<td>N6</td>
</tr>
<tr>
<td>Preparatory function</td>
<td>G3/G21</td>
</tr>
</tbody>
</table>

Movement Axis

- **Metric command**
 - 0.001(*) mm/0.00001 inch: X+53 Z+53 α+53, X+44 Z+44 α+44, X+53 Z+53 α+53, X+54 Z+54 α+54
 - 0.0001(*) mm/0.000001 inch: X+55 Z+55 α+55, X+46 Z+46 α+46, X+55 Z+55 α+55, X+55 Z+55 α+55

- **Inch command**
 - 0.001(*) inch: X+53 Z+53 α+53, X+44 Z+44 α+44, X+53 Z+53 α+53, X+54 Z+54 α+54
 - 0.0001(*) inch: X+55 Z+55 α+55, X+46 Z+46 α+46, X+55 Z+55 α+55, X+55 Z+55 α+55

Arc and Cutter Radius

- **Metric command**
 - 0.001(*) mm/0.00001 inch: I+53 K+53 R+53, I+44 K+44 R+44, I+53 K+53 R+53, I+45 K+45 R+45
 - 0.0001(*) mm/0.000001 inch: I+55 K+55 R+55, I+46 K+46 R+46, I+55 K+55 R+55, I+55 K+55 R+55

- **Inch command**
 - 0.001(*) inch: I+53 K+53 R+53, I+44 K+44 R+44, I+45 K+45 R+45, I+46 K+46 R+45
 - 0.0001(*) inch: I+55 K+55 R+55, I+46 K+46 R+46, I+55 K+55 R+55, I+55 K+55 R+55

Dwell

- 0.001(sec.): X+53/P+8

Feed Function

- **Metric command**
 - 0.001(*) mm/0.00001 inch: F62(Feed per minute), F44(Feed per revolution), F63(Feed per minute), F45(Feed per revolution)
 - 0.0001(*) mm/0.000001 inch: F63(Feed per minute), F45(Feed per revolution), F55(Feed per minute), F46(Feed per revolution)

- **Inch command**
 - 0.001(*) inch: F62(Feed per minute), F44(Feed per revolution), F63(Feed per minute), F45(Feed per revolution)
 - 0.0001(*) inch: F63(Feed per minute), F45(Feed per revolution), F55(Feed per minute), F46(Feed per revolution)

Tool Offset

- T1/T2

Miscellaneous Function (M)

- M8

Spindle Function (S)

- S8

Tool Function (T)

- T8

2nd Miscellaneous Function

- A8/B8/C8

Subprogram

- P8 H5 L4

Fixed Cycle

- 0.001(*) mm/0.0001 inch: R+53 Q53 P8 L4
 - 0.0001(*) mm/0.00001 inch: R+54 Q54 P8 L4
 - 0.00001(*) mm/0.000001 inch: R+55 Q55 P8 L4
 - 0.000001(*) mm/0.0000001 inch: R+56 Q56 P8 L4

(Note 1) α indicates the additional axis address, such as A, B or C.

(Note 2) The number of digits check for a word is carried out with the maximum number of digits of that address.

(Note 3) Numerals can be used without the leading zeros.
(Note 4) The meanings of the details are as follows:

Example 1: 08 : 8-digit program No.
Example 2: G21 : Dimension G is 2 digits to the left of the decimal point, and 1 digit to the right.
Example 3: X+53 : Dimension X uses + or - sign and represents 5 digits to the left of the decimal point and 3 digits to the right.

For example, the case for when the X axis is positioned (G00) to the 45.123 mm position in the absolute value (G90) mode is as follows:

G00 X45.123 ;

3 digits below the decimal point
5 digits above the decimal point, so it's +00045, but the leading zeros and the mark (+) have been omitted.

G0 is possible, too.

(Note 5) If an arc is commanded using a rotary axis and linear axis while inch commands are being used, the degrees will be converted into 0.1 inches for interpolation.

(Note 6) While inch commands are being used, the rotary axis speed will be in increments of 10 degrees. Example: With the F1. (Feed per minute) command, this will become the 10 degrees/minute command.

(Note 7) The decimal places below the decimal point are ignored when a command, such as an S command, with an invalid decimal point has been assigned with a decimal point.

(Note 8) This format is the same for the value input from the memory, MDI or setting and display unit.

(Note 9) Command the program No. in an independent block. Command the program NO. in the head block of the program.
3. Data Formats

3.3 Tape Memory Format

3.3 Tape Memory Format

Function and purpose

(1) **Storage tape and significant sections (ISO, EIA automatic judgment)**

Both ISO and EIA tape codes can be stored in the memory in the same way as tape operation. After resetting, ISO/EIA is automatically judged by the EOB code at the head.

The interval to be stored in the memory is from the next character after the head EOB to the EOR code after resetting.

The significant codes listed in the "Table of tape code" in Section 3.1 "Tape codes", in the above significant section are actually stored into the memory. All other codes are ignored and are not stored.

The data between control out "(" and control in ")" are stored into the memory.

3.4 Optional Block Skip

3.4.1 Optional Block Skip; /

Function and purpose

This function selectively ignores specific blocks in a machining program which starts with the "/" (slash) code.

Detailed description

(1) Provided that the optional block skip switch is ON, blocks starting with the "/" code are ignored. They are executed if the switch is OFF.

Parity check is valid regardless of whether the optional block skip switch is ON or OFF.

When, for instance, all blocks are to be executed for one workpiece but specific block are not to be executed for another workpiece, the same command tape can be used to machine different parts by inserting the "/" code at the head of those specific blocks.

Precautions for using optional block skip

(1) Put the "/" code for optional block skip at the beginning of a block. If it is placed inside the block, it is assumed as a user macro, a division instruction.

(Example)
N20 G1 X25. /Z25. ; NG (User macro, a division instruction; a program error results.)

/N20 G1 X25. Z25. ; OK

(2) Parity checks (H and V) are conducted regardless of the optional block skip switch position.

(3) The optional block skip is processed immediately before the pre-read buffer.

Consequently, it is not possible to skip up to the block which has been read into the pre-read buffer.

(4) This function is valid even during a sequence No. search.

(5) All blocks with the "/" code are also input and output during tape storing and tape output, regardless of the position of the optional block skip switch.
3. Data Formats

3.4 Optional Block Skip

3.4.2 Optional Block Skip Addition ; /n

Function and purpose

Whether the block with ";/n (n:1 to 9)” (slash) is executed during automatic operation and searching is selected.
By using the machining program with ";/n" code, different parts can be machined by the same program.

Detailed description

The block with ";/n" (slash) code is skipped when the ";/n" is programmed to the head of the block and the optional block skip signal is turned ON.
For the block with the ";/n" code inside the block (not the head of block), the program is operated according to the value of the parameter "#1226 aux10/bit1” setting.
When the optional block skip signal is OFF, the block with ";/n" is executed.

Example of program

(1) When the 2 parts like the figure below are machined, the following program is used. When the optional block skip 5 signal is ON, the part 1 is created. When the optional block skip 5 signal is OFF, the part 2 is created.

<Program>
N1 G54;
N2 G90 G81 X50. Z-20. R3. F100;
/5 N3 X30.;
N4 X10.;
N5 G80;
M02;

Part 1
the optional block skip 5 signal ON

Part 2
the optional block skip 5 signal OFF
3. Data Formats

3.4 Optional Block Skip

(2) When two or more "/n" codes are commanded to the head of the same block, the block is ignored if either of the optional block skip signal corresponding to the command is ON.

<Program>
N01 G90 Z3. M03 S1000; \hspace{1cm} (a) Optional block skip 1 signal ON
/1/2 N02 G00 X50.; \hspace{1cm} (Optional block skip 2, 3 signals OFF)
/1/2 N03 G01 Z-20. F100; N01 -> N08 -> N09 -> N10 -> N11 -> N12
/1/2 N04 G00 Z3.;
/1/3 N05 G00 X30.; \hspace{1cm} (b) Optional block skip 2 signal ON
/1/3 N06 G01 Z-20. F100; (Optional block skip 1, 3 signals OFF)
/1/3 N07 G00 Z3.; \hspace{1cm} N01 -> N05 -> N06 -> N07 -> N11 -> N12
/2/3 N08 G00 X10.;
/2/3 N09 G01 Z-20. F100; \hspace{1cm} (c) Optional block skip 3 signal ON
/2/3 N10 G00 Z3.; \hspace{1cm} (Optional block skip 1, 2 signals OFF)
N11 G28 X0 M05; N11 -> N01 -> N02 -> N03 -> N04 -> N11 -> N12
N12 M02;

(3) When the parameter "#1226 aux10/bit1" is "1", when two or more "/n" are commanded inside the same block, the commands following "/n" in the block are ignored if either of the optional block skip signal corresponding to the command is ON.

N01 G91 G28 X0.Y0.Z0.; \hspace{1cm} (a) When the optional block skip 1 signal is ON
N02 G01 F1000; and the optional block skip 2 signal is OFF, "Y1. Z1." is ignored
N03 X1. /1 Y1. /2 Z1.;
N04 M30; \hspace{1cm} (b) When the optional block skip 1 signal is OFF and the optional block skip 2 signal is ON, "Z1." is ignored.
3.5 Program/Sequence/Block Nos.; O, N

Function and purpose

These Nos. are used for monitoring the execution of the machining programs and for calling both machining programs and specific stages in machining programs.

1. Program Nos. are classified by workpiece correspondence or by subprogram units, and they are designated by the address "O" followed by a number with up to 8 digits.

2. Sequence Nos. are attached where appropriate to command blocks which configure machining programs, and they are designated by the address "N" followed by a number with up to 6 digits.

3. Block Nos. are automatically provided internally. They are preset to zero every time a program No. or sequence No. is read, and they are counted up one at a time unless program Nos. or sequence Nos. are commanded in blocks which are subsequently read. Consequently, all the blocks of the machining programs given in the table below can be determined without further consideration by combinations of program Nos., sequence Nos. and block Nos.

<table>
<thead>
<tr>
<th>Machining program</th>
<th>Program No.</th>
<th>Sequence No.</th>
<th>Block No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O12345678 (DEMO, PROG) ;</td>
<td>12345678</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N100 G00 G90 X120. Z100. ;</td>
<td>12345678</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>G94 S1000 ;</td>
<td>12345678</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>N102 G71 P210 Q220 I0.2 K0.2 D0.5 F600 ;</td>
<td>12345678</td>
<td>102</td>
<td>0</td>
</tr>
<tr>
<td>N200 G94 S1200 F300 ;</td>
<td>12345678</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>N210 G01 X0 Z95. ;</td>
<td>12345678</td>
<td>210</td>
<td>0</td>
</tr>
<tr>
<td>G01 X20. ;</td>
<td>12345678</td>
<td>210</td>
<td>1</td>
</tr>
<tr>
<td>G01 Z55. ;</td>
<td>12345678</td>
<td>210</td>
<td>3</td>
</tr>
<tr>
<td>G02 X80. Z40. I15. ;</td>
<td>12345678</td>
<td>210</td>
<td>4</td>
</tr>
<tr>
<td>G01 X100. ;</td>
<td>12345678</td>
<td>210</td>
<td>5</td>
</tr>
<tr>
<td>G01 Z30. ;</td>
<td>12345678</td>
<td>210</td>
<td>6</td>
</tr>
<tr>
<td>G02 Z10. K–15. ;</td>
<td>12345678</td>
<td>210</td>
<td>7</td>
</tr>
<tr>
<td>N220 G01 Z0 ;</td>
<td>12345678</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>N230 G00 X120. Z150. ;</td>
<td>12345678</td>
<td>230</td>
<td>0</td>
</tr>
<tr>
<td>N240 M02 ;</td>
<td>12345678</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>%</td>
<td>12345678</td>
<td>240</td>
<td>0</td>
</tr>
</tbody>
</table>
3. Data Formats

3.6 Parity H/V

Function and purpose

Parity check provides a mean of checking whether the tape has been correctly perforated or not. This involves checking for perforated code errors or, in other words, for perforation errors. There are two types of parity check: Parity H and Parity V.

(1) Parity H

Parity H checks the number of holes configuring a character and it is done during tape operation, tape input and sequence No. search. A parity H error is caused in the following cases.

(a) ISO code

When a code with an odd number of holes in a significant data section has been detected.

(b) EIA code

When a code with an even number of holes in a significant data section has been detected.

(Example 1) Parity H error example (For ISO codes)

This character causes a parity H error.

When a parity H error occurs, the tape stops following the alarm code.

(2) Parity V

A parity V check is done during tape operation, tape input and sequence No. search when the I/O PARA #9n15 (n is the unit No.1 to 5) parity V check function is set to "1". It is not done during memory mode.

A parity V error occurs in the following case: when the number of codes from the first significant code to the EOB (;) in the significant data section in the vertical direction of the tape is an odd number, that is, when the number of characters in one block is odd.

When a parity V error is detected, the tape stops at the code following the EOB (;).

(Note 1) Among the tape codes, there are codes which are counted as characters for parity and codes which are not counted as such. For details, refer to the "Table of tape code" in Section 3.1 "Tape codes".

(Note 2) Any space codes which may appear within the section from the initial EOB code to the address code or "I" code are counted for parity V check.
3. Data Formats

3.7 G Code Lists

Function and purpose

G codes include the six G code lists 2, 3, 4, 5, 6 and 7. One list is selected by setting in parameter
"#1037 cmdtyp".

<table>
<thead>
<tr>
<th>cmdtyp</th>
<th>G code list</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>List 2</td>
</tr>
<tr>
<td>4</td>
<td>List 3</td>
</tr>
<tr>
<td>5</td>
<td>List 4</td>
</tr>
<tr>
<td>6</td>
<td>List 5</td>
</tr>
<tr>
<td>7</td>
<td>List 6</td>
</tr>
<tr>
<td>8</td>
<td>List 7</td>
</tr>
</tbody>
</table>

G functions are explained using the G code list 3.

(Note 1) A program error (P34) will result if a G code that is not in the Table of G code lists is commanded.

(Note 2) An alarm will result if a G code without additional specifications is commanded.

Table of G code lists

<table>
<thead>
<tr>
<th>G code list</th>
<th>Group</th>
<th>Function</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG00 ΔG00</td>
<td>01</td>
<td>Positioning</td>
<td>6.1</td>
</tr>
<tr>
<td>ΔG01 ΔG01</td>
<td>01</td>
<td>Linear interpolation</td>
<td>6.2</td>
</tr>
<tr>
<td>G02 G02 G02 G02 G02 G02</td>
<td>01</td>
<td>Circular interpolation CW / Helical interpolation CW</td>
<td>6.3</td>
</tr>
<tr>
<td>G03 G03 G03 G03 G03 G03</td>
<td>01</td>
<td>Circular interpolation CCW / Helical interpolation CCW</td>
<td>6.3</td>
</tr>
<tr>
<td>G02.3 G02.3 G02.3 G02.3 G02.3 G02.3</td>
<td>01</td>
<td>Exponential interpolation CW</td>
<td>6.11</td>
</tr>
<tr>
<td>G03.3 G03.3 G03.3 G03.3 G03.3 G03.3</td>
<td>01</td>
<td>Exponential interpolation CCW</td>
<td>6.11</td>
</tr>
<tr>
<td>G04 G04 G04 G04 G04 G04</td>
<td>00</td>
<td>Dwell</td>
<td>8.1</td>
</tr>
<tr>
<td>G07.1 G107</td>
<td>19</td>
<td>Cylindrical interpolation</td>
<td>6.9</td>
</tr>
<tr>
<td>G09 G09 G09 G09 G09 G09</td>
<td>00</td>
<td>Exact stop check</td>
<td>7.10</td>
</tr>
<tr>
<td>G10 G10 G10 G10 G10 G10</td>
<td>00</td>
<td>Parameter/Compensation data input by program/ Tool life management data registration</td>
<td>12.5</td>
</tr>
<tr>
<td>G11 G11 G11 G11 G11 G11</td>
<td>00</td>
<td>Program parameter input / Tool life management data registration mode cancel</td>
<td>12.5</td>
</tr>
<tr>
<td>G12.1 G112</td>
<td>19</td>
<td>Polar coordinate interpolation ON</td>
<td>6.10</td>
</tr>
<tr>
<td>G13.1 G113</td>
<td>19</td>
<td>Polar coordinate interpolation cancel</td>
<td>6.10</td>
</tr>
<tr>
<td>G12.1 G12.1 G12.1 G12.1</td>
<td>19</td>
<td>Milling interpolation ON</td>
<td>6.8</td>
</tr>
<tr>
<td>*G14 *G14 *G14 *G14</td>
<td>18</td>
<td>• Balance cut OFF</td>
<td>13.18</td>
</tr>
<tr>
<td>G15 G15 G15 G15</td>
<td>18</td>
<td>• Balance cut ON</td>
<td>13.18</td>
</tr>
<tr>
<td>G code list</td>
<td>Group</td>
<td>Function</td>
<td>Section</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>2 3 4 5 6 7</td>
<td>02</td>
<td>Milling interpolation plane selection Y-Z cylindrical plane</td>
<td>6.8.3</td>
</tr>
<tr>
<td>ΔG17 ΔG17 ΔG17 ΔG17 ΔG17</td>
<td>02</td>
<td>Plane selection X-Y</td>
<td>6.5</td>
</tr>
<tr>
<td>ΔG18 ΔG18 ΔG18 ΔG18 ΔG18</td>
<td>02</td>
<td>Plane selection Z-X</td>
<td>6.5</td>
</tr>
<tr>
<td>ΔG19 ΔG19 ΔG19 ΔG19 ΔG19</td>
<td>02</td>
<td>Plane selection Y-Z</td>
<td>6.5</td>
</tr>
<tr>
<td>ΔG20 ΔG20 ΔG20 ΔG20 ΔG20</td>
<td>06</td>
<td>Inch command</td>
<td>5.3</td>
</tr>
<tr>
<td>ΔG21 ΔG21 ΔG21 ΔG21 ΔG21</td>
<td>06</td>
<td>Metric command</td>
<td>5.3</td>
</tr>
<tr>
<td>G22 G22 G22 G22</td>
<td>04</td>
<td>Barrier check ON</td>
<td>15.1</td>
</tr>
<tr>
<td>*G23 *G23 *G23 *G23</td>
<td>04</td>
<td>Barrier check OFF</td>
<td>15.1</td>
</tr>
<tr>
<td>G22 G22</td>
<td>00</td>
<td>Soft limit ON</td>
<td>15.2</td>
</tr>
<tr>
<td>G23 G23</td>
<td>00</td>
<td>Soft limit OFF</td>
<td>15.2</td>
</tr>
<tr>
<td>G27 G27 G27 G27 G27</td>
<td>00</td>
<td>Reference position return check</td>
<td>14.9</td>
</tr>
<tr>
<td>G28 G28 G28 G28 G28</td>
<td>00</td>
<td>Automatic reference position return</td>
<td>14.7</td>
</tr>
<tr>
<td>G29 G29 G29 G29 G29</td>
<td>00</td>
<td>Return from reference position</td>
<td>14.7</td>
</tr>
<tr>
<td>G30 G30 G30 G30 G30</td>
<td>00</td>
<td>2nd, 3rd and 4th reference position return</td>
<td>14.8</td>
</tr>
<tr>
<td>G30.1 G30.1 G30.1 G30.1 G30.1</td>
<td>00</td>
<td>Tool change position return 1</td>
<td>13.17</td>
</tr>
<tr>
<td>G30.2 G30.2 G30.2 G30.2</td>
<td>00</td>
<td>Tool change position return 2</td>
<td>13.17</td>
</tr>
<tr>
<td>G30.3 G30.3 G30.3 G30.3</td>
<td>00</td>
<td>Tool change position return 3</td>
<td>13.17</td>
</tr>
<tr>
<td>G30.4 G30.4 G30.4 G30.4</td>
<td>00</td>
<td>Tool change position return 4</td>
<td>13.17</td>
</tr>
<tr>
<td>G30.5 G30.5 G30.5 G30.5</td>
<td>00</td>
<td>Tool change position return 5</td>
<td>13.17</td>
</tr>
<tr>
<td>G31 G31 G31 G31 G31</td>
<td>00</td>
<td>Skip function/Multiple-step skip function 2</td>
<td>16.2</td>
</tr>
<tr>
<td>G31.1 G31.1 G31.1 G31.1 G31.1</td>
<td>00</td>
<td>Multiple-step skip function 1-1</td>
<td>16.3</td>
</tr>
<tr>
<td>G31.2 G31.2 G31.2 G31.2</td>
<td>00</td>
<td>Multiple-step skip function 1-2</td>
<td>16.3</td>
</tr>
<tr>
<td>G31.3 G31.3 G31.3 G31.3</td>
<td>00</td>
<td>Multiple-step skip function 1-3</td>
<td>16.3</td>
</tr>
<tr>
<td>G32 G33 G32 G33 G32</td>
<td>01</td>
<td>Thread cutting</td>
<td>6.6.1</td>
</tr>
<tr>
<td>G34 G34 G34 G34 G34</td>
<td>01</td>
<td>Variable lead thread cutting</td>
<td>6.6.4</td>
</tr>
<tr>
<td>G35 G35 G35 G35 G35</td>
<td>01</td>
<td>Circular thread cutting CW</td>
<td>6.6.5</td>
</tr>
<tr>
<td>G36 G36 G36 G36 G36</td>
<td>01</td>
<td>Circular thread cutting CCW</td>
<td>6.6.5</td>
</tr>
<tr>
<td>G37 G37 G39 G37 G39 G37</td>
<td>00</td>
<td>Automatic tool length measurement</td>
<td>16.1</td>
</tr>
<tr>
<td>*G40 *G40 *G40 *G40</td>
<td>07</td>
<td>Tool nose R compensation cancel</td>
<td>12.4</td>
</tr>
<tr>
<td>G41 G41 G41 G41 G41</td>
<td>07</td>
<td>Tool nose R compensation left</td>
<td>12.4</td>
</tr>
<tr>
<td>G42 G42 G42 G42 G42</td>
<td>07</td>
<td>Tool nose R compensation right</td>
<td>12.4</td>
</tr>
<tr>
<td>G46 G46 G46 G46 G46</td>
<td>07</td>
<td>Tool nose R compensation (direction automatically selected) ON</td>
<td>12.4</td>
</tr>
</tbody>
</table>
3. Data Formats

3.7 G Code Lists

<table>
<thead>
<tr>
<th>G code list</th>
<th>Group</th>
<th>Function</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G43.1 G43.1 G43.1 G43.1 G43.1 G43.1</td>
<td>20</td>
<td>1st spindle control mode</td>
<td>10.12.2</td>
</tr>
<tr>
<td>G44.1 G44.1 G44.1 G44.1 G44.1 G44.1</td>
<td>20</td>
<td>Selected spindle control mode</td>
<td>10.12.2</td>
</tr>
<tr>
<td>G47.1 G47.1 G47.1 G47.1 G47.1 G47.1</td>
<td>20</td>
<td>All spindles simultaneous control mode</td>
<td>10.12.2</td>
</tr>
<tr>
<td>G50 G92 G50 G92 G50 G92</td>
<td>00</td>
<td>Spindle clamp speed setting</td>
<td>10.5</td>
</tr>
<tr>
<td>*G50.2 *G50.2 *G50.2 *G50.2</td>
<td>11</td>
<td>Scaling cancel</td>
<td>14.6</td>
</tr>
<tr>
<td>G51.2 G51.2 G51.2 G51.2</td>
<td>11</td>
<td>Scaling ON</td>
<td></td>
</tr>
<tr>
<td>G50.2 G250</td>
<td>00</td>
<td>Polygon machining mode cancel</td>
<td>10.9</td>
</tr>
<tr>
<td>G51.2 G251</td>
<td>00</td>
<td>Polygon machining mode ON</td>
<td>10.9</td>
</tr>
<tr>
<td>G52 G52 G52 G52 G52 G52</td>
<td>00</td>
<td>Local coordinate system setting</td>
<td>14.11</td>
</tr>
<tr>
<td>G53 G53 G53 G53 G53 G53</td>
<td>00</td>
<td>Basic machine coordinate system selection</td>
<td>14.5</td>
</tr>
<tr>
<td>*G54 *G54 *G54 *G54 *G54 *G54</td>
<td>12</td>
<td>Workpiece coordinate system selection 1</td>
<td>14.10</td>
</tr>
<tr>
<td>G55 G55 G55 G55 G55 G55</td>
<td>12</td>
<td>Workpiece coordinate system selection 2</td>
<td>14.10</td>
</tr>
<tr>
<td>G56 G56 G56 G56 G56 G56</td>
<td>12</td>
<td>Workpiece coordinate system selection 3</td>
<td>14.10</td>
</tr>
<tr>
<td>G57 G57 G57 G57 G57 G57</td>
<td>12</td>
<td>Workpiece coordinate system selection 4</td>
<td>14.10</td>
</tr>
<tr>
<td>G58 G58 G58 G58 G58 G58</td>
<td>12</td>
<td>Workpiece coordinate system selection 5</td>
<td>14.10</td>
</tr>
<tr>
<td>G59 G59 G59 G59 G59 G59</td>
<td>12</td>
<td>Workpiece coordinate system selection 6</td>
<td>14.10</td>
</tr>
<tr>
<td>G54.1 G54.1 G54.1 G54.1 G54.1 G54.1</td>
<td>12</td>
<td>Workpiece coordinate system 48 sets expanded</td>
<td>14.10</td>
</tr>
<tr>
<td>G61 G61 G61 G61 G61 G61</td>
<td>13</td>
<td>Exact stop check mode</td>
<td>7.11</td>
</tr>
<tr>
<td>G63 G63 G63 G63 G63 G63</td>
<td>13/19</td>
<td>Tapping mode</td>
<td>7.14</td>
</tr>
<tr>
<td>*G64 *G64 *G64 *G64 *G64 *G64</td>
<td>13/19</td>
<td>Cutting mode</td>
<td>7.15</td>
</tr>
<tr>
<td>G65 G65 G65 G65 G65 G65</td>
<td>00</td>
<td>User macro call</td>
<td>13.9.1</td>
</tr>
<tr>
<td>G66 G66 G66 G66 G66 G66</td>
<td>14</td>
<td>User macro modal call A</td>
<td>13.9.1</td>
</tr>
<tr>
<td>G66.1 G66.1 G66.1 G66.1 G66.1 G66.1</td>
<td>14</td>
<td>User macro modal call B</td>
<td>13.9.1</td>
</tr>
<tr>
<td>*G67 *G67 *G67 *G67 *G67 *G67</td>
<td>14</td>
<td>User macro modal call cancel</td>
<td>13.9.1</td>
</tr>
<tr>
<td>G68 G68 G68 G68</td>
<td>15</td>
<td>Mirror image for facing tool posts ON</td>
<td>13.10</td>
</tr>
<tr>
<td>G69 G69 G69 G69</td>
<td>15</td>
<td>Mirror image for facing tool posts OFF</td>
<td>13.10</td>
</tr>
<tr>
<td>G68 G68</td>
<td>15</td>
<td>Mirror image for facing tool posts ON or balance cut mode ON</td>
<td>13.10</td>
</tr>
<tr>
<td>*G69 *G69</td>
<td>15</td>
<td>Mirror image for facing tool posts OFF or balance cut mode cancel</td>
<td>13.10</td>
</tr>
<tr>
<td>G70 G70 G70 G70 G70 G70</td>
<td>09</td>
<td>Finishing cycle</td>
<td>13.3.4</td>
</tr>
<tr>
<td>G71 G71 G71 G71 G71 G71</td>
<td>09</td>
<td>Longitudinal rough cutting cycle</td>
<td>13.3.1</td>
</tr>
<tr>
<td>G72 G72 G72 G72 G72 G72</td>
<td>09</td>
<td>Face rough cutting cycle</td>
<td>13.3.2</td>
</tr>
<tr>
<td>G73 G73 G73 G73 G73 G73</td>
<td>09</td>
<td>Formed material rough cutting cycle</td>
<td>13.3.3</td>
</tr>
<tr>
<td>G74 G74 G74 G74 G74 G74</td>
<td>09</td>
<td>Face cut-off cycle</td>
<td>13.3.5</td>
</tr>
<tr>
<td>G75 G75 G75 G75 G75 G75</td>
<td>09</td>
<td>Longitudinal cut-off cycle</td>
<td>13.3.6</td>
</tr>
<tr>
<td>G76 G76 G76 G76 G76 G76</td>
<td>09</td>
<td>Compound thread cutting cycle</td>
<td>13.3.7</td>
</tr>
</tbody>
</table>
3. Data Formats

3.7 G Code Lists

<table>
<thead>
<tr>
<th>G code list</th>
<th>Group</th>
<th>Function</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G76.1</td>
<td>2 3</td>
<td>2-part system synchronous thread-cutting cycle (1)</td>
<td>13.20.2</td>
</tr>
<tr>
<td>G76.2</td>
<td>2 3</td>
<td>2-part system synchronous thread-cutting cycle (2)</td>
<td>13.20.3</td>
</tr>
<tr>
<td>G90 G77 G90 G77 G90 G77</td>
<td>2 3 4 5 6 7</td>
<td>Longitudinal cutting fixed cycle</td>
<td>13.1.1</td>
</tr>
<tr>
<td>G92 G78 G92 G78 G92 G78</td>
<td>2 3 4 5 6 7</td>
<td>Thread cutting fixed cycle</td>
<td>13.1.2</td>
</tr>
<tr>
<td>G94 G79 G94 G79 G94 G79</td>
<td>2 3 4 5 6 7</td>
<td>Face cutting fixed cycle</td>
<td>13.1.3</td>
</tr>
<tr>
<td>*G80 *G80 *G80 *G80 *G80 *G80</td>
<td>2 3 4 5 6 7</td>
<td>Fixed cycle for drilling cancel</td>
<td>13.5 13.5.5 13.6</td>
</tr>
<tr>
<td>G81 G81 G81 G81 G81 G81</td>
<td>2 3 4 5 6 7</td>
<td>Fixed cycle (drill/spot drilling)</td>
<td>13.6</td>
</tr>
<tr>
<td>G82 G82 G82 G82 G82 G82</td>
<td>2 3 4 5 6 7</td>
<td>Fixed cycle (drill/counter boring)</td>
<td>13.6</td>
</tr>
<tr>
<td>G79 G83.2 G79 G83.2 G79 G83.2</td>
<td>2 3 4 5 6 7</td>
<td>Deep hole drilling cycle 2</td>
<td>13.5.4</td>
</tr>
<tr>
<td>G83 G83 G83 G83 G83 G83</td>
<td>2 3 4 5 6 7</td>
<td>Deep hole drilling cycle (Z axis)/Small-diameter deep-hole drilling cycle</td>
<td>13.5 13.5.1</td>
</tr>
<tr>
<td>G83.1 G83.1 G83.1 G83.1 G83.1 G83.1</td>
<td>2 3 4 5 6 7</td>
<td>Stepping cycle</td>
<td>13.6</td>
</tr>
<tr>
<td>G84 G84 G84 G84 G84 G84</td>
<td>2 3 4 5 6 7</td>
<td>Tapping cycle (Z axis)</td>
<td>13.5 13.5.2</td>
</tr>
<tr>
<td>G85 G85 G85 G85 G85 G85</td>
<td>2 3 4 5 6 7</td>
<td>Boring cycle (Z axis)</td>
<td>13.5 13.5.3</td>
</tr>
<tr>
<td>G87 G87 G87 G87 G87 G87</td>
<td>2 3 4 5 6 7</td>
<td>Deep hole drilling cycle (X axis)</td>
<td>13.5 13.5.1</td>
</tr>
<tr>
<td>G88 G88 G88 G88 G88 G88</td>
<td>2 3 4 5 6 7</td>
<td>Tapping cycle (X axis)</td>
<td>13.5 13.5.2</td>
</tr>
<tr>
<td>G89 G89 G89 G89 G89 G89</td>
<td>2 3 4 5 6 7</td>
<td>Boring cycle (X axis)</td>
<td>13.5 13.5.3</td>
</tr>
<tr>
<td>G84.1 G84.1 G84.1 G84.1 G84.1 G84.1</td>
<td>2 3 4 5 6 7</td>
<td>Reverse tapping cycle (Z axis)</td>
<td>13.5.2</td>
</tr>
<tr>
<td>G84.2 G84.2 G84.2 G84.2 G84.2 G84.2</td>
<td>2 3 4 5 6 7</td>
<td>Synchronous tapping cycle</td>
<td>13.6</td>
</tr>
<tr>
<td>G88.1 G88.1 G88.1 G88.1 G88.1 G88.1</td>
<td>2 3 4 5 6 7</td>
<td>Reverse tapping cycle (X axis)</td>
<td>13.5.2</td>
</tr>
<tr>
<td>G50.3 G92.1 G50.3 G92.1</td>
<td>2 3 4 5 6 7</td>
<td>Workpiece coordinate preset</td>
<td>14.12</td>
</tr>
<tr>
<td>ΔG96 ΔG96 ΔG96 ΔG96 ΔG96 ΔG96</td>
<td>2 3 4 5 6 7</td>
<td>Constant surface speed control ON</td>
<td>10.4</td>
</tr>
<tr>
<td>ΔG97 ΔG97 ΔG97 ΔG97 ΔG97 ΔG97</td>
<td>2 3 4 5 6 7</td>
<td>Constant surface speed control OFF</td>
<td>10.4</td>
</tr>
<tr>
<td>ΔG98 ΔG94 ΔG98 ΔG94 ΔG98 ΔG94</td>
<td>2 3 4 5 6 7</td>
<td>Feed per minute (Asynchronous feed)</td>
<td>7.4</td>
</tr>
<tr>
<td>ΔG99 ΔG95 ΔG99 ΔG95 ΔG99 ΔG95</td>
<td>2 3 4 5 6 7</td>
<td>Feed per revolution (Synchronous feed)</td>
<td>7.4</td>
</tr>
<tr>
<td>– ΔG90 – ΔG90 – ΔG90</td>
<td>2 3 4 5 6 7</td>
<td>Absolute value command</td>
<td>5.1</td>
</tr>
<tr>
<td>– ΔG91 – ΔG91 – ΔG91</td>
<td>2 3 4 5 6 7</td>
<td>Incremental value command</td>
<td>5.1</td>
</tr>
<tr>
<td>– *G98 – *G98 – *G98</td>
<td>2 3 4 5 6 7</td>
<td>Fixed cycle initial return</td>
<td>13.6 13.6.1</td>
</tr>
<tr>
<td>– G99 – G99 – G99</td>
<td>2 3 4 5 6 7</td>
<td>Fixed cycle R point return</td>
<td>13.6.1</td>
</tr>
</tbody>
</table>
3. Data Formats

3.7 G Code Lists

<table>
<thead>
<tr>
<th>G code list</th>
<th>Group</th>
<th>Function</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G113 G113 G113 G113</td>
<td>00</td>
<td>Spindle synchronization cancel</td>
<td>10.7</td>
</tr>
<tr>
<td>G113 G113 G113 G113</td>
<td>00</td>
<td>Polygon machining (spindle-spindle synchronization) mode cancel</td>
<td>10.8</td>
</tr>
<tr>
<td>G114.1 G114.1 G114.1 G114.1</td>
<td>00</td>
<td>Spindle synchronization</td>
<td>10.7.1</td>
</tr>
<tr>
<td>G114.2 G114.2 G114.2 G114.2</td>
<td>00</td>
<td>Polygon machining (spindle-spindle synchronization) mode ON</td>
<td>10.8</td>
</tr>
<tr>
<td>G114.3 G114.3 G114.3 G114.3</td>
<td>00</td>
<td>Tool spindle synchronization II (Hobbing)</td>
<td>10.11</td>
</tr>
<tr>
<td>G115 G115 G115 G115 G115 G115</td>
<td>00</td>
<td>• Start point designation synchronization Type 1</td>
<td>13.19.2</td>
</tr>
<tr>
<td>G116 G116 G116 G116 G116 G116</td>
<td>00</td>
<td>• Start point designation synchronization Type 2</td>
<td>13.19.3</td>
</tr>
<tr>
<td>G117 G117 G117 G117 G117 G117</td>
<td>00</td>
<td>• Miscellaneous function output during axis movement</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) A (⋆) symbol indicates the G code to be selected in each group when the power is turned ON or when a reset is executed to initialize the modal.

(Note 2) A (Δ) symbol indicates the G code for which parameters selection is possible as an initialization status when the power is turned ON or when a reset is executed to initialize the modal. Note that inch/metric changeover can only be selected when the power is turned ON.

(Note 3) A (•) symbol indicates a function dedicated for multi-part system.

(Note 4) If two or more G codes from the same group are commanded, the last G code will be valid.

(Note 5) This G code list is a list of conventional G codes. Depending on the machine, movements that differ from the conventional G commands may be included when called by the G code macro. Refer to the Instruction Manual issued by the machine tool builder.

(Note 6) Whether the modal is initialized differs for each reset input.

1. "Reset 1"
The modal is initialized when the reset initialization parameter (#1151 rstinit) is ON.

2. "Reset 2 "and "Reset and Rewind"
The modal is initialized when the signal is input.

3. Reset at emergency stop release
Conforms to "Reset 1".

4. When an automatic reset is carried out at the start of individual functions, such as reference position return.
Conforms to "Reset and Rewind".
(Note 7) Precautions for 6 and 7 in G code lists

1. G68 and G69
 When both the mirror image for facing tool posts option and balance cut option are valid, G68 and G69 will be handled as the command to turn the mirror image for facing tool posts ON and OFF. (The mirror image for facing tool posts has the priority.)

2. G36
 G36 is used for the two functions, automatic tool length measurement and circular thread cutting (CCW). The applied function follows the parameter "#1238 set10/bit0" (circular thread cutting) setting.

 When "#1238 set10/bit0" is set to 0

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G35</td>
<td>Circular thread cutting clockwise rotation (CW)</td>
</tr>
<tr>
<td>G36</td>
<td>Automatic tool length measurement X</td>
</tr>
<tr>
<td>G37</td>
<td>Automatic tool length measurement Z</td>
</tr>
</tbody>
</table>

 When "#1238 set10/bit0" is set to 1

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G35</td>
<td>Circular thread cutting clockwise rotation (CW)</td>
</tr>
<tr>
<td>G36</td>
<td>Circular thread cutting counterclockwise rotation (CCW)</td>
</tr>
<tr>
<td>G37</td>
<td>Automatic tool length measurement Z</td>
</tr>
</tbody>
</table>

⚠️ CAUTION

⚠️ The commands with "no value after G" will be handled as "G00".
3.8 Precautions before Starting Machining

⚠️ CAUTION

⚠️ When creating the machining program, select the appropriate machining conditions, and make sure that the performance, capacity and limits of the machine and NC are not exceeded. The examples do not consider the machining conditions.

⚠️ Before starting actual machining, always carry out dry run operation to confirm the machining program, tool offset amount and workpiece offset amount, etc.
4. Buffer Register

4.1 Input Buffer

Function and purpose

When the pre-read buffer is empty during a tape operation or RS-232C operation, the contents of the input buffer are immediately transferred to the pre-read buffers, and provided that the data stored in the input buffer do not exceed 250 × 4 characters, the following data (Max. 250 characters) are read and loaded into the input buffer.

This buffer is designed to eliminate the operational delay originating in the readout time of the tape reader and to smooth out the block joints. The pre-reading effects are lost, however, when the block execution time is shorter than the tape readout time of the following block.

The input buffer has a memory capacity of 250 × 5 characters (including the EOB code).

1. The contents of the input buffer register are updated in 250-character units.
2. Only the significant codes in the significant data section are read into the input buffer.
3. When codes (including "(" and ")") are sandwiched in the control in or control out mode and the optional block skip function is ON, the data extending from the "/" (slash) code up to the EOB code are read into the input buffer.
4. The input buffer contents are cleared with resetting.

(Note 1) The input buffer size (250 characters) differs according to the model.
4.2 Pre-read Buffers

Function and purpose

During automatic processing, the contents of 1 block are normally pre-read so that program analysis processing is conducted smoothly. However, during nose R compensation, a maximum of 5 blocks are pre-read for the intersection point calculation including interference check. The specifications of the data in 1 block are as follows:

1. The data of 1 block are stored in this buffer.
2. Only the significant codes in the significant data section are read into the pre-read buffer.
3. When codes are sandwiched in the control in and control out, and the optional block skip function is ON, the data extending from the "/" (slash) code up to the EOB code are not read into the pre-read buffer.
4. The pre-read buffer contents are cleared with resetting.
5. When the single block function is ON during continuous operation, the pre-read buffer stores the following block data and then stops operation.

Other precautions

1. Depending on whether the program is executed continuously or by single blocks, the timing of the valid/invalid for the external control signals for the optional block skip and others will differ.
2. If the external control signal such as optional block skip is turned ON/OFF with the M command, the external control operation will not be effective on the program pre-read with the buffer register.
3. According to the M command that operates the external controls, it prohibits pre-reading, and the recalculation is as follows:
 The M command that commands the external controls is distinguished at the PLC, and the "recalculation request" for PLC → NC interface table is turned ON.
 (When the "recalculation request" is ON, the program that has been pre-read is reprocessed.)
5. Position Commands

5.1 Incremental/Absolute Value Commands

Function and purpose

There are 2 methods of issuing tool movement amount commands: the incremental value method and the absolute value method. The incremental value method applies for coordinates of a point which is to be moved and it issues a command using the distance from the present point; on the other hand, the absolute value method issues a command using the distance from the coordinate zero point. The following figure shows what happens when the tool is moved from point P1 to point P2.

Incremental and absolute value commands

Incremental value commands and absolute value commands for the X axis and Z axis are identified by address when parameter "#1076 AbsInc" is set to 1, and identified by G code (G90/G91) when set to 0. Similarly, even with additional axes (C axis or Y axis), they are differentiated by addresses, or G code.

<table>
<thead>
<tr>
<th>Command method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute value</td>
<td>• Set correspondence between addresses and axes into "#1013 axname" and "#1014 incax".</td>
</tr>
<tr>
<td>X axis</td>
<td>Address X</td>
</tr>
<tr>
<td>Z axis</td>
<td>Address Z</td>
</tr>
<tr>
<td>C/Y axis</td>
<td>Address C/Y</td>
</tr>
<tr>
<td>Incremental value</td>
<td>• Absolute and incremental values can be used together in the same block.</td>
</tr>
<tr>
<td>X axis</td>
<td>Address U</td>
</tr>
<tr>
<td>Z axis</td>
<td>Address W</td>
</tr>
<tr>
<td>C/Y axis</td>
<td>Address H/V</td>
</tr>
</tbody>
</table>

(Example)

```
X W ;
```

Incremental value command for Z axis
Absolute value command for X axis

(Note 1) When parameter "#1076 AbsInc" is 1, and H is used for the incremental command address, address H of blocks in M98, G114.2, and G10 L50 modal will be handled as the parameter of each command, and the axis will not be moved.
5.2 Radius/Diameter Commands

Function and purpose

The cross sections of workpieces machined on a lathe are circular, and the diameter or radius value of those circles can be used for movement commands in the X-axis direction. A radius command will move the tool by the commanded amount only, but a diameter command will move the tool both in the X-axis direction by an amount equivalent to one-half the commanded amount only and in the Z-axis direction by the commanded amount only.

This system permits radius or diameter commands to be issued, depending on the parameter (#1019 dia) setting. The figure below shows the command procedure when the tool is to be moved from point P1 to point P2.

![Diagram showing the movement of the tool from P1 to P2](image)

<table>
<thead>
<tr>
<th>X command</th>
<th>U command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>Diameter</td>
<td>Radius</td>
</tr>
<tr>
<td>X = r₁</td>
<td>X = 2r₁</td>
<td>U = r₂</td>
</tr>
</tbody>
</table>

Even when a diameter command has been selected, only the U command can be made a radius command by parameter "#1077 radius".

Precautions and Restrictions

1. In the above example, the tool moves from P1 to P2 in the minus direction of the X axis and so when an incremental value is issued, the minus sign is given to the numerical value being commanded.

2. In this manual, diameter commands are used in descriptions of both the X and U axes for the sake of convenience.
5. Position Commands

5.3 Inch/Metric Conversion; G20, G21

Function and purpose

The commands can be changed between inch and metric with the G20/G21 command.

Command format

G20/G21;
 G20 Inch command
 G21 Metric command

Detailed description

The G20 and G21 commands merely select the command units. They do not select the Input units. G20 and G21 selection is meaningful only for linear axes and it is meaningless for rotation axes.

Output unit, command unit and setting unit

The counter or parameter setting and display unit is determined by parameter "#1041 I_inch". For the movement/speed command, the followings will be resulted:

The movement/speed command will be displayed as metric units when "+1041 I_inch" is ON during the G21 command mode.

The internal unit metric data of the movement/speed command will be converted into an inch unit and displayed when "+1041 I_inch" is OFF during the G20 command mode.

The command unit for when the power is turned ON and reset is decided by combining the parameters "+1041 I_inch", "+1151 rstint" and "+1210 RstGmd/bit5".

NC axis

<table>
<thead>
<tr>
<th>Item</th>
<th>Initial inch OFF (metric internal unit) #1041 I_inch=0</th>
<th>Initial inch ON (inch internal unit) #1041 I_inch=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G21</td>
<td>G20</td>
</tr>
<tr>
<td>Movement/speed command</td>
<td>Metric</td>
<td>Inch</td>
</tr>
<tr>
<td>Counter display</td>
<td>Metric</td>
<td>Metric</td>
</tr>
<tr>
<td>Speed display</td>
<td>Metric</td>
<td>Metric</td>
</tr>
<tr>
<td>User parameter setting/display</td>
<td>Metric</td>
<td>Metric</td>
</tr>
<tr>
<td>Workpiece/tool offset setting/display</td>
<td>Metric</td>
<td>Metric</td>
</tr>
<tr>
<td>Handle feed command</td>
<td>Metric</td>
<td>Metric</td>
</tr>
</tbody>
</table>

PLC axis

<table>
<thead>
<tr>
<th>Item</th>
<th>#1042 pcinch=0 (metric)</th>
<th>#1042 pcinch=1 (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement/speed command</td>
<td>Metric</td>
<td>Inch</td>
</tr>
<tr>
<td>Counter display</td>
<td>Metric</td>
<td>Inch</td>
</tr>
<tr>
<td>User parameter setting/display</td>
<td>Metric</td>
<td>Inch</td>
</tr>
</tbody>
</table>

28
5. Position Commands

5.3 Inch/Metric Conversion

Precautions

(1) The parameter and tool data will be input/output with the "#1041 I_inch" setting unit. If "#1041 I_inch" is not found in the parameter input data, the unit will follow the unit currently set to NC.

(2) The unit of read/write used in PLC window is fixed to metric unit regardless of a parameter and G20/G21 command modal.

(3) A program error (P33) will occur if G20/G21 command is issued in the same block as following G code. Command in a separate block.
 G7.1 (Cylindrical Interpolation)
 G12.1 (Polar coordinate interpolation)
5. Position Commands

5.4 Decimal Point Input

Function and purpose

This function enables the decimal point to be input. It assigns the decimal point in millimeter or inch units for the machining program input information that defines the tool paths, distances and speeds. A parameter "#1078 Decpt2" selects whether minimum input command increment (type I) or zero point (type II) is to apply for the least significant digit of data without a decimal point.

Detailed description

(1) The decimal point command is valid for the distances, angles, times and speeds in machining programs.

(2) Refer to the table rising the "Addresses used and valid/invalid decimal point commands" for details on the valid addresses for the decimal point commands.

(3) In decimal point command, the valid range of command value is as shown below (for input command increment cunit=10).

<table>
<thead>
<tr>
<th>Input unit</th>
<th>Movement command (linear)</th>
<th>Movement command (rotary)</th>
<th>Feed rate</th>
<th>Dwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>-9999.999 to 99999.999</td>
<td>-9999.999 to 99999.999</td>
<td>0.001 to 10000000.000</td>
<td>0 to 99999.999</td>
</tr>
<tr>
<td>[inch]</td>
<td>-9999.999 to 9999.999</td>
<td>-9999.999 to 99999.999</td>
<td>0.0001 to 1000000.00000</td>
<td></td>
</tr>
</tbody>
</table>

(4) The decimal point command is valid even for commands defining the variable data used in subprograms.

(5) Decimal point commands for decimal point invalid addresses are processed as integer data only and everything below the decimal point is ignored. Addresses which are invalid for the decimal point are D, H, L, M, N, O, P, S and T. All variable commands, however, are treated as data with decimal points.

Precautions

(1) If an arithmetic operator is inserted, the data will be handled as data with a decimal point. (Example1) G00 X123+0 ;

This is the X axis command 123mm command. It will not be 123μm.
(1) Example of program for decimal point valid address

<table>
<thead>
<tr>
<th>Specification division</th>
<th>Decimal point command 1</th>
<th>Decimal point command 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When 1 = 1μm</td>
<td>When 1 = 10μm</td>
</tr>
<tr>
<td>G0 X123.45 (decimal points are all mm points)</td>
<td>X123.450mm</td>
<td>X123.450mm</td>
</tr>
<tr>
<td>G0 X12345</td>
<td>X12.345mm (last digit is 1μm unit)</td>
<td>X123.450mm</td>
</tr>
<tr>
<td>#111 = 123, #112 = 5.55</td>
<td>X123.000mm, Z5.550mm</td>
<td>X123.000mm, Z5.550mm</td>
</tr>
<tr>
<td>X#111 Z#112</td>
<td>#113 = #111 + #112 (addition)</td>
<td>#113 = 128.550</td>
</tr>
<tr>
<td>#114 = #111 - #112 (subtraction)</td>
<td>#114 = 117.450</td>
<td>#114 = 117.450</td>
</tr>
<tr>
<td>#115 = #111 * #112 (multiplication)</td>
<td>#115 = 682.650</td>
<td>#115 = 682.650</td>
</tr>
<tr>
<td>#116 = #111/#112</td>
<td>#116 = 22.162</td>
<td>#116 = 22.162</td>
</tr>
<tr>
<td>#117 = #112/#111</td>
<td>#117 = 0.045</td>
<td>#117 = 0.045</td>
</tr>
</tbody>
</table>

Decimal point input I, II and decimal point command validity

In the table on the next page, decimal point input I and II result in the following for commands in which a decimal point is not used in an address where a decimal point command is valid. Both decimal point input I and II become the same for commands using a decimal point.

(1) **Decimal point input I**
 The lowest order digit of command data matches the command unit.
 (Example) When "X1" is commanded in 1μm system, the same result occurs as for an "X0.001" command.

(2) **Decimal point input II**
 The lowest order digit of command data matches the command unit.
 (Example) When "X1" is commanded in 1μm system, the same result occurs as for an "X1." command.
Addresses used, validity of decimal point commands

<table>
<thead>
<tr>
<th>Address</th>
<th>Decimal point command</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>2nd miscellaneous function code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Angle data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>MRC program No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, axis No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Deep hole drilling cycle (2) Safety distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Spindle synchronous acceleration/deceleration time constant</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>2nd miscellaneous function code</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>2nd miscellaneous function code</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Corner chamfering amount</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool offset input Nose R compensation amount (incremental)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Chamfering width (sitting cycle)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Valid</td>
<td>Automatic tool length measurement, deceleration range</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, byte type data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Synchronous spindle No. at spindle synchronization</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Valid</td>
<td>Inch threads Precision thread lead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Corner cutting feed rate</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Valid</td>
<td>Feed rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Preparatory function code</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Sequence Nos. in subprograms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, bit type data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Selection of linear - arc intersection (geometric)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Basic spindle No. at spindle synchronization</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Valid</td>
<td>Circular center coordinates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Nose R compensation/ tool radius compensation vector components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Deep hole drilling (2) First cut amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>G0/G1 in-position width Hole drilling cycle G0 in-position width</td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Decimal point command</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Valid</td>
<td>Circular center coordinates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Nose R compensation/ tool radius compensation vector components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Deep hole drilling (2) Dwell at return point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Hole drilling cycle G1 in-position width</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>Valid</td>
<td>Circular center coordinates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Nose R compensation/ tool radius compensation vector components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Hole machining cycle Number of repetitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Deep hole drilling cycle (2) Second and subsequent cut amounts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Thread lead increase/ decrease amount (variable lead thread cutting)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Invalid</td>
<td>Subprogram Number of repetitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Program tool compensation input type selection</td>
<td>L2 L10 L11</td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, selection</td>
<td>L70</td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, two-word type data</td>
<td>4 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Tool life data</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Invalid</td>
<td>Miscellaneous function codes</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Invalid</td>
<td>Sequence Nos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, data No.</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Invalid</td>
<td>Program Nos.</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Invalid</td>
<td>Dwell time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Subprogram call program Nos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>2nd, 3rd and 4th reference position No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Constant surface speed control, axis No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>MRC finishing shape start sequence No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Cut-off cycle shift amount/cut amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Compound thread cutting cycle, number of cutting passes, chamfering, tool nose angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Compound thread cutting cycle Thread height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Program tool compensation input compensation No.</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) Decimal points are all valid in user macro arguments.
5. Position Commands

5.4 Decimal Point Input

<table>
<thead>
<tr>
<th>Address</th>
<th>Decimal point command</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Invalid</td>
<td>Parameter input by program, section No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Skip signal command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Arc center coordinates (absolute value) (geometric)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Subprogram return destination sequence No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Extended workpiece coordinate system No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Tool life data group No.</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Invalid</td>
<td>Minimum spindle clamp rotation speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>MRC finishing shape end sequence No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Cut-off cycle Cut amount/shift amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Compound thread cutting cycle Minimum cut amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Compound thread cutting cycle First cut amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Deep hole drilling cycle 1 Cut amount of each pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Program tool compensation input Hypothetical tool nose point No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Deep hole drilling cycle (2) Dwel at cut point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Arc center coordinates (absolute value) (geometric)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Thread cutting start shift angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Tool life data management method</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Valid</td>
<td>R-designated arc radius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Corner rounding circular radius</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Automatic tool length measurement, deceleration range r</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>MRC longitudinal/face escape amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>MRC shaping division No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Cut-off cycle, return amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Cut-off cycle, escape amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Compound thread cutting cycle, finishing allowance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Compound thread cutting cycle/turning cycle, taper difference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Hole drilling cycle/deep hole drilling cycle (2), distance to R point</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Decimal point command</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Valid</td>
<td>Program tool compensation input/nose R compensation amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Rough cutting cycle (longitudinal) (face) pull amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Synchronous tap/asynchronous tap changeover R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Synchronous spindle phase shift amount</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Invalid</td>
<td>Spindle function codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Maximum spindle clamp rotation speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Constant surface speed control, surface speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invalid</td>
<td>Parameter input by program, word type data 2 bytes</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Invalid</td>
<td>Tool function codes</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool compensation input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Rough cutting cycle (longitudinal) cutting amount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Synchronous spindle phase shift amount</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool compensation input</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool compensation input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Rough cutting cycle (face) cutting amount</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Synchronous spindle phase shift amount</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool compensation input</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Valid</td>
<td>Coordinate position data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid</td>
<td>Program tool compensation input</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) Decimal points are all valid in user macro arguments.
6. Interpolation Functions

6.1 Positioning (Rapid Traverse); G00

Function and purpose

This command is accompanied by coordinate words. It positions the tool along a linear or non-linear path from the present point as the start point to the end point which is specified by the coordinate words.

Command format

\[
G00 \ X__/U__/ Z__/W__; \\
X, U, Z, W \quad \text{Coordinate values}
\]

The command addresses are valid for all additional axes.

Detailed description

1. Once this command has been issued, the G00 mode is retained until it is changed by another G function or until the G01, G02, G03, G33 or G34 command in the 01 group is issued. If the next command is G00, all that is required is simply that the coordinate words be specified.

2. In the G00 mode, acceleration and deceleration are always carried out at the start point and end point of the block. After confirming that the current block command is 0, the next block is advanced to after confirming the state of the tracking error of the acceleration/deceleration circuit. The in-position width is set with the parameters.

3. Any G command (G83 to G89) in the 09 group is cancelled (G80) by the G00 command.

4. Whether the tool moves along a linear or non-linear path is determined by parameter, but the positioning time does not change.

 (a) Linear path This is the same as linear interpolation (G01), and the speed is limited by the rapid traverse rate of each axis.

 (b) Non-linear path The tool is positioned at the rapid traverse rate independently for each axis.

5. When no number following the G address, this is treated as G00.

⚠️ **CAUTION**

⚠️ The commands with "no value after G" will be handled as "G00".
6. Interpolation Functions

6.1 Positioning (Rapid Traverse)

Example of program

- **G00 X100000 Z150000** ; Absolute value command
- **G00 U-80000 W-150000** ; Incremental value command
 (With an input setting unit of 0.001mm)

Precautions

(Note 1) When the parameter "#1086 G0Intp" is 0, the path along which the tool is positioned is the shortest path connecting the start and end points. The positioning speed is automatically calculated so that the shortest distribution time is obtained in order that the commanded speeds for each axis do not exceed the rapid traverse rate.

When, for instance, the X-axis and Z-axis rapid traverse rates are both 9600mm/min, the tool will follow the path in the figure below if the following is programmed:

- **G00 Z-300000 X400000** ; (With an input setting unit of 0.001mm)
(Note 2) When parameter "#1086 G0Intp" is 1, the tool will move along the path from the start point to the end point at the rapid traverse rate of each axis. When, for instance, the X-axis and Z-axis rapid traverse rates are both 9600 mm/min, the tool will follow the path in the figure below if the following is programmed:

G00 Z −300000 X+400000; (With an input setting unit of 0.001mm)

![Diagram showing rapid traverse with X and Z axes](image)

Actual X axis rate: 9600 mm/min
Actual Z axis rate: 9600 mm/min
(Note 3) The rapid traverse rate for each axis with the G00 command differs according to the individual machine and so reference should be made to the machine specifications manual.

(Note 4) Rapid traverse (G00) deceleration check
There are two methods for the deceleration check at rapid traverse; commanded deceleration method and in-position check method. Select a method with the parameter “#1193 inpos”.

- When “inpos” = “1”
 Upon completion of the rapid traverse (G00), the next block will be executed after confirming that the remaining distances for each axis are below the fixed amounts. (Refer to “Operation during in-position check”.)
 The confirmation of the remaining distance should be done with the imposition width, \(L_R \). \(L_R \) is the setting value for the servo parameter “#2224 sv024”.
 The purpose of checking the rapid feed rate is to minimize the time it takes for positioning. The bigger the setting value for the servo parameter “#2224 sv024”, the longer the reduced time is, but the remaining distance of the previous block at the starting time of the next block also becomes larger, and this could become an obstacle in the actual processing work. The check for the remaining distance is done at set intervals. Accordingly, it may not be possible to get the actual amount of time reduction for positioning with the setting value sv024.

- When “inpos” = “0”
 Upon completion of the rapid traverse (G00), the next block will be executed after the deceleration check time (\(T_d \)) has elapsed. The deceleration check time (\(T_d \)) is as follows, depending on the acceleration/deceleration type.

1. Linear acceleration/linear deceleration
 \[T_d = T_s + \alpha \]

 ![Diagram](image1)

2. Exponential acceleration/linear deceleration
 \[T_d = 2 \times T_s + \alpha \]

 ![Diagram](image2)
(3) Exponential acceleration/exponential deceleration $T_d = 2 \times T_s + \alpha$

Where T_s is the acceleration time constant, $\alpha = 0$ to 14ms
The time required for the deceleration check during rapid traverse is the longest among the rapid traverse deceleration check times of each axis determined by the rapid traverse acceleration/deceleration time constants and by the rapid traverse acceleration/deceleration mode of the axes commanded simultaneously.
6. Interpolation Functions

6.1 Positioning (Rapid Traverse)

Programmable in-position width command for positioning

This command commands the in-position width for the positioning command from the machining program.

```
G00 X__ Z__ ,I__;  
```

In-position width

Positioning coordinate value of each axis

Operation during in-position check

Execution of the next block starts after confirming that the position error amount of the positioning (rapid traverse: G00) command block and the block that carries out deceleration check with the linear interpolation (G01) command is less than the in-position width issued in this command. The in-position width in this command is valid only in the command block, so the deceleration check method set in base specification parameter "#1193 inpos" is used for blocks that do not have the in-position width command.

When there are several movement axes, the system confirms that the position error amount of each movement axis in each part system is less than the in-position width issued in this command before executing the next block.

The differences of when the in-position check is validated with the parameter (base specification parameter "#1193 inpos" set to 1; refer to next page for in-position width) and when validated with this command are shown below.

The differences of In-position check with parameter

<table>
<thead>
<tr>
<th>In-position check with ",I" address command</th>
<th>In-position check with parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>After starting deceleration of the command system, the position error amount and commanded in-position width are compared.</td>
<td>After starting deceleration of the command system, the servo system's position error amount and the parameter setting value (in-position width) are compared.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Servo</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block being executed</td>
<td></td>
</tr>
</tbody>
</table>

```
Ts  Td
```

<table>
<thead>
<tr>
<th>Servo</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block being executed</td>
<td></td>
</tr>
</tbody>
</table>

```
Ts  Td
```

Start of in-position check with ",I" address command

Start of in-position check with parameter

```
Ts  : Acceleration/deceleration time constant
Td  : Deceleration check time
      Td = Ts + (0 to 14ms)
```
When the setting value of the servo parameter
"#2224 SV024" is smaller than the setting value of
the G0 in-position width
"#2077 G0inps" and the G1 in-position width
"#2078 G1inps", the
in-position check is carried out with the G0 in-position width and the G1 in-position width.

G0/G1 in-position width setting

When the setting value of the servo parameter "#2224 SV024" is smaller than the setting value of
the G0 in-position width
"#2077 G0inps" and the G1 in-position width
"#2078 G1inps", the
in-position check is carried out with the G0 in-position width and the G1 in-position width.

When the SV024 value is larger, the in-position check is completed when the error amount is
smaller than the SV024 setting value.
The in-position check method depends on the method set in the deceleration check parameter.

(Note 1) When the in-position width (programmable in-position check width) is set in the machining
program, either the in-position width set with the parameter (SV024, G0inps, G1inps) or
that set in the program, whichever larger, is applied when performing an in-position check.

(Note 2) When the SV024 setting value is larger than the G0 in-position width/G1 in-position width,
the in-position check is carried out with the SV024 value.

(Note 3) When the error detection is ON, the in-position check is forcibly carried out.
6.2 Linear Interpolation; G01

Function and purpose

This command is accompanied by coordinate words and a feed rate command. It makes the tool move (interpolate) linearly from its present position to the end point specified by the coordinate words at the speed specified by address F. In this case, the feed rate specified by address F always acts as a linear speed in the tool nose center advance direction.

Command format

```
G01 X__/U__ Z__/W__ α__ F__,I__; ("α" is an additional axis)
```

- **X, U, Z, W, α**: Coordinate values
- **F**: Feed rate (mm/min or °/min)
- **I**: In-position width. This is valid only in the commanded block. A block that does not contain this address will follow the parameter "#1193 inpos" settings. 1 to 999999 (mm)

Detailed description

Once this command is issued, the mode is maintained until another G function (G00, G02, G03, G33, G34) in the 01 group which changes the G01 mode is issued. Therefore, if the next command is also G01 and if the feed rate is the same all that is required to be done is to specify the coordinate words. If no F command is given in the first G01 command block, program error (P62) results.

The feed rate for a rotation axis is commanded by °/min (decimal point position unit). (F300 = 300°/min)

The G functions (G70 to G89) in the 09 group are cancelled (G80) by the G01 command.
Example of program

(Example 1)

G01 X50.0 Z20.0 F300 ;

(Example 2) Cutting in the sequence of P1 → P2 → P3 → P4 at 300mm/min feed rate
P0 → P1, P4 → P0 is for tool positioning.

G00 X200000 Z40000 ; P0 → P1
G01 X100000 Z90000 F300 ; P1 → P2
Z160000 ; P2 → P3
X140000 Z220000 ; P3 → P4
G00 X240000 Z230000 ; P4 → P0
Programmable in-position width command for linear interpolation

This command commands the in-position width for the linear interpolation command from the machining program. The commanded in-position width is valid in the linear interpolation command only when carrying out deceleration check.

- When the error detection switch is ON.
- When G09 (exact stop check) is commanded in the same block.
- When G61 (exact stop check mode) is selected.

G01 X__ Z__ F__ I__ ;

In-position width
Feed rate
Linear interpolation coordinate value of each axis

(Note 1) Refer to section "6.1 Positioning (Rapid Traverse); G00" for details on the in-position check operation.
6.3 Circular Interpolation; G02, G03

Function and purpose

These commands serve to move the tool along a circular.

Command format

<table>
<thead>
<tr>
<th>Command Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02 (G03)</td>
<td>Circular interpolation</td>
</tr>
<tr>
<td>X/U</td>
<td>Circular end point coordinates, X axis (absolute value of workpiece coordinate system for X, incremental value from present position for U)</td>
</tr>
<tr>
<td>Z/W</td>
<td>Circular end point coordinates, Z axis (absolute value of workpiece coordinate system for Z, incremental value from present position for W)</td>
</tr>
<tr>
<td>I</td>
<td>Circular center, X axis (for I, incremental value of X coordinate at center as seen from start point. Command as “radius command”.)</td>
</tr>
<tr>
<td>K</td>
<td>Circular center, Z axis (for K, incremental value of Z coordinate at center as seen from start point)</td>
</tr>
<tr>
<td>F</td>
<td>Feed rate</td>
</tr>
</tbody>
</table>

The circular center coordinate value is commanded with an input setting increment. Caution is required for the arc command of an axis for which the input command increment differs. Command with a decimal point to avoid confusion.
6. Interpolation Functions

6.3 Circular Interpolation

Detailed description

(1) G02 (or G03) is retained until another G command (G00, G01 or G33) in the 01 group that changes its mode is issued. The direction of the circular rotation is differentiated by G02 and G03:
G02 : Clockwise (CW)
G03 : Counterclockwise (CCW)

(2) An arc which extends for more than one quadrant can be executed with a single block command.

(3) The following information is needed for circular interpolation.
 (a) Rotation direction : Clockwise (G02) or counterclockwise (G03)
 (b) Circular end point coordinates: Given by addresses X, Z, U, W
 (c) Circular center coordinates : Given by addresses I, K (incremental value commands)
 (d) Feed rate : Given by address F

(4) A program error results when I, K or R is not commanded. Consideration must be given to the sign for I and K since I is the distance in the X-axis direction to the arc center as seen from the start point and K is the distance in the Z-axis direction.

(5) No T commands can be issued in the G2/G3 modal status. A program error (P151) results if a T command is issued in the G2/G3 modal status.
6.3 Circular Interpolation

Example of program

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2 X120.0 Z70.0 I50.0 F200 ;</td>
<td>Absolute value command</td>
</tr>
<tr>
<td>G2 U100.0 W-50.0 I50.0 F200 ;</td>
<td>Incremental value command</td>
</tr>
</tbody>
</table>

(Unit: mm)
Change into linear interpolation command

Program error (P33) will occur when the center and radius are not designated at circular command. When the parameter "#11029 Arc to G1 no Cent (Change command from arc to linear when no arc center designation)" is set, the linear interpolation can be applied to terminal coordinates value for only the block. However, a modal is the circular modal. This function is not applied to a circular command by a geometric function.

(Example) The parameter "#11029 Arc to G1 no Cent (Change command from arc to linear when no arc center designation)" = "1"

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02 X20 I10 F500</td>
<td>G00 X0</td>
<td>G02 X20 F500</td>
</tr>
</tbody>
</table>

(a) The circular interpolation (G02) is executed because there is a center command.
(b) The linear interpolation (G01) is executed because there is no center and radius command.
6. Interpolation Functions

6.3 Circular Interpolation

Cautions for circular interpolation

(1) The terms "clockwise" (G02) and "counterclockwise" (G03) used for circular operations are defined as a case where in a right-hand coordinate system, the negative direction is viewed from the positive direction of the coordinate axis which is at right angles to the plane in question.

(2) If all the end point coordinates are omitted or the end point is at the same position as the start point, commanding the center using I and K is the same as commanding a 360° arc (perfect circle).

(3) The following occurs when the start and end point radii do not match in a circular command:
 (a) Program error (P70) results at the circular start point when error ΔR is greater than the parameter "#1084 RadErr".

 ![Diagram of circular interpolation with alarm stop](image)

 G02Z80.K50. ;

 (b) Spiral interpolation in the direction of the commanded end point results when error ΔR is less than the parameter value.

 ![Diagram of circular interpolation with spiral interpolation](image)

 G02Z90.K50. ;
6.4 R Specification Circular Interpolation; G02, G03

Function and purpose

Along with the conventional circular interpolation commands based on the circular center coordinate (I, K) designation, these commands can also be issued by directly designating the circular radius R.

Command format

```
G02 (G03) X/U__ Z/W__ R__ F__ ;
```

- **X/U**: X-axis end point coordinate
- **Z/W**: Z-axis end point coordinate
- **R**: Circular radius
- **F**: Feed rate

The arc radius is commanded with an input setting increment. Caution is required for the arc command of an axis for which the input command increment differs. Command with a decimal point to avoid confusion.

Detailed description

The circular center is on the bisector line which is perpendicular to the line connecting the start and end points of the circular. The point, where the circular with the specified radius whose start point is the center intersects the perpendicular bisector line, serves as the center coordinates of the circular command.

If the R sign of the commanded program is plus, the circular is smaller than a semicircular; if it is minus, the circular is larger than a semicircular.

The following condition must be met with an R specification circular interpolation command:

\[
\frac{L}{2 \times r} \leq 1
\]

When \(L/2 - r > \) (parameter : #1084 RadErr), an alarm will occur.

Where L is the line from the start point to end point.

If an R specification and I, K specification are given at the same time in the same block, the circular command with the R specification takes precedence.

In the case of a full-circle command (where the start and end points coincide), an R specification circular command will be completed immediately even if it is issued and no operation will be executed. An I, K specification circular command should therefore be used in such a case.
Example of program

(Example 1)

G03 Zz1 Xx1 Rr1 Ff1 ; R specification circular on Z-X plane

(Example 2)

G02 Xx1 Zz1 Ii1 Kk1 Rr1 Ff1 ; R specification circular on X-Z plane

(When the R specification and I, K specification are contained in the same block, the R specification has priority in processing.)

Circular center coordinate compensation

When "the error margin between the segment connecting the start and end points" and "the commanded radius × 2" is less than the setting value because the required semicircle is not obtained by calculation error in R specification circular interpolation, "the midpoint of segment connecting the start and end points" is compensated as the circular center.

Set the setting value to the parameter "#11028 Tolerance Arc Cent (Tolerable correction value of arc center error)".

(Ex.) "#11028 Tolerance Arc Cent" = "0.000 (mm)"

<table>
<thead>
<tr>
<th>Setting value</th>
<th>Tolerance value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting value< 0</td>
<td>0(Center error will not be interpolated)</td>
</tr>
<tr>
<td>Setting value= 0</td>
<td>2 × minimum setting increment</td>
</tr>
<tr>
<td>Setting value> 0</td>
<td>Setting value</td>
</tr>
</tbody>
</table>

N1, N3

G90 X0 Y0 ;
N1 G02 X10. R5.000;
N2 G0 X0; ... (a)
N3 G02 X10. R5.001;
N4 G0 X0; ... (b)
N5 G02 X10. R5.002;
N6 G0 X0;
M02 ;

(a) Compensate the center coordinate: Same as N1 path
(b) Do not compensate the center coordinate: Inside path a little than N1

Calculation error margin compensation allowance value: 0.002 mm
Segment connecting the start and end points: 10.000
N3: Radius × 2 = 10.002 "Error 0.002 -> Compensate"
N5: Radius × 2 = 10.004 "Error 0.004 -> Do not compensate"
Therefore, this example is shown in the above figure.
6. Interpolation Functions

6.5 Plane Selection

6.5 Plane Selection; G17, G18, G19

Function and purpose

These commands are used to select the control plane and the plane on which the circular exists. If the 3 basic axes and the parallel axes corresponding to these basic axes are entered as parameters, the commands can select the plane composed of any 2 axes which are not parallel axes. If a rotation axis is entered as a parallel axis, the commands can select the plane containing the rotation axis.

These commands are used to select:

- The plane for circular interpolation
- The plane for nose R compensation

Command format

G17; (I-J plane selection)
G18; (K-I plane selection)
G19; (J-K plane selection)

I, J and K indicate each basic axis or parallel axis.

When the power is turned ON or when the system is reset, the plane set by the parameters "#1025 I_plane" is selected.

![Diagram of G17 (I-J), G18 (K-I), G19 (J-K) planes with G02 and G03 movements](image-url)
6. Interpolation Functions

6.5 Plane Selection

Parameter entry

<table>
<thead>
<tr>
<th>#1026 to 1028 base_I, J, K</th>
<th>#1029 to 1031 aux_I, J, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>J</td>
<td>Y</td>
</tr>
<tr>
<td>K</td>
<td>Z</td>
</tr>
</tbody>
</table>

Basic axes and parallel axes can be entered in the parameters. The same axis name can be entered in duplication, but when it is assigned in duplication, the plane is determined by plane selection system (4). It is not possible to set axes, which have not been entered, as control axes.

Plane selection system

This section describes the plane selection for the parameter entry samples shown in Fig. 1.

(1) Axis addresses assigned in the same block as the plane selection (G17, G18, G19) command determine which of the basic axes or parallel axes are to be in the actual plane selected.

(Example)

\[
\begin{align*}
G17XY; Y \\
G02 \\
G03
\end{align*}
\]

\[
\begin{align*}
G18XZ; X \\
G02 \\
G03
\end{align*}
\]

\[
\begin{align*}
G19YZ; Z \\
G02 \\
G03
\end{align*}
\]

(2) Plane selection is not performed with blocks in which the plane selection G code (G17, G18, G19) is not assigned.

\[
\begin{align*}
G18 X_ Z_ ; Z-X plane \\
Y_ Z_ ; Z-X plane (no plane change)
\end{align*}
\]

(3) When the axis addresses are omitted in the block containing the plane selection G codes (G17, G18, G19), it is assumed that the axis addresses of the 3 basic axes have been assigned.

\[
\begin{align*}
G18 ; (Z-X plane = G18 XZ ;)
\end{align*}
\]

(4) When the basic axes or their parallel axes are duplicated and assigned in the same block as the plane selection G code (G17, G18, G19), the plane is determined in the order of basic axes, and then parallel axes.

\[
\begin{align*}
G18 XYZ ; \quad \text{The Z-X plane is selected.} \\
\text{Therefore, the Y movement is unrelated to the selected plane.}
\end{align*}
\]

(Note 1) When the "2" in the parameter "#1025 I_plane" is kept ON, the G18 plane is selected when the power is turned ON or when the system is reset.
6.6 Thread Cutting

6.6.1 Constant Lead Thread Cutting; G33

Function and purpose

The G33 command exercises feed control over the tool which is synchronized with the spindle rotation and so this makes it possible to conduct constant-lead straight thread-cutting, tapered thread-cutting, and continuous thread-cutting.

Command format

G33 Z/W__ X/U__ F__ Q__ ; (Normal lead thread cutting commands)
- **Z, W, X, U**: Thread end point
- **F**: Lead of long axis (axis which moves most) direction
- **Q**: Thread cutting start shift angle, 0.001 to 360.000°

G33 Z/W__ X/U__ E__ Q__ ; (Precision lead thread cutting commands)
- **Z, W, X, U**: Thread end point
- **E**: Lead of long axis (axis which moves most) direction
- **Q**: Thread cutting start shift angle, 0.001 to 360.000°

One-rotation synchronization signal

- **U/2**: Start point
- **Z**: Start position
- **X**: End point

Illegal lead at start of thread cutting

- **δ₁ > Illegal lead at start of thread cutting**

Illegal lead at end of thread cutting

- **δ₂ > Illegal lead at end of thread cutting**
Detailed description

(1) The E command is also used for the number of ridges in inch thread cutting, and whether the number of ridges or precision lead is to be designated can be selected by parameter setting. (Parameter "#1229 set 01/bit" is set to "1" for precision lead designation.)

(2) The lead in the long axis direction is commanded for the taper thread lead.

![Diagram of thread cutting](image)

When \(a < 45^\circ\), Lead is in Z-axis direction.
When \(a > 45^\circ\), Lead is in X-axis direction.
When \(a = 45^\circ\), Lead can be in either Z or X-axis direction.

Thread cutting metric input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.001mm)</th>
<th>C (0.0001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (mm/rev)</td>
<td>E (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (=1.000), (1.=1.000)</td>
<td>1 (= 1.00000), (1.=1.00000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.001 to 999.999</td>
<td>0.00001 to 999.99999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>D (0.00001mm)</th>
<th>E (0.000001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (mm/rev)</td>
<td>E (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.00000), (1.=1.000000)</td>
<td>1 (= 1.0000000), (1.=1.0000000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.00001 to 999.999999</td>
<td>0.0000001 to 999.99999999</td>
</tr>
</tbody>
</table>

54
6. Interpolation Functions

6.6 Thread Cutting

Thread cutting inch input

<table>
<thead>
<tr>
<th>Command address</th>
<th>Least command increment</th>
<th>Command range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (inch/rev)</td>
<td>1 (= 1.000000), (1. = 1.0000)</td>
<td>0.0001 to 99.9999</td>
</tr>
<tr>
<td>E (inch/rev)</td>
<td>1 (= 1.00000000), (1. = 1.0000000)</td>
<td>0.000001 to 39.370078</td>
</tr>
<tr>
<td>E (ridges/inch)</td>
<td>1 (= 1.00000), (1. = 1.0000)</td>
<td>0.0255 to 9999.9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command address</th>
<th>Least command increment</th>
<th>Command range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (inch/rev)</td>
<td>1 (= 1.000000), (1. = 1.000000)</td>
<td>0.000001 to 99.999999</td>
</tr>
<tr>
<td>E (inch/rev)</td>
<td>1 (= 1.000000000), (1. = 1.000000000)</td>
<td>0.0000001 to 39.37007874</td>
</tr>
<tr>
<td>E (ridges/inch)</td>
<td>1 (= 1.0000000), (1. = 1.0000000)</td>
<td>0.0255000 to 9999.999999</td>
</tr>
</tbody>
</table>

(6) The converted cutting feed rate is compared with the cutting feed clamp rate when thread cutting starts, and if it is found to exceed the clamp rate, an operation error will result.

(7) In order to protect the lead during thread cutting, a cutting feed rate which has been converted may sometimes exceed the cutting feed clamp rate.

(8) An illegal lead is normally produced at the start of the thread and at the end of the cutting because of servo system delay and other such factors.

Therefore, it is necessary to command a thread length which is determined by adding the illegal lead lengths \(\delta_1 \) and \(\delta_2 \) to the required thread length.

(9) The spindle rotation speed is subject to the following restriction:

\[
1 \leq R \leq \frac{\text{Maximum feed rate}}{\text{Thread lead}}
\]

Where

- \(R \leq \) Tolerable speed of encoder (r/min)
- \(R = \) Spindle rotation speed (r/min)
- Thread lead = mm or inches
- Maximum feed rate = mm/min or inch/mm

(this is subject to the restrictions imposed by the machine specifications).

(10) A program error (P97) may occur when the result of the expression (9) is \(R < 1 \) because the thread lead is very large to the highest cutting feedrate.
(11) Dry run is valid for thread cutting but the feed rate based on dry run is not synchronized with the spindle rotation. The dry run signal is checked at the start of thread cutting and any switching during thread cutting is ignored.

(12) Synchronous feed applies for the thread cutting commands even with an asynchronous feed command (G94).

(13) Spindle override and cutting feed override are invalid and the speeds are fixed to 100% during thread cutting.

(14) When a thread cutting command is programmed during nose R compensation, the compensation is temporarily canceled and the thread cutting is executed.

(15) When the mode is switched to another automatic mode while G33 is executed, the following block which does not contain a thread cutting command is first executed and then the automatic operation stops.

(16) When the mode is switched to the manual mode while G33 is executed, the following block which does not contain a thread cutting command is first executed and then the automatic operation stops. In the case of a single block, the following block which does not contain a thread cutting command (When G33 mode is cancelled) is first executed and then the automatic operation stops. Note that automatic operation is stopped until the G33 command axis starts moving.

(17) The thread cutting command waits for the single rotation sync signal of the rotary encoder and starts movement. Note that carry out synchronization between part systems before issuing a thread cutting command with multiple part systems. For example, when using the 1-spindle specifications with multi-part systems, if one part system issues a thread cutting command during ongoing thread cutting by another part system, the movement will start without waiting for the rotary encoder single rotation sync signal.

(18) The thread cutting start shift angle is not a modal. If there is no Q command with G33, this will be handled as "Q0".

(19) The automatic handle interrupt/interruption is valid during thread cutting.

(20) If a value exceeding 360.000 is commanded with G33 Q, a program error (P35) will occur.

(21) G33 cuts one row with one cycle. To cut two rows, change the Q value, and issue the same command.
Example of program

```
G33 X90.0 Z40.0 E12.34567 ; Absolute value command
G33 U70.0 W-50.0 E12.34567 ; Incremental value command
```
6. Interpolation Functions

6.6 Thread Cutting

6.6.2 Inch Thread Cutting; G33

Function and purpose

If the number of ridges per inch in the long axis direction is assigned in the G33 command, the feed of the tool synchronized with the spindle rotation will be controlled, which means that constant-lead straight thread-cutting and tapered thread-cutting can be performed.

Command format

```
G33 Z/W__ X/U__ E__ Q__ ;
```

- **Z,W,X,U**
 - Thread end point
- **E**
 - Number of ridges per inch in direction of long axis (axis which moves most) (decimal point command can also be assigned)
- **Q**
 - Thread cutting start shift angle, 0.001 to 360.000°

Detailed description

1. The number of ridges in the long axis direction is assigned as the number of ridges per inch.
2. The E code is also used to assign the precision lead length, and whether the number of ridges or precision lead length is to be designated can be selected by parameter setting. (The number of ridges is designated by setting parameter "#1229 set 01/bit 1" to "0".)
3. The E command value should be set within the lead value range when the lead is converted.
4. See Section "6.6.1 Constant lead thread cutting" for other details.
6. Interpolation Functions

6.6 Thread Cutting

Example of program

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G33 X90.0 Z40.0 E12.0 ;</td>
<td>Absolute value command</td>
</tr>
<tr>
<td>G33 U70.0 W-50.0 E12.0 ;</td>
<td>Incremental value command</td>
</tr>
</tbody>
</table>
6.6.3 Continuous Thread Cutting

Function and purpose

Continuous thread cutting is possible by assigning thread cutting commands continuously. In this way, it is possible to cut special threads whose lead or shape changes.

Command format

G33 Zz1/Ww1 Xx1/Uu1 Ff1/Ee1 Qq1 ;
(G33) Zz2/Ww2 Xx2/Uu2 Ff2/Ee2 Qq2 ;
(G33) Zz3/Ww3 Xx3/Uu3 Ff3/Ee3 Qq3 ;

Zzn, Wwn, Xxn, Uun Thread end point
Ffn/Een Lead of long axis (axis which moves most) direction
Qqn Thread cutting start shift angle, 0.001 to 360.000°

Detailed description

(1) The first thread cutting block in the continuous thread cutting command waits for the spindle's single rotation synchronization signal before starting thread cutting. From the second and following blocks, movement starts without waiting for the spindle's single rotation synchronization command. Thus, the thread cutting start shift angle (Q) can be commanded only in the first block.

(2) The G33 command can be omitted from the second and following blocks.

(3) When commanding continuous thread cutting, command the thread cutting commands in successive blocks. If a command other than thread cutting is issued, continuous thread cutting will not take place.

Note that if a command that does not involve axis movement (G4 dwell command, MST command, etc.) is commanded between the thread cutting command blocks, whether to wait for the spindle's single rotation synchronization signal after the 2nd block can be selected with the parameters.

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Contents</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1270</td>
<td>ext06/b</td>
<td>Set the continuous thread cutting Z phase wait operation. 0: If there is no movement command (MST command, etc.) between the thread cutting blocks, the 2nd block thread cutting waits for the spindle's single rotation synchronization signal before starting movement. 1: Even if there is no movement command (MST command, etc.) between the thread cutting blocks, the 2nd block thread cutting starts movement without waiting for the spindle's single rotation synchronization signal.</td>
<td>0/1</td>
</tr>
</tbody>
</table>

(4) The other matters are the same as uniform lead thread cutting.
6.6.4 Variable Lead Thread Cutting; G34

Function and purpose

Variable lead thread cutting is enabled by a command specifying a lead increment or decrement amount per turn of the screw.

Command format

G34 X/U__ Z/W__ F/E__ K__ ;

- X/U: Thread end point
- Z/W: Standard screw lead
- F/E: Lead increment or decrement amount per turn of the screw

![Diagram showing variable lead thread cutting with G34 command format and lead speeds](image-url)
6. Interpolation Functions

6.6 Thread Cutting

Detailed description

(1) The command range is as shown below.

Thread cutting metric input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.001mm)</th>
<th>C (0.0001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (mm/rev)</td>
<td>E (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>(1. = 1.000),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1. = 1.000)</td>
<td>(1. = 1.0000),</td>
</tr>
<tr>
<td>Command range</td>
<td>0.001 to 999.999</td>
<td>0.00001 to 999.9999</td>
</tr>
<tr>
<td></td>
<td>0.0001 to 999.9999</td>
<td>0.000001 to 999.99999</td>
</tr>
</tbody>
</table>

Thread cutting inch input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.0001inch)</th>
<th>C (0.00001inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (inch/rev)</td>
<td>E (inch/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>(1 = 1.00000),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1. = 1.0000)</td>
<td>(1. = 1.00000),</td>
</tr>
<tr>
<td>Command range</td>
<td>0.0001 to 99.9999</td>
<td>0.000001 to 39.370078</td>
</tr>
<tr>
<td></td>
<td>0.00001 to 99.9999</td>
<td>0.000001 to 39.370078</td>
</tr>
</tbody>
</table>

(2) A positive value of K indicates incremental pitches.
Movement amount of one block (n pitches) = (F + K) + (F + 2K) + (F + 3K) + · · · + (F + nK)

(3) A negative value of K indicates decremental pitches.
Movement amount of one block (n pitches) = (F – K) + (F – 2K) + (F – 3K) + · · · + (F – nK)
(4) A program error will occur if the thread lead is not set correctly.

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Meaning</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P93</td>
<td>Illegal pitch value</td>
<td>Specify valid values for F/E and K. (Reference 1)</td>
</tr>
</tbody>
</table>

(Reference 1) Last lead = $\sqrt{(F^2 + 2KZ)}$

Number of pitches = $(-F + \text{last lead})/K$

Z: Length of lead axis

(5) The other matters are the same as G33. Refer to section "6.6.1 Constant lead thread cutting; G33".
6.6.5 Circular Thread Cutting; G35, G36

Function and purpose
Circular thread cutting making the longitudinal direction the lead is possible.

Command format

\[
\text{G35(G36) } X/U_\{ \quad I_\{ K_\{ R_\{ \} } F/E_\{ Q_\{ ;
\]

- **G35** Clockwise (CW)
- **G36** Counterclockwise (CCW)
- **X/U** Circular end point coordinate, X axis (absolute value of workpiece coordinate system for X, incremental value from present position for U)
- **Z/W** Circular end point coordinate, Z axis (absolute value of workpiece coordinate system for Z, incremental value from present position for W)
- **I** Circular center, X axis (incremental value of circular center looking from start point)
- **K** Circular center, Z axis (incremental value of circular center looking from start point)
- **R** Arc radius
- **F/E** Longitudinal (axis with largest movement amount) direction lead (F.. normal lead thread cutting/E .. precision lead thread, inch thread)
- **Q** Thread cutting start shift angle, 0.000 to 360.000°
6. Interpolation Functions

6.6 Thread Cutting

Detailed description

1. A program error (P33) will occur if the start point and end point match or if the arc center angle is more than 180°.

2. The following will occur if the start point radius and end point radius do not match.
 - A program error (P70) will occur if the error ΔR is more than parameter "#1084 RadErr" (arc error).
 - Interpolation will start from the arc center where the start point radius and end point radius match if the error ΔR is less than parameter "#1084 RadErr".

3. A program error (P33) will occur if the R_- sign is negative.

4. A program error (P33) will occur if there is no I_K_- command and R_- command.

5. The R_- command will have the priority if the I_K_- command and R_- command are issued in the same block.

6. If the arc center is (0,0), the arc command can be issued for two successive quadrants. A program error (P33) will occur if an arc with more than three quadrants is issued.
(7) When the movement amount is equal, the horizontal direction in the selected plane will be the long axis.

<table>
<thead>
<tr>
<th>Plane selection</th>
<th>Long axis when movement amount is equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17 (XY plane)</td>
<td>I axis</td>
</tr>
<tr>
<td>G18 (ZX plane)</td>
<td>K axis</td>
</tr>
<tr>
<td>G19 (YZ plane)</td>
<td>J axis</td>
</tr>
</tbody>
</table>

(8) G36 is used to command two functions, automatic tool length measurement and circular thread cutting (CCW). Which function is selected follows parameter "#1238 set10/bit0" (Arc thread cutting).

When #1238 set10/bit0 is set to 0

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G35</td>
<td>Circular thread cutting clockwise (CW)</td>
</tr>
<tr>
<td>G36</td>
<td>Automatic tool length measurement X</td>
</tr>
</tbody>
</table>

When #1238 set10/bit0 is set to 1

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G35</td>
<td>Circular thread cutting clockwise (CW)</td>
</tr>
<tr>
<td>G36</td>
<td>Circular thread cutting counterclockwise (CCW)</td>
</tr>
<tr>
<td>G37</td>
<td>Automatic tool length measurement Z</td>
</tr>
<tr>
<td>G37.1</td>
<td>Automatic tool length measurement X</td>
</tr>
<tr>
<td>G37.2</td>
<td>Automatic tool length measurement Z</td>
</tr>
</tbody>
</table>

(9) If the lead axis and non-lead axis cutting feed rate is faster than the clamp speed when thread cutting is started, the "M01 operation error 107" will occur, and thread cutting will not start.

(10) During thread cutting, the cutting feed rate may exceed the clamp speed to guarantee the lead. In this case, the error "M01 operation error 107" will appear, but thread cutting will continue. However, if the "cutting feed rate > clamp speed" is established during circular thread cutting commanded in the second or following block of continuous thread cutting, automatic operation will be stopped just before the circular thread cutting command in the 2nd block, and the error "M01 operation error 107" will appear.

(11) Continuous thread cutting is possible by commanding the thread cutting command in succession. This allows special threads in which the leads or shapes change midway to be cut. The continuous thread cutting command can be issued in the order of arc → arc, arc → constant lead, and constant lead → arc.

(12) Normally, an illegal lead will be cut at the start and end of the threads, due to a delay in the servo system. Thus, command the required thread length with the illegal thread length added to the start and end. As another method, command the required thread length as a circular thread (G35/G36), and then command the illegal lead length before and after that command (start and end of thread cutting) as a constant lead thread (G33). (Continuous thread cutting in order of constant lead → arc → constant lead.)
6. Interpolation Functions

6.6 Thread Cutting

Relation with other functions

(1) A program error (P113) will occur if the G35/G36 command is issued to an axis not within the selected plane.

(2) The thread cutting speed is not synchronized with the spindle rotation when dry run is valid. (The thread pitch is not guaranteed.)

(3) If the dry run switch is turned ON during thread cutting, the dry run signal will be ignored.

(4) If the FEEDHOLD switch is pressed during thread cutting, the block will stop at the end point of the block following that in which thread cutting is completed (when the thread cutting mode is exited).

(5) Circular thread cutting will function normally even during mirror image.

(6) A program error (P201) will occur if the G35/G36 circular thread cutting command is issued in the finish shape program of the compound type fixed cycle for turning machining.

(7) A program error (P385) will occur if thread cutting corner rounding or corner chamfering is commanded during circular thread cutting or the next block.

(8) Geometric and circular thread cutting cannot be commanded simultaneously. If commanded simultaneously, a program error (P395) or program error (P70) will occur.

(9) If thread cutting is commanded during nose R compensation, nose R compensation will be temporarily canceled, and thread cutting will be executed.

(10) Do not issue the circular thread cutting command during constant surface speed control. The thread will not be cut correctly because the spindle rotation speed will change during thread cutting.

Precautions

(1) Spindle override does not function during thread cutting.

(2) A program error (P39) will occur if G35/G36 is commanded when the additional specifications are not provided.
6. Interpolation Functions

6.7 Helical Interpolation; G17, G18, G19, and G02, G03

Function and purpose

This function is for circularly interpolating 2 axes on the selected plane and simultaneously interpolating the other axis linearly in synchronization with the circular motion. When this interpolation is performed with 3 orthogonal axes, the tool will travel helically.

Command format

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17 G02 (G03) X/U__ Y/V__ Z/W__ I__ J__ F__ ;</td>
<td>Arc plane (G17: X-Y plane, G18: Z-X plane, G19: Y-Z plane)</td>
</tr>
<tr>
<td>G17 G02 (G03) X/U__ Y/V__ Z/W__ R__ F__ ;</td>
<td>Arc rotation direction (G02: clockwise, G03: counterclockwise)</td>
</tr>
<tr>
<td>X/U, Y/V</td>
<td>Arc end point coordinates</td>
</tr>
<tr>
<td>Z/W</td>
<td>Linear axis end point coordinates</td>
</tr>
<tr>
<td>I, J</td>
<td>Arc center coordinates</td>
</tr>
<tr>
<td>R</td>
<td>Arc radius</td>
</tr>
<tr>
<td>F</td>
<td>Feed rate</td>
</tr>
</tbody>
</table>

(Note 1) In this manual, the following setting descriptions are used: I axis: X, J axis: Y, K axis: Z
The following type of movement will take place when the following type of command is issued:

G17 G02 Xx Yy Zz Ii Jj Ff ;

The left drawing shows the process as an exploded view, and the right drawing shows the arc plane from directly above.
6. Interpolation Functions

6.7 Helical Interpolation

Example of program

(Example)

G17 G02 X100. Y100. Z100. I-100. J100. F120 ;

The left drawing shows the process as an exploded view, and the right drawing shows the arc plane from directly above.
At the start of the block, the axis centers at the point –100mm in the X axis direction and 100mm in the Y axis direction from the workpiece coordinates (start point), and starts cutting at the feed rate 120mm/min while rotating.

Precautions and restrictions

(1) When executing helical interpolation, command another linear axis (several axis can be commanded) that does not contain the circular interpolation command and arc axis.
(2) Up to the number of simultaneous contouring control axes can be commanded simultaneously.
(3) A command exceeding one rotation cannot be issued. (The circular interpolation command specifications are followed.)
(4) Command the feed rate as the composite speed for each axis.
(5) With helical interpolation, the axis that configures the plane is the circular interpolation axis, and the other axes are the linear interpolation axes.
(6) The corner chamfering or corner R commands that are issued before or after the helical interpolation command block are effective only on the axes contained in the selected plane.
(7) For the parameters and error messages, refer to the materials concerning the circular interpolation (G02,G03).
6.8 Milling Interpolation; G12.1

Function and purpose

Milling interpolation is used to perform contouring control by converting commands programmed in an orthogonal coordinate system into movements of a linear axis and rotation axis (workpiece rotation).

![Diagram of milling interpolation](image)

A G12.1 command is issued to perform milling and a G13.1 command is issued to cancel milling and returns to normal turning.

Command format

- **G12.1 D__ E__;**
 Milling mode ON

 - D: Selection of milling hypothetical axis name
 - E: Designation of milling interpolation rotation axis

- **G13.1;**
 Milling mode OFF (Turning mode)
6.8 Milling Interpolation

Address Meaning of address Command range (unit) Remarks

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| D | Selection of milling hypothetical axis name | 0: Y axis 1: Rotation axis name | • If there is no D command, the milling hypothetical axis name will follow parameter (#1517 mill_C).
• If only the D command is issued, it will be handled as D0.
• A program error (P35) will occur if a value other than 0 or 1 is issued as the numerical command after the D command. |

| E | Designation of milling interpolation rotation axis | G12.1 command system rotation axis command address | • If there is no E command, the parameter (#1516 mill_ax) will be followed.
• A program error (P33) will occur if only an E command is issued.
• A program error (P33) will occur if an axis address is not commanded after "E=".
• A program error (P300) will occur if an axis that does not exist in the command system is designated as the rotation axis name.
• A program error (P32) will occur if a value is commanded for the rotation axis name.
• To issue a program command after the "E= rotation axis name", delimit the "E= rotation axis name" and the other command with a comma (,). A program error (P33) will occur if there is no comma. |

The following G codes are used to select milling and set the conditions.

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12.1</td>
<td>Milling mode ON</td>
<td>Default is G13.1.</td>
</tr>
<tr>
<td>G13.1</td>
<td>Milling mode OFF</td>
<td></td>
</tr>
<tr>
<td>G16</td>
<td>Selection of Y-Z cylindrical plane</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td>Selection of X-Y plane</td>
<td></td>
</tr>
<tr>
<td>G19</td>
<td>Selection of Y-Z plane</td>
<td></td>
</tr>
<tr>
<td>G41</td>
<td>Tool radius compensation left</td>
<td></td>
</tr>
<tr>
<td>G42</td>
<td>Tool radius compensation right</td>
<td>Default is G40.</td>
</tr>
</tbody>
</table>
6.8 Milling Interpolation

6.8.1 Selecting Milling Mode

Detailed description

1. The G12.1 and G13.1 commands are used to switch between the turning (G13.1) and milling (G12.1) modes.
2. These commands are modal and the initial mode effective at power ON is the turning mode.
3. The following requirements must be satisfied before a G12.1 command is issued. Otherwise, a program error (P485) results.
 - (a) Nose R compensation has been canceled.
 - (b) Constant surface speed control has been canceled.
4. If one of the command axes in the milling mode has not completed reference position return, a program error (P484) results.
5. The G12.1 command automatically cancels an asynchronous mode F command. Therefore, specify an F value in milling mode.

Note1 If G12.1 is executed, while no movement command has been given, after nose R compensation is canceled by an independent G40 command, nose R compensation is canceled in the G12.1 block.

Note2 If the milling interpolation command is issued during the mirror image, a program error (P486) results.

Note3 When the G12.1 command is issued, the deceleration check is executed.

Note4 If a command other than a plane section is issued during the G12.1 command, a program error (P33) will occur.
6.8.2 Milling Interpolation Control and Command Axes

Detailed description

1. The two orthogonal linear axes (X axis and Z axis) and a rotation axis are used as control axes for milling interpolation. The rotation axis is selected with the E command. The axis designated with the parameter will be selected if there is no E command.

2. Three orthogonal linear axes are used as the command axes for milling interpolation. They are the X, Z, and a hypothetical axis. The hypothetical axis is a hypothetical axis for interpolation which intersects the X and Z axes at right angles. The hypothetical axis name is the control rotation axis name selected with Y or in (1) with the D command. The axis name designated with the parameter will be selected if there is no D command.

![Diagram of milling axes](image)

3. Command axis X for milling is not just the interpolated one of control axis X. It is handled as X in the milling coordinate system when a G12.1 command is issued.

4. Whether the position in the milling coordinate system is a diameter command or radius command is selected with the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>#8111 Milling Radius</td>
<td>0: Radius command for all axes</td>
</tr>
<tr>
<td></td>
<td>1: Follows parameter (#1019 dia) for each axis</td>
</tr>
</tbody>
</table>

(Example 1)

![Example program](image)
N3 of program 1 is executed as follows:

Current values
X 28.284 (diameter value display)
C 45.000

(5) Milling interpolation is also available for a two-control-axis system consisting of one linear axis and one rotation axis. The X axis must be used as the linear axis. The rotation and milling hypothetical axes are selected as shown above. In milling mode, the G17 plane must be selected.

(6) The table below lists the incremental axis names of the hypothetical axis used in milling mode. These axis commands handle radius commands only.

<table>
<thead>
<tr>
<th>Selected hypothetical axis</th>
<th>Absolute axis name</th>
<th>Incremental axis name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y axis</td>
<td>Y</td>
<td>V</td>
</tr>
<tr>
<td>Rotation axis (C)</td>
<td>Rotation axis name (C)</td>
<td>Rotation axis incremental name (H)</td>
</tr>
</tbody>
</table>

(The following description uses Y for the hypothetical axis name and C for the rotation axis name.)
6.8.3 Selecting a Plane during the Milling Mode

Function and purpose

A plane selection command decides the plane on which the tool moves for circular interpolation or tool radius compensation in milling mode.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17/G19</td>
<td>Y-Z plane</td>
</tr>
<tr>
<td>G16</td>
<td>C X-Z plane</td>
</tr>
<tr>
<td>G17</td>
<td>X-Y plane</td>
</tr>
<tr>
<td>G19</td>
<td>Y-Z plane</td>
</tr>
</tbody>
</table>

1. These G commands for plane selection are modal. The G17 plane is automatically selected as the default each time the turning mode is switched to the milling mode by a G12.1 command. When the milling mode is switched back to the turning mode by a G13.1 command, the plane that was selected before the milling mode is entered is restored.

2. G16 or G19 can also be defined as the default effective when a G12.1 command is issued. A parameter is used for this.

3. The three planes selected are explained below.

 a. **G16**

 G16 indicates the plane obtained by developing a cylinder with its bottom radius X. This is useful to process the side face of a workpiece.
(b) **G17**
G17 is an X-Y plane in an XYZ orthogonal coordinate system. This is useful to process the end face of a workpiece.

![X-Y plane](image)

(c) **G19**
G19 is a Y-Z plane in an XYZ orthogonal coordinate system.

![Y-Z plane](image)
6. Interpolation Functions

6.8 Milling Interpolation

6.8.4 Setting Milling Coordinate System

Function and purpose

The coordinate system for the milling mode is set according to the selected plane each time the turning mode (G13.1) is switched to the milling mode by a G12.1 command.

G17 and G19 planes

(1) For the X and Z axes, the current positions are set as radius value on the coordinate value.
(2) The Y axis is decided as the axis which intersects the X and Z axes at right angles. Y=0 is defined in a G12.1 command.

![Diagram of milling coordinate system]

(Note1) During the milling mode on the G17 plane, the X axis is operated in the area (positive or negative side) that has existed before issuing the G12.1 command. When you want to control the X axis in the positive side during the milling mode, moving the X axis to the positive area (including 0) is required before issuing the G12.1 command. When you want to control the X axis in the negative side during the milling mode, moving the X axis to the negative area (not including 0) is required before issuing the G12.1 command.

G16 plane

(1) To select a G16 plane, the radius value of a cylinder is specified by "G16 C__;". If no radius value is specified, the current X axis value is used as the radius value to define a cylinder. If no radius value can be defined, a program error (P485) occurs.
(2) As in normal turning mode, the X axis indicates the distance from the center line of the workpiece.
(3) G16 (Y-Z cylindrical plane) is actually the side of a cylinder.
(4) The X axis indicates the distance from the center line of the workpiece. The Y axis indicates the circumference with the radius value of the bottom of a cylinder defined by a G16 command.
(5) The zero point of the Y axis is the position where a G12.1 command is issued.

(Example)

<table>
<thead>
<tr>
<th>Command A</th>
<th>Command B</th>
<th>Command C</th>
<th>Command D</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12.1 G16 C50. ;</td>
<td>G12.1 ; G16 C50. ;</td>
<td>G12.1 Ee,Dd ; G16 C50. ;</td>
<td>G12.1 Ee,Dd ; G16 C50. ;</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
6.8 Milling Interpolation

6.8.5 Preparatory Functions

Valid G codes in milling mode

<table>
<thead>
<tr>
<th>Classification</th>
<th>G code</th>
<th>Function</th>
<th>Classification</th>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>G00</td>
<td>Positioning</td>
<td></td>
<td>G65</td>
<td>Macro call</td>
</tr>
<tr>
<td>*</td>
<td>G01</td>
<td>Linear interpolation</td>
<td></td>
<td>G66</td>
<td>Macro modal call A</td>
</tr>
<tr>
<td>*</td>
<td>G02</td>
<td>Circular interpolation (CW)</td>
<td></td>
<td>G66.1</td>
<td>Macro modal call B</td>
</tr>
<tr>
<td>*</td>
<td>G03</td>
<td>Circular interpolation (CCW)</td>
<td></td>
<td>G67</td>
<td>Macro modal call cancel</td>
</tr>
<tr>
<td></td>
<td>G04</td>
<td>Dwell</td>
<td></td>
<td>G80</td>
<td>Hole drilling cycle cancel</td>
</tr>
<tr>
<td></td>
<td>G09</td>
<td>Exact stop check</td>
<td></td>
<td>G83</td>
<td>Deep hole drilling cycle (Z axis)</td>
</tr>
<tr>
<td></td>
<td>G13.1</td>
<td>Turning mode</td>
<td></td>
<td>G84</td>
<td>Tap cycle (Z axis)</td>
</tr>
<tr>
<td></td>
<td>G16</td>
<td>Y-Z cylindrical plane selection</td>
<td></td>
<td>G85</td>
<td>Boring cycle (Z axis)</td>
</tr>
<tr>
<td></td>
<td>G17</td>
<td>X-Y plane selection</td>
<td></td>
<td>G87</td>
<td>Deep hole drilling cycle (X axis)</td>
</tr>
<tr>
<td></td>
<td>G19</td>
<td>Y-Z plane selection</td>
<td></td>
<td>G88</td>
<td>Tap cycle (X axis)</td>
</tr>
<tr>
<td></td>
<td>G22</td>
<td>Barrier check ON</td>
<td></td>
<td>G89</td>
<td>Boring cycle (X axis)</td>
</tr>
<tr>
<td></td>
<td>G23</td>
<td>Barrier check OFF</td>
<td></td>
<td>G90</td>
<td>Absolute value command</td>
</tr>
<tr>
<td></td>
<td>G40</td>
<td>Tool radius compensation cancel</td>
<td></td>
<td>G91</td>
<td>Incremental value command</td>
</tr>
<tr>
<td></td>
<td>G41</td>
<td>Tool radius compensation left</td>
<td></td>
<td>G94</td>
<td>Asynchronous feed</td>
</tr>
<tr>
<td></td>
<td>G42</td>
<td>Tool radius compensation right</td>
<td></td>
<td>G98</td>
<td>Hole drilling cycle initial point return</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G99</td>
<td>Hole drilling cycle R point return</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G61</td>
<td>Exact stop mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G64</td>
<td>Turning mode</td>
</tr>
</tbody>
</table>

*: Milling interpolation command
○: G code effective only in milling mode

(1) If an invalid G code is issued in milling mode, a program error (P481) occurs.
If the milling interpolation is commanded in milling mode, a program error (P481) occurs.

(2) In milling mode, all movement commands are commanded with the coordinate system determined by the selected machining plane. The rotation axis thus cannot be moved by a direct command in milling mode. To perform milling at a specific position of a workpiece, therefore, positioning must have been made in turning mode.

(Example)

```
G0 X100. C180.;  => Positioning before milling
G12.1; (or G12.1 E=C,D0;)
G0 X50.;
```

(3) If a command for an axis other than X, Z, and Y (rotation axis) is issued in milling mode, a program error (P481) occurs. The asynchronous tap can be used during the milling mode; however, the synchronous tap must not be commanded.
(4) In milling mode, the Y axis can be specified by only four G codes: G00, G01, G02, and G03. These are called the milling interpolation commands.

(5) The G84, G88 synchronous tapping cycles cannot be used during the milling mode.

Positioning (G00)

If a G00 command is issued in milling mode, positioning is made to the specified point on the selected plane at a rapid traverse rate.

\[
\text{G00 X/U__ Y/V__ Z/W__ ;}
\]

Linear interpolation (G01)

If a G01 command is issued in milling mode, linear interpolation is made to the specified point on the selected plane at the speed specified by an F speed.

(1) G16 mode

Program format

\[
\text{G01 Y/V__ Z/W__ X/U__ F__ ;}
\]
(2) **G17 mode**

Program format

\[
\text{G01 } X/U_ Y/V_ Z/W_ F_ ;
\]

(3) **G19 mode**

Program format

\[
\text{G01 } Y/V_ Z/W_ X/U_ F_ ;
\]
6. Interpolation Functions

6.8 Milling Interpolation

Circular interpolation (G02/G03)

If a G02 or G03 command is issued in milling mode, circular interpolation is performed at the specified speed on the selected plane.

(1) G16 mode

<table>
<thead>
<tr>
<th>G02/G03 Y/V__ Z/W__ J__ K__ F__; or</th>
<th>G02/G03 Y/V__ Z/W__ R__ F__;</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02</td>
<td>Circular interpolation (clockwise)</td>
</tr>
<tr>
<td>G03</td>
<td>Circular interpolation (counterclockwise)</td>
</tr>
<tr>
<td>Y/V</td>
<td>Circular end point coordinate, Y axis (Y: absolute value, V: incremental value)</td>
</tr>
<tr>
<td>Z/W</td>
<td>Circular end point coordinate, Z axis (Z: absolute value, W: incremental value)</td>
</tr>
<tr>
<td>J/K</td>
<td>Circular center incremental value (radius command incremental value from the start point to the center)</td>
</tr>
<tr>
<td>R</td>
<td>Circular radius</td>
</tr>
<tr>
<td>F</td>
<td>Feed rate</td>
</tr>
</tbody>
</table>

Development

\[
(\text{A, Q}) \quad \text{k}
\]

\[
(A, Q)_k
\]

\[
(\text{A, Q})_{\text{j}}
\]
6. Interpolation Functions

6.8 Milling Interpolation

(2) G17 mode

\[\text{G02/G03 X/U_ Y/V_ I_ J_ F_;} \]
\[\text{or} \]
\[\text{G02/G03 X/U_ Y/V_ R_ F_;} \]

- X/U: Circular end point coordinate, X axis (X: absolute value, U: incremental value)
- Y/V: Circular end point coordinate, Y axis (Y: absolute value, V: incremental value)
- I/J: Circular center incremental value (incremental value from the start point to the center)
- R: Circular radius
- F: Feed rate

(3) G19 mode

\[\text{G02/G03 Y/V_ Z/W_ J_ K_ F_;} \]
\[\text{or} \]
\[\text{G02/G03 Y/V_ Z/W_ R_ F_;} \]

- Y/V: Circular end point coordinate, Y axis (Y: absolute value, V: incremental value)
- Z/W: Circular end point coordinate, Z axis (Z: absolute value, W: incremental value)
- J/K: Circular center incremental value (incremental value from the start point to the center)
- R: Circular radius
- F: Feed rate
6.8.6 Switching from Milling Mode to Turning Mode; G13.1

Detailed description

1. A G13.1 command is used to cancel the milling mode and return to the turning mode.
2. The G13.1 command is effective if the following requirement is met. If not, a program error (P485) occurs.
 (a) Tool radius compensation has been canceled.
3. The G13.1 command restores the plane selected before the preceding G12.1 command was issued.
4. The G13.1 command restores the mode (synchronous or asynchronous) and the F value (if in asynchronous mode) selected before the preceding G12.1 command was issued.

(Note 1) If G13.1 is executed, while no movement command has been given, after cancellation by an independent G40 command, tool radius compensation is canceled in the G13.1 block.
(Note 2) When G13.1 command is issued, the deceleration check is executed.
(Note 3) If another command is issued during the G13.1 command, a program error will occur.

6.8.7 Feed Function

Asynchronous cutting feed

An asynchronous feed mode (G94 command) can use F6.3 digits to specify the feed rate per minute in units of 0.001mm/min. The specifiable range is 0.001 to 999999.999mm/min. If the effective speed exceeds the cutting feed clamp speed, it is clamped by that clamp speed.

(Note 1) Whenever the turning mode is switched to the milling mode by a G12.1 command, the F command modal value is canceled. After mode change, therefore, the feed rate must be set by an F command.
(Note 2) A G12.1 command forces the mode to shift to the asynchronous mode.
(Note 3) When the milling mode is canceled by a G13.1 command, both the feed mode and F command modal value return to the original state before the preceding G12.1 command was issued.

6.8.8 Program Support Functions

Relation with other functions

The following program support functions are effective in milling mode:
1. Linear angle command
2. Variable command
3. Automatic corner chamfering/corner rounding
4. Geometric function
5. Hole drilling cycle
6. Subprogram function
7. User macro
6.8.9 Miscellaneous Functions

Relation with other functions

(1) M and B commands can be issued in milling mode.

(2) In milling mode, an S command specifies not the spindle rotation speed but the rotary tool speed.

(3) If a T command is issued in milling mode, a program error (P485) occurs. Before a G12.1 command is issued, therefore, tool selection must be done.

\[
\begin{align*}
\text{T1212} ; & \quad \Rightarrow \text{Specify a T command before a G12.1 command.} \\
\text{G0 X100. Z0. ;} & \quad \text{G12.1 ; (or G12.1 E=C,DO ;)} \\
\text{T1200} ; & \quad \Rightarrow \text{In milling mode, a T command causes a program error (P485).} \\
\text{G13.1 ;} & \\
\end{align*}
\]

(4) Complete the tool compensation operation (movement of tool length and wear compensation amount) before executing the milling interpolation. If the tool compensation operation is not completed when the milling interpolation start command has been issued, the followings will be resulted:

Machine coordinate is not changed even if G12.1 is executed.

The workpiece coordinate is changed to that of the post tool length compensation when G12.1 is executed. (Even if canceling the milling interpolation, this workpiece coordinate will not be canceled.)

(Example)
Workpiece coordinate offset (X axis)=20.
Tool compensation amount of T0101 (X axis)=100.
Setting compensation operation with movement command after T command

\[
\begin{align*}
\text{<Machining program>} & \quad \text{<Workpiece coordinate>} & \quad \text{<Machine coordinate>} \\
\text{:} & \quad \text{[X axis] [C axis] [X axis] [C axis]} \\
\text{G00 X200. C0.;} & \quad 200. \quad 0. \quad 220. \quad 0. \\
\text{T0101;} & \quad 200. \quad 0. \quad 220. \quad 0. \\
\text{G12.1;} & \quad 100. \quad 0. \quad 220. \quad 0. \quad \text{<-The workpiece coordinate system is shifted (without moving the axis)} \\
\text{G01 X50. F1000;} & \quad 50. \quad 0. \quad 170. \quad 0. \\
\text{:} & \\
\end{align*}
\]
6.8.10 Tool Offset Functions

(1) In milling mode, tool compensation is performed by adding the tool length offset amount specified on the cutting coordinates converted from the milling coordinate system.
(2) As in (1) on previous page, if the offset amount is different from the actual one, the shape is not corrected normally.

(a) If the offset amount is larger than tool length:

Example: The actual tool length is 15.0 when tool length X = 20.0
(b) If the offset amount is smaller than tool length:

Example: The actual tool length is 25.0 when tool length X = 20.0

Tool radius compensation

The workpiece shape can be compensated in the direction of the vector by the radius amount of the tool specified by a G command (G40 to G42) and selected compensation No.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40 X__ Y__ ;</td>
<td>Tool radius compensation cancel</td>
</tr>
<tr>
<td>G41 X__ Y__ ;</td>
<td>Tool radius compensation (left)</td>
</tr>
<tr>
<td>G42 X__ Y__ ;</td>
<td>Tool radius compensation (right)</td>
</tr>
</tbody>
</table>

1. A tool radius compensation command must be issued after the milling mode is entered. The tool radius compensation command must be canceled before the turning mode is restored.

2. A tool compensation No. must be specified before the milling mode is entered (before a G12.1 command is issued). A T command in milling mode causes a program error (P485).

3. Tool radius compensation is performed on the selected plane.

 - G17 plane \(\ldots \) XY axes
 - G19 plane \(\text{YZ axes} \)
6. Interpolation Functions

6.8 Milling Interpolation

Tool radius compensation cancel mode

Tool radius compensation is canceled under either of the following conditions:

1. While a G12.1 command is effective
2. After a compensation cancel command (G40) is issued

In the compensation cancel mode, the offset vector is 0 and the tool center path matches the programmed path. A program that contains tool radius compensation must end after the compensation is canceled.

Starting tool radius compensation (startup)

Tool radius compensation starts if all the following requirements are met in compensation cancel mode:

1. A G41 or G42 command is issued.
2. The tool radius compensation No. is greater than 0 and equal to or less than the maximum compensation No.
3. The movement command is not a circular command.

Whether in continuous or single block operation, compensation always starts after reading three movement command blocks, or if three movement command blocks are not found, up to five continuous blocks. Similarly, in compensation mode, up to five blocks are pre-read for compensation operation.

Control state diagram

There are two ways of starting tool radius compensation: type A and type B. The type depends on the selection of the control parameter "tool nose compensation type B". This type is used in common with the compensation cancel type. In the following explanatory figure, "S" denotes the single block stop point.
6. Interpolation Functions

6.8 Milling Interpolation

Start operation for tool radius compensation

(1) Machining an inside corner

- **Linear → Linear**
- **Linear → Circular**

(2) Machining an outside corner (obtuse angle) (Type A or B can be selected by parameter)

\[90^\circ \leq \theta < 180^\circ \]

- **Linear → Linear (Type A)**
- **Linear → Linear (Type B)**
- **Linear → Circular (Type A)**
- **Linear → Circular (Type B)**
(3) Machining an outside corner (acute angle) (Type A or B can be selected by parameter) \[\theta < 90^\circ\]

Linear → Linear (Type A)

- Tool center path
- Program path
- Start point

Linear → Circular (Type A)

- Center of circular
- Tool center path
- Program path
- Start point

Linear → Linear (Type B)

- Tool center path
- Program path
- Start point

Linear → Circular (Type B)

- Center of circular
- Tool center path
- Program path
- Start point
Compensation is valid both for positioning and for interpolation commands such as circular and linear interpolation.

Even if the same compensation command (G41 or G42) is specified in the compensation mode, the command will be ignored.

If four or more blocks not accompanying movement are assigned continuously in the compensation mode, over-cutting or under-cutting will result.

(1) Machining an outside corner
(2) Machining an inside corner

- **Circular → Circular (90° ≤ θ < 180°)**

- **Circular → Circular (0° < θ < 90°)**

- **Linear → Linear (Obtuse angle)**

- **Linear → Circular (Obtuse angle)**

- **Circular → Linear (Obtuse angle)**
(3) When the arc end point is not on the circular

With a spiral circular command: the area from the arc start point to the end point is interpolated as a spiral arc.

With a normal circular command: if the error after compensation is within the parameter value, it is interpolated as a spiral arc.

(4) When the inside intersection does not exist

In an instance such as that shown in the figure below, the intersection of arcs A and B may cease to exist due to the compensation amount.

In such cases, program error (P152) appears, and the tool stops at the end point of the preceding block.
6. Interpolation Functions

6.8 Milling Interpolation

Tool radius compensation cancel

If either of the following conditions is met in the tool radius compensation mode, the compensation will be canceled. However, the movement command must be a command other than a circular command. If an attempt is made to cancel the compensation by a circular command, program error (P151) results.

1. A G40 command has been executed. The cancel mode is established once the compensation cancel command has been read, the 5-block pre-read process is suspended, and 1-block pre-read applies instead.

Tool radius compensation cancel operation

1. **Machining an inside corner**

 - **Linear → Linear**
 - **Circular → Linear**

 ![Diagram](image_url)
(2) Machining an outside corner (obtuse angle) (Type A or B can be selected by parameter)
$[90^\circ \leq \theta < 180^\circ]$
(3) Machining an outside corner (acute angle) (Type A or B elm be selected by parameter)
$[\theta < 90^\circ]$

Linear → Linear (Type A)

Circular → Linear (Type A)

Linear → Linear (Type B)

Circular → Linear (Type B)
Changing the compensation direction during tool radius compensation

The compensation direction can be changed by changing the compensation command in the compensation mode without the compensation having to be first canceled. However, no change is possible in the compensation start block and the following block.

Linear → Linear

![Diagram showing Linear to Linear transition]

Linear ↔ Circular

![Diagram showing Linear to Circular transition]

If there is no intersection when the compensation direction is changed.
6. Interpolation Functions

6.8 Milling Interpolation

Circular → Circular

![Diagram showing circular to circular interpolation](image)

Linear return

![Diagram showing linear return](image)

G0 block

If there is a block containing a G0 command, the preceding block does not perform intersection operation, the tool comes to the position vertical to the end point, and the G0 block temporarily loses the offset vector. Compensation is not canceled, but instead the tool moves from the intersection vector directly to a point without vector, that is, to the point specified by the program. The offset vector is regenerated by a block containing a G1 command.

```
...  
N10 G12.1;  
N11 G42;  
N12 G1 Y100..F100;  
N13 X-100.;  
N14 G0 Y-100.;  
N15 G1 X100.;  
N16 Y0.;  
N17 G40 G0 X200.;  
...  
```

(Unit: mm)
The following blocks are known as blocks without movement;

- a. M03 ; .. M command
- b. S12 ; .. S command
- c. G04 X500 ; .. Dwell
- d. G10 P01 R50 ; Compensation amount setting
- e. (G17) Z40 ; Movement but not on compensation plane
- f. G90 ; ... G code only
- g. G91 X0 ; ... Movement amount 0

M00, M01, M02, and M30 are treated as M codes inhibiting pre-read.

(1) Blocks without movement commands specified at compensation start
If four or more blocks without movement continue or if M command inhibiting pre-read is issued, offset vectors are not generated.

(2) Blocks without movement commands specified in compensation mode
If four or more blocks without movement do not continue in compensation mode and if no M command inhibiting pre-read is issued, intersection vectors are generated as usual.

This may cause cutting.
6. Interpolation Functions

6.8 Milling Interpolation

(3) Compensation cancel alone

<table>
<thead>
<tr>
<th>(a) G1 precedes the block containing G40:</th>
<th>(b) G0 precedes the block containing G40:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compensation is canceled by a movement command following G40.

Compensation is canceled by a G0 command before G40.

(Note) In program (a), if G13.1 is commanded after G40 without a movement command, cancellation is done at block G13.1.

Corner movement

When a multiple number of offset vectors are created at the joints between movement command blocks, the tool will move in a straight line between those vectors. This action is called corner movement.

When the vectors do not match, the tool moves in order to turn the corner although this movement belongs to the next block. Consequently, operation in the single block mode will execute the previous block + corner movement as a single block and the remaining joining movement + next block will be executed as a single block in the following operation.
6.8.11 Interference Check

Function and purpose

A tool, whose tool radius has been compensated under the tool radius compensation function by the usual 2-block pre-reading, may sometimes cut into the workpiece. This is known as interference. An interference check is the function which prevents such interference from occurring. The types of interference check are indicated below, and each can be selected for use by parameter.

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference check</td>
<td>Rad compen intrf byp : OFF</td>
<td>Operation stops with a program error before execution of the block causing cutting.</td>
</tr>
<tr>
<td>alarm function</td>
<td>Interference check invalid signal OFF</td>
<td></td>
</tr>
<tr>
<td>Interference check</td>
<td>Rad compen intrf byp : ON</td>
<td>The tool path is changed to prevent cutting from occurring.</td>
</tr>
<tr>
<td>avoiding function</td>
<td>Interference check invalid signal OFF</td>
<td></td>
</tr>
</tbody>
</table>

(Example)

(G41)

N1 G90 G1 X50. Y-100.;
N2 X70. Y-100.;
N3 X120. Y0 ;

(1) With alarm function

An alarm is given before N1 is executed. The buffer correction function can thus be used to change N1 to the following, enabling machining to continue:

N1 G1 X20. Y-40.;

(2) With avoidance function

The intersection of N1 and N3 is calculated to create interference avoidance vectors.
Examples of interference check:

Vector (1) (4)’ check → No interference

Vector (2) (3)’ check → No interference

Vector (3) (2)’ check → Interference → Vectors (3) (2)’ deleted

Vectors (4) (1)’ deleted

As a result of the above processing, vectors (1) (2) (3)’, and (4)’ remain as valid, and operation is done with the path connecting these vectors as the interference avoidance path.
(1) **Conditions regarded as interference**

With three blocks containing movement commands of five pre-read blocks, interference is regarded as occurring if the compensation calculation vectors, which have been created at contact of movement commands, intersect each other.

![Diagram of tool center path and program path with vectors intersecting](image)

(2) **Interference check is not available when:**

(a) Three blocks containing movement commands cannot be pre-read (three or more blocks of five pre-read blocks do not contain movement commands).

(b) Interference occurs in the fourth or subsequent block containing movement commands.

![Diagram showing no interference check available](image)

(3) **Operation during interference avoidance**

If the interference avoidance function is available, the tool moves as follows.

![Diagram of tool center path and program path](image)
If all interference avoidance line vectors have been deleted, new avoidance vectors are created to avoid interference as shown in the figure at right.
In the figure below, the groove is left uncut.

In the figure below, the tool moves in the opposite direction at N2. After N1 is executed, program error (P153) occurs.

Interference check alarm

An interference check alarm occurs under the following conditions.

1. **With the interference check alarm function selected**
 (a) All vectors are deleted at the end point of the current block.
 As shown in the figure, if vectors 1 to 4 are all deleted at the end point of the N1 block, program error (P153) results prior to N1 execution.
(2) With the interference check avoidance function selected

(a) There are valid vectors at the end point of the following block though all vectors at the end point of the current block were deleted.

(i) In the figure, if N2 interference check is conducted, the N2 end point vectors are all deleted but the N3 end point vectors are regarded as valid. This causes program error (P153) at the N1 end point.

(ii) In the figure, the tool moves in the opposite direction at N2. This causes program error (P153) after N1 execution.
(b) The avoidance vectors cannot be created.
As shown in the figure, even when the conditions for creating avoidance vectors are met, it may still be impossible to create avoidance vectors or the avoidance vectors may interfere with N3. Program error (P153) thus occurs at the N1 end point if the vectors intersect at an angle of 90° or more.
(c) The program advance direction and the advance direction after compensation are reversed. An interference may be assumed when no interference occurs actually if grooves running in parallel with narrower width between the two than the tool diameter or a bottom-widened groove is programmed.
6. Interpolation Functions

6.9 Cylindrical Interpolation

Function and purpose

This function develops a shape with a cylindrical side (shape in cylindrical coordinate system) into a plane. When the developed shape is programmed as the plane coordinates, that is converted into the linear axis and rotation axis movement in the cylindrical coordinates and the contour is controlled during machining.

As programming can be carried out with a shape with which the side on the cylinder is developed, this is effective for machining cylindrical cams, etc. When programmed with the rotation axis and its orthogonal axis, slits, etc., can be machined on the cylinder side.
6. Interpolation Functions

6.9 Cylindrical Interpolation

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G07.1 C___ ;</td>
<td>(Cylindrical interpolation mode start/cancel)</td>
</tr>
<tr>
<td>C</td>
<td>Cylinder radius value</td>
</tr>
<tr>
<td>• Radius value ≠ 0: Cylindrical interpolation mode start</td>
<td></td>
</tr>
<tr>
<td>• Radius value = 0: Cylindrical interpolation mode cancel</td>
<td></td>
</tr>
</tbody>
</table>

(Note) The above format applies when the name of the rotation axis is "C". If the name is not "C", command the name of the rotation axis being used instead of "C".

(1) The coordinates commanded in the interval from the start to cancellation of the cylindrical interpolation mode will be the cylindrical coordinate system.

- G07.1 C Cylinder radius value; Cylindrical interpolation mode start
- : (Cylindrical interpolation will start)
- : (The coordinate commands in this interval will be
 the cylindrical coordinate system)
- G07.1 C0 ; Cylindrical interpolation mode cancel
 (Cylindrical interpolation will be canceled)

(2) G107 can be used instead of G07.1.

Detailed description

(1) Command G07.1 in an independent block. A program error (P33) will occur if this command is issued in the same block as another G code.

(2) Program the rotation axis with an angle degree.

(3) Linear interpolation or circular interpolation can be commanded during the cylindrical interpolation mode. Note that the plane selection command must be issued just before the G07.1 block.

(4) The coordinates can be commanded with either an absolute command or incremental command.

(5) Tool radius compensation can be applied on the program command. Cylindrical interpolation will be executed on the path after tool radius compensation.

(6) Command the segment feed in the cylinder development with F. The F unit is mm/min or inch/min.

(7) Cylindrical interpolation accuracy
 In the cylindrical interpolation mode, the movement amount of the rotation axis commanded with an angle is converted on the circle periphery, and after operating the linear and circular interpolation between the other axes, the amount is converted into an angle again. Thus, the actual movement amount may differ from the commanded value such as when the cylinder radius is small.
 Note that the error generated at this time is not cumulated.
6. Interpolation Functions

6.9 Cylindrical Interpolation

(8) Related parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1516</td>
<td>mill_ax</td>
<td>Milling axis name Set the name of the rotation axis for milling interpolation (polar coordinate interpolation, cylindrical interpolation). Only one of the rotation axes can be set.</td>
<td>A to Z</td>
</tr>
<tr>
<td>8111</td>
<td>Milling Radius</td>
<td>Select the diameter and radius of the linear axis for milling interpolation (polar coordinate interpolation, cylindrical interpolation). 0: Radius command for all axes 1: Each axis setting (follows #1019 dia diameter designation axis)</td>
<td>0 / 1</td>
</tr>
<tr>
<td>1267</td>
<td>ext03</td>
<td>G code type The type of high-speed high-accuracy G code is changed. 0: G61.1 type 1: G8 type</td>
<td>0 / 1</td>
</tr>
<tr>
<td>1270</td>
<td>ext06</td>
<td>Handle C coordinate during cylindrical interpolation Specify whether the rotary axis coordinate before the cylindrical interpolation start command is issued is kept during the cylindrical interpolation or not. 0: Do not keep 1: keep</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>

(9) Plane selection

The axis used for cylindrical interpolation must be set with the plane selection command. **(Note)**

The correspondence of the rotation axis to an axis’ parallel axis is set with the parameters (#1029, #1030, #1031).

The circular interpolation and tool radius compensation, etc., can be designated on that plane.

The plane selection command is set immediately before or after the G07.1 command. If not set and a movement command is issued, a program error (P485) will occur.
6. Interpolation Functions

6.9 Cylindrical Interpolation

(Example) G19 Z0. C0.;
G07.1 C100.;
;
G07.1 C0;

Basic coordinate system
X, Y, Z

G17

Y
X
G18
C
Z

Cylindrical coordinate system
C, Y, Z
(Rotation axis is X axis' parallel axis)
#1029

G17

C
Y
C
X
G18
Z

Cylindrical coordinate system
X, C, Z
(Rotation axis is Y axis' parallel axis)
#1030

G17

X
C
Z

G19

Y
C

Cylindrical coordinate system
X, Y, C
(Rotation axis is Z axis' parallel axis)
#1031

G17

G18

X
C

G19

Y

(Note) Depending on the model or version, the Z-C plane (Y-Z cylinder plane) will be automatically selected with G07.1 and G19. The circular interpolation and tool radius compensation, etc., can be designated on that plane.
6. Interpolation Functions

6.9 Cylindrical Interpolation

Relation with other functions

(1) Circular interpolation
 (a) Circular interpolation between the rotation axis and linear axis is possible during the cylindrical interpolation mode.
 (b) An R specification command can be issued with circular interpolation. (I, J and K cannot be designated.)

(2) Tool radius compensation
 The tool radius can be compensated during the cylindrical interpolation mode.
 (a) Command the plane selection in the same manner as circular interpolation. When using tool radius compensation, start up and cancel the compensation within the cylindrical interpolation mode.
 (b) A program error (P485) will occur if G07.1 is commanded during tool radius compensation.
 (c) If the G07.1 command is issued with no movement command given after the tool radius compensation is canceled, the position of the axis in the G07.1 command block is interpreted as the position applied after the tool radius compensation is canceled and the following operations are performed.

(3) Cutting feed per minute (asynchronous feed)
 (a) The feed per minute (asynchronous) mode is forcibly set when the cylindrical interpolation mode is started.
 (b) When the cylindrical interpolation mode is canceled, the feed per revolution (synchronous) will return to the state before the cylindrical interpolation mode was started.

(4) Constant surface speed control
 (a) A program error (P485) will occur if G07.1 is commanded in the constant surface speed control mode (G96).

(5) Miscellaneous functions
 (a) The miscellaneous function (M) and 2nd miscellaneous function can be issued even in the cylindrical interpolation mode.
 (b) The S command in the cylindrical interpolation mode issues the rotary tool’s rotation speed instead of the spindle rotation speed.
 (c) Issue the T command before cylindrical interpolation is started. A program error (P485) will occur if the T command is issued in the cylindrical interpolation mode.

```
T1212 ; ... T command before cylindrical interpolation → Valid
T0 X100. Z0 ;
G19 Z C ;
G07.1 C100. ;
;
T1200 ; ... T command in cylindrical interpolation mode → Program error
;
G07.1 C0 ;
```

115
(d) Complete the tool compensation movement (movement of tool length and wear compensation amount) before executing the cylindrical interpolation. If the tool compensation movement is not completed when the cylindrical interpolation start command has been issued, the followings will be resulted:
- Machine coordinate is not changed even if G07.1 is executed.
- The workpiece coordinate is changed to that of the post tool length compensation when G07.1 is executed. (Even if canceling the cylindrical interpolation, this workpiece coordinate will not be canceled.)

(6) **F command during cylindrical interpolation**

As for the F command in the cylindrical interpolation mode, whether the previous F command is used or not depends on that the mode just before G07.1 is the feed per minute command (G94) or feed per revolution command (G95).

(a) When G94 is commanded just before G07.1

If there is no F command in the cylindrical interpolation, the previous F command feed rate will be used.

The feed rate after the cylindrical interpolation mode is canceled will remain the F command feed rate issued when the cylindrical interpolation mode was started or the final F command feed rate set during cylindrical interpolation.

(b) When G95 is commanded just before G07.1

The previous F command feed rate cannot be used during cylindrical interpolation, thus a new F command must be issued.

The feed rate after the cylindrical interpolation mode is canceled will return to that applied before the cylindrical interpolation mode was started.

When there is no F command in G07.1

<table>
<thead>
<tr>
<th>Previous mode</th>
<th>No F command</th>
<th>After G07.1 is canceled</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94</td>
<td>Previous F is used</td>
<td>←</td>
</tr>
<tr>
<td>G95</td>
<td>Program error (P62)</td>
<td>F just before G07.1 is used</td>
</tr>
</tbody>
</table>

When F is commanded in G07.1

<table>
<thead>
<tr>
<th>Previous mode</th>
<th>No F command</th>
<th>After G07.1 is canceled</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94</td>
<td>Commanded F is used</td>
<td>←</td>
</tr>
<tr>
<td>G95</td>
<td>Commanded F is used*1</td>
<td>F just before G07.1 is used</td>
</tr>
</tbody>
</table>

*1) Moves with the feed per minute command during G07.1.
6. Interpolation Functions

6.9 Cylindrical Interpolation

Restrictions and precautions

(1) The following G code commands can be used during the cylindrical interpolation mode.

<table>
<thead>
<tr>
<th>G code</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>Positioning</td>
</tr>
<tr>
<td>G01</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>G02</td>
<td>Circular interpolation (CW)</td>
</tr>
<tr>
<td>G03</td>
<td>Circular interpolation (CWW)</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G09</td>
<td>Exact stop check</td>
</tr>
<tr>
<td>G22/23</td>
<td>Chuck barrier ON/OFF</td>
</tr>
<tr>
<td>G40-42</td>
<td>Tool nose R compensation</td>
</tr>
<tr>
<td>G50.2</td>
<td>Polygon machining mode cancel</td>
</tr>
<tr>
<td>G61</td>
<td>Exact stop check mode</td>
</tr>
<tr>
<td>G64</td>
<td>Cutting mode</td>
</tr>
<tr>
<td>G65</td>
<td>Macro call (simple call)</td>
</tr>
<tr>
<td>G66</td>
<td>Macro modal call A (modal call)</td>
</tr>
<tr>
<td>G66.1</td>
<td>Macro modal call B (block call per macro)</td>
</tr>
<tr>
<td>G67</td>
<td>Macro modal call cancel (modal call cancel)</td>
</tr>
<tr>
<td>G79-89</td>
<td>Fixed cycle for drilling</td>
</tr>
<tr>
<td>G90/91</td>
<td>Absolute/incremental value command</td>
</tr>
<tr>
<td>G94</td>
<td>Asynchronous feed</td>
</tr>
<tr>
<td>G98</td>
<td>Hole drilling cycle initial return</td>
</tr>
<tr>
<td>G99</td>
<td>Hole drilling cycle R point return</td>
</tr>
</tbody>
</table>

A program error will occur if a G code other than those listed above is commanded during cylindrical interpolation.

(2) The cylindrical interpolation mode is canceled when the power is turned ON or reset.

(3) A program error (P484) will occur if any axis commanded for cylindrical interpolation has not completed reference position return.

(4) Tool radius compensation must be canceled before the cylindrical interpolation mode can be canceled.

(5) When the cylindrical interpolation mode is canceled, the mode will change to the cutting mode, and the plane will return to that selected before cylindrical interpolation.

(6) The program of the block during the cylindrical interpolation cannot be restarted (program restart).

(7) A program error (P486) will occur if the cylindrical interpolation command is issued during the mirror image.

(8) When the cylindrical interpolation mode is started or canceled, the deceleration check is performed.

(9) A program error (P481) will occur if the cylindrical interpolation or the polar coordinate interpolation is commanded during the cylindrical interpolation mode.

(10) The G84 or G88 synchronous tapping cycles cannot be used during cylindrical interpolation mode. The asynchronous tap can be used during cylindrical interpolation mode; however, the synchronous tap must not be commanded.
Example of program

N01 G28XZC;
N02 T0202;
N03 G97S100M23;
N04 G00X50.Z0.;
N05 G94G01X40.F100.;
N06 G19C0Z0;
N07 G07.1C20.;
N08 G41;
N09 G01Z-10.C80.F150;
N10 Z-25.C90.;
N11 Z-80.C225;
N12 G03Z-75.C270.R55.;
N13 G01Z-25;
N14 G02Z-20.C280.R80.;
N15 G01C360.
N16 G40;
N17 G07.1C0;
N18 G01X50.;
N19 G00X100.Z100.;
N20 M25;
N21 M30;

command of plane selection for cylindrical interpolation
and command of two interpolation axes

Cylindrical interpolation start

Cylindrical interpolation cancel
6.10 Polar Coordinate Interpolation; G12.1, G13.1/G112, G113 (Only 6, 7 in G code list)

Function and purpose

This function converts the commands programmed with the orthogonal coordinate axis into linear axis movement (tool movement) and rotation axis movement (workpiece rotation), and controls the contour.

The plane that uses the linear axis as the plane's 1st orthogonal axis, and the intersecting hypothetical axis as the plane's 2nd axis (hereafter "polar coordinate interpolation plane") is selected. Polar coordinate interpolation is carried out on this plane. The workpiece coordinate system zero point is used as the coordinate system zero point during polar coordinate interpolation.

This is effective for cutting a notch section on a linear section of the workpiece diameter, and for cutting cam shafts, etc.
6. Interpolation Functions

6.10 Polar Coordinate Interpolation

Command format

<table>
<thead>
<tr>
<th>G12.1 ;</th>
<th>Polar coordinate interpolation mode start</th>
</tr>
</thead>
<tbody>
<tr>
<td>G13.1 ;</td>
<td>Polar coordinate interpolation mode cancel</td>
</tr>
</tbody>
</table>

1. The coordinates commanded in the interval from the start to cancellation of the polar coordinate interpolation mode will be the polar coordinate interpolation.

 G12.1 ; Polar coordinate interpolation mode start
 : (Polar coordinate interpolation will start)
 : (The coordinate commands in this interval will be the polar coordinate interpolation)
 G13.1 ; Polar coordinate interpolation mode cancel
 (Polar coordinate interpolation is canceled)

2. G112 and G113 can be used instead of G12.1 and G13.1.

3. Command G12.1 and G13.1 in an independent block. A program error (P33) will occur if this command is issued in the same block as another G code.

4. Linear interpolation or circular interpolation can be commanded during the polar coordinate interpolation mode.

5. The coordinates can be commanded with either an absolute command or incremental command.

6. Tool radius compensation can be applied on the program command. Polar coordinate interpolation will be executed on the path after tool radius compensation.

7. Command the segment feed in the polar coordinate interpolation plane (orthogonal coordinate system) with F. The F unit is mm/min or inch/min.

8. When the G12.1 and G13.1 commands are issued, the deceleration check is executed.

Detailed description

1. Plane selection
 The linear axis and rotation axis used for polar coordinate interpolation must be set beforehand with the parameters.

 a. Determine the deemed plane for carrying out polar coordinate interpolation with the parameter (#1533) for the linear axis used for polar coordinate interpolation.

<table>
<thead>
<tr>
<th>#1533 setting value</th>
<th>Deemed plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>G17 (XY plane)</td>
</tr>
<tr>
<td>Y</td>
<td>G19 (YZ plane)</td>
</tr>
<tr>
<td>Z</td>
<td>G18 (ZX plane)</td>
</tr>
<tr>
<td>Blank (no setting)</td>
<td>G17 (XY plane)</td>
</tr>
</tbody>
</table>

 b. A program error (P485) will occur if the plane selection command (G16 to G19) is issued during the polar coordinate interpolation mode.

 Note: Depending on the model or version, parameter (#1533) may not be provided. In this case, the operation will be the same as if the parameter (#1533) is blank (no setting).
6. Interpolation Functions

6.10 Polar Coordinate Interpolation

(2) Related parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
</table>
| 1516 | mill_ax | Milling axis name
Set the name of the rotation axis for milling interpolation (polar coordinate interpolation, cylindrical interpolation). Only one of the rotation axes can be set. | A to Z |
| 1517 | mill_c | Milling interpolation hypothetical axis name
Select the hypothetical axis command name for milling interpolation (polar coordinate interpolation, cylindrical interpolation). 0: Y axis command 1: Command rotation axis name | 0 / 1 |
| 8111 | Milling Radius | Select the diameter and radius of the linear axis for milling interpolation.
0: Radius command for all axes 1: Each axis setting (follows #1019 dia diameter designation axis) | 0 / 1 |

Relation with other functions

(1) Program commands during polar coordinate interpolation

(a) The program commands in the polar coordinate interpolation mode are commanded with the orthogonal coordinate value of the linear axis and rotation axis (hypothetical axis) on the polar coordinate interpolation plane. The axis address of the rotation axis (C) is commanded as the axis address for the plane's 2nd axis (hypothetical axis) command. The command unit is not deg (degree), and instead is the same unit (mm or inch) as the command issued with the axis address for the plane's 1st axis (linear axis).

(b) The hypothetical axis coordinate value will be set to "0" when G12.1 is commanded. In other words, the position where G12.1 is commanded will be interpreted as angle = 0, and the polar coordinate interpolation will start.

(2) Circular interpolation on polar coordinate plane

The arc radius address for carrying out circular interpolation during the polar coordinate interpolation mode is determined with the linear axis parameter (#1533).

<table>
<thead>
<tr>
<th>#1533 setting value</th>
<th>Center designation command</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>I, J (polar coordinate plane is interpreted as XY plane)</td>
</tr>
<tr>
<td>Y</td>
<td>J, K (polar coordinate plane is interpreted as YZ plane)</td>
</tr>
<tr>
<td>Z</td>
<td>K, I (polar coordinate plane is interpreted as ZX plane)</td>
</tr>
<tr>
<td>Blank (no setting)</td>
<td>I, J (polar coordinate plane is interpreted as XY plane)</td>
</tr>
</tbody>
</table>

The arc radius can also be designated with the R command.

(Note) Depending on the model or version, parameter (#1533) may not be provided. In this case, the operation will be the same as if the parameter (#1533) is blank (no setting).

(3) Tool radius compensation

The tool radius can be compensated during the polar coordinate interpolation mode.

(a) Command the plane selection in the same manner as polar coordinate interpolation. When using tool radius compensation, it must be started up and canceled within the polar coordinate interpolation mode.

(b) A program error (P485) will occur if polar coordinate interpolation is executed during tool radius compensation.

(c) If the G12.1 and G13.1 commands are issued with no movement command given after the tool radius compensation is canceled, the position of the axis in the G12.1 and G13.1 commands block is interpreted as the position applied after the tool radius compensation is canceled and the following operations are performed.
6. Interpolation Functions

6.10 Polar Coordinate Interpolation

(4) Cutting asynchronous feed

(a) The asynchronous mode is forcibly set when the polar coordinate interpolation mode is
 started.

(b) When the polar coordinate interpolation mode is canceled, the synchronization mode will
 return to the state before the polar coordinate interpolation mode was started.

(c) A program error (P485) will occur if G12.1 is commanded in the constant surface speed
 control mode (G96).

(5) Miscellaneous functions

(a) The miscellaneous function (M) and 2nd miscellaneous function can be issued even in the
 polar coordinate interpolation mode.

(b) The S command in the polar coordinate interpolation mode issues the rotary tool's rotation
 speed instead of the spindle rotation speed.

(c) Issue the T command before polar coordinate interpolation is started. A program error
 (P485) will occur if the T command is issued in the polar coordinate interpolation mode.

 T1212 ; ... T command before polar coordinate interpolation → Valid
 G0 X100. Z0 ;
 G12.1 ;
 T1200 ; ... T command in polar coordinate interpolation mode → Program error
 G13.1 ;

(d) Complete the tool compensation operation (movement of tool length and wear
 compensation amount) before executing the polar coordinate interpolation. If the tool
 compensation operation is not completed when the polar coordinate interpolation start
 command has been issued, the followings will be resulted:
 • Machine coordinate is not changed even if G12.1 is executed.
 • The workpiece coordinate is changed to that of the post tool length compensation when
 G12.1 is executed. (Even if canceling the polar coordinate interpolation, this workpiece
 coordinate will not be canceled.)
(6) **F command during polar coordinate interpolation**

As for the F command in the polar coordinate interpolation mode, whether the previous F command is used or not depends on that the mode just before G12.1 is the feed per minute command (G94) or feed per revolution command (G95).

(a) When G94 is commanded just before G12.1

If there is no F command in the polar coordinate interpolation, the previous F command feed rate will be used.

The feed rate after the polar coordinate interpolation mode is canceled will remain the F command feed rate issued when the polar coordinate interpolation mode was started or the final F command feed rate set during polar coordinate interpolation.

The previous F command feed rate cannot be used during polar coordinate interpolation.

(b) When G95 is commanded just before G12.1

The previous F command feed rate cannot be used during polar coordinate interpolation.

A new F command must be issued.

The feed rate after the polar coordinate interpolation mode is canceled will return to that applied before the polar coordinate interpolation mode was started.

When there is no F command in G12.1

<table>
<thead>
<tr>
<th>Previous mode</th>
<th>No F command</th>
<th>After G13.1 is canceled</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94</td>
<td>Previous F is used</td>
<td>←</td>
</tr>
<tr>
<td>G95</td>
<td>Program error (P62)</td>
<td>F just before G12.1 is used</td>
</tr>
</tbody>
</table>

When F is commanded in G12.1

<table>
<thead>
<tr>
<th>Previous mode</th>
<th>No F command</th>
<th>After G13.1 is canceled</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94</td>
<td>Commanded F is used</td>
<td>←</td>
</tr>
<tr>
<td>G95</td>
<td>Commanded F is used *1</td>
<td>F just before G12.1 is used</td>
</tr>
</tbody>
</table>

*1) Moves with the feed per minute command during G12.1.

(7) **Hole drilling axis in the fixed cycle for drilling command during the polar coordinate interpolation**

Hole drilling axis in the fixed cycle for drilling command during the polar coordinate interpolation is determined with the linear axis parameter (# 1533).

<table>
<thead>
<tr>
<th>#1533 setting value</th>
<th>Hole drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Z (polar coordinate plane is interpreted as XY plane)</td>
</tr>
<tr>
<td>Y</td>
<td>X (polar coordinate plane is interpreted as YZ plane)</td>
</tr>
<tr>
<td>Z</td>
<td>Y (polar coordinate plane is interpreted as ZX plane)</td>
</tr>
<tr>
<td>Blank (no setting)</td>
<td>Z (polar coordinate plane is interpreted as XY plane)</td>
</tr>
</tbody>
</table>
6. Interpolation Functions

6.10 Polar Coordinate Interpolation

Restrictions and precautions

(1) The following G code commands can be used during the polar coordinate interpolation mode.

<table>
<thead>
<tr>
<th>G code</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>Positioning</td>
</tr>
<tr>
<td>G01</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>G02</td>
<td>Circular interpolation (CW)</td>
</tr>
<tr>
<td>G03</td>
<td>Circular interpolation (CWW)</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G09</td>
<td>Exact stop check</td>
</tr>
<tr>
<td>G22/23</td>
<td>Chuck barrier ON/OFF</td>
</tr>
<tr>
<td>G40-42</td>
<td>Tool nose R compensation</td>
</tr>
<tr>
<td>G61</td>
<td>Exact stop check mode</td>
</tr>
<tr>
<td>G64</td>
<td>Cutting mode</td>
</tr>
<tr>
<td>G65</td>
<td>Macro call (simple call)</td>
</tr>
<tr>
<td>G66</td>
<td>Macro modal call A (modal call)</td>
</tr>
<tr>
<td>G66.1</td>
<td>Macro modal call B (block call per macro)</td>
</tr>
<tr>
<td>G67</td>
<td>Macro modal call cancel (modal call cancel)</td>
</tr>
<tr>
<td>G80-89</td>
<td>Fixed cycle for drilling</td>
</tr>
<tr>
<td>G90/91</td>
<td>Absolute/incremental value command</td>
</tr>
<tr>
<td>G94</td>
<td>Asynchronous feed</td>
</tr>
<tr>
<td>G98</td>
<td>Hole drilling cycle initial return</td>
</tr>
<tr>
<td>G99</td>
<td>Hole drilling cycle R point return</td>
</tr>
</tbody>
</table>

A program error (P481) may occur if a G code other than those listed above is commanded during polar coordinate interpolation.

(2) The program cannot be restarted (resumed) for a block in polar coordinate interpolation.

(3) Before commanding polar coordinate interpolation, set the workpiece coordinate system so that the center of the rotation axis is at the coordinate system zero point. Do not change the coordinate system during the polar coordinate interpolation mode. (G50, G52, G53, relative coordinate reset, G54 to G59, etc.)

(4) The feed rate during polar coordinate interpolation will be the interpolation speed on the polar coordinate interpolation plane (orthogonal coordinate system).

(5) The axis movement command outside of the plane during polar coordinate interpolation will move unrelated to the polar coordinate interpolation.

(6) The current position displays during polar coordinate interpolation will all indicate the actual coordinate value. However, the "remaining movement amount" will be the movement amount on the polar coordinate input plane.

(7) The polar coordinate interpolation mode will be canceled when the power is turned ON or reset.

(8) A program error (P484) will occur if any axis commanded for polar coordinate interpolation has not completed reference position return.

(9) Tool radius compensation must be canceled before the polar coordinate interpolation mode can be canceled.

(10) When the polar coordinate interpolation mode is canceled, the mode will change to the cutting mode, and the plane will return to that selected before polar coordinate interpolation.

(11) A program error (P486) will occur if the polar coordinate interpolation command is issued during the mirror image.

(12) A program error (P481) will occur if the cylindrical interpolation or the polar coordinate interpolation is commanded during the polar coordinate interpolation mode.
(13) The G84 or G88 synchronous tapping cycles cannot be used during pole coordinate interpolation mode. The asynchronous tap can be used during pole coordinate interpolation mode; however, the synchronous tap must not be commanded.

Example of program

```
N00 T0101;

N01 G17 G90 G0 X40.0 C0 Z0; Setting of start position
N02 G12.1; Polar coordinate interpolation mode: Start
N03 G1 G42 X20.0 F2000; Actual machining start
N04 C10.0;
N05 G3 X10.0 C20.0 R10.0; Shape program
N06 G1 X-20.0;
N07 C-10.0;
N08 G3 X-10.0 C-20.0 I10.0 J0; (Follows orthogonal coordinate values on X-C
N09 G1 X20.0; hypothetical axis plane.)
N10 C0;
N11 G40 X40.0;
N12 G13.1; Polar coordinate interpolation mode: Cancel
...
M30;
```
6.11 Exponential Interpolation; G02.3, G03.3

Function and purpose

Exponential interpolation changes the rotation axis into an exponential function shape in respect to the linear axis movement. At this time, the other axes carry out linear interpolation between the linear axis. This allows a machining of a taper groove with constant torsion angle (helix angle) (uniform helix machining of taper shape). This function can be used for slotting or grinding a tool for use in an end mill, etc.

- **Uniform helix machining of taper shape**

- **Relation of linear axis and rotation axis**

\[
X = B (e^{CA} - 1) \quad \{B, C \ldots \text{constant}\}
\]
6. Interpolation Functions

6.11 Exponential Interpolation

Command format

G02.3/G03.3 Xx1 Yy1 Zz1 Ii1 Jj1 Rr1 Ff1 Qq1 ;
G02.3 Forward rotation interpolation
G03.3 Negative rotation interpolation
X X axis end point *(Note 1)*
Y Y axis end point *(Note 1)*
Z Z axis end point *(Note 1)*
I Angle i1 *(Note 2)*
J Angle j1 *(Note 2)*
R Constant value r1 *(Note 3)*
F Initial feed rate *(Note 4)*
Q Feed rate at end point *(Note 5)*

(Note 1) Designate the end point of the linear axis designated with parameter (#1514 expLinax) and the axis that carries out linear interpolation between that axis. If the end point on of the rotation axis designated with parameter (#1515 expRotax) is designated, linear interpolation without exponential interpolation will take place.

(Note 2) The command unit is as follows.

<table>
<thead>
<tr>
<th>Setting unit</th>
<th>#1003 = B</th>
<th>#1003 = C</th>
<th>#1003 = D</th>
<th>#1003 = E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unit = °)</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

The command range is –89 to +89°.
A program error (P33) will occur if there is no address I or J command.
A program error (P35) will occur if the address I or J command value is 0.

(Note 3) The command unit is as follows.

<table>
<thead>
<tr>
<th>Setting unit</th>
<th>#1003 = B</th>
<th>#1003 = C</th>
<th>#1003 = D</th>
<th>#1003 = E</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric system</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.000001</td>
<td>mm</td>
</tr>
<tr>
<td>Inch system</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.000001</td>
<td>0.0000001</td>
<td>inch</td>
</tr>
</tbody>
</table>

The command range is a positive value that does not include 0.
A program error (P33) will occur if there is no address R command.
A program error (P35) will occur if the address R command value is 0.

(Note 4) The command unit and command range is the same as the normal F code. (Command as a feed per minute.)
Command the composite feed rate that includes the rotation axis.
The normal F modal value will not change by the address F command.
A program error (P33) will occur if there is no address F command.
A program error (P35) will occur if the address F command value is 0.

(Note 5) The command unit is as follows.

<table>
<thead>
<tr>
<th>Setting unit</th>
<th>#1003 = B</th>
<th>#1003 = C</th>
<th>#1003 = D</th>
<th>#1003 = E</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric system</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.000001</td>
<td>mm</td>
</tr>
<tr>
<td>Inch system</td>
<td>0.0001</td>
<td>0.00001</td>
<td>0.000001</td>
<td>0.0000001</td>
<td>inch</td>
</tr>
</tbody>
</table>

The command unit and command range is the same as the normal F code.
Command the composite feed rate that includes the rotation axis.
The normal F modal value will not change by the address Q command.
The axis will interpolate between the initial speed (F) and end speed (Q) in the CNC according to the linear axis.
If there is no address Q command, interpolation will take place with the same value as the initial feed rate (address F command). (The start point and end point feed rates will be the same.)
A program error (P35) will occur if the address Q command value is 0.
6. Interpolation Functions

6.11 Exponential Interpolation

- Example of uniform helix machining of taper shape

The exponential function relational expression of the linear axis (X) and rotation axis (A) in the G02.3/G03.3 command is defined in the following manner.

\[
X(\theta) = r1 \times (e^{\theta/D} - 1) / \tan(i1) \quad \text{(linear axis (X) movement (1))}
\]

\[
A(\theta) = (-1)^{\omega} \times 360 \times \theta / (2\pi) \quad \text{(rotation axis (A) movement)}
\]

\[D = \tan(j1) / \tan(i1)\]

\[\omega = 0 \quad \text{during forward rotation (G02.3), and} \quad \omega = 1 \quad \text{during reverse rotation (G03.3)}\]

\[\theta \quad \text{is the rotation angle (radian) from the rotation axis' start point}\]

The rotation axis' rotation angle (\(\theta\)) is as follows according to expression (1).

\[\theta = D \times \ln\left\{ \frac{X \times \tan(i1)}{r1} + 1 \right\} \]
Machining example

Example of uniform helix machining of taper shape

\[Z(\theta) = r1 \times (e^{\theta / D} - 1) \times \tan(p1) / \tan(i1) + z0 \] ... (1)

\[X(\theta) = r1 \times (e^{\theta / D} - 1) / \tan(i1) \] ... (2)

\[A(\theta) = (-1)^{\omega} \times 360 \times \theta / (2\pi) \]

\[D = \tan(j1) / \tan(i1) \]

Z(\theta) - Absolute value from zero point of Z axis (axis that linearly interpolates between interval with linear axis (X axis))

X(\theta) - Absolute value from X axis (linear axis) start point

A(\theta) - Absolute value from A axis (rotation axis) start point

r1 - Exponential interpolation constant value (address R command)

r2 - Workpiece left edge radius

x2 - X axis (linear axis) position at workpiece left edge

x1 - X axis (linear axis) end point (address X command)

x0 - X axis (linear axis) start point (Set as "x0 \leq x1" so that workpiece does not interfere with tool)

z1 - End point of Z axis (axis that linearly interpolates between interval with linear axis (X axis)) (address Z command)

z0 - Start point of Z axis (axis that linearly interpolates between interval with linear axis (X axis))

i1 - Taper gradient angle (address I command)

p1 - Slot base gradient angle

j1 - Torsion angle (helix angle) (address J command)

\(\omega \) - Torsion direction (0: Forward rotation, 1: reverse direction)

\(\theta \) - Workpiece rotation angle (radian)

f1 - Initial feed rate (address F command)

q1 - Feed rate at end point (address Q command)

k1 - Insignificant data (address K command)

According to expressions (1) and (2):

\[Z(\theta) = X(\theta) \times \tan(p1) + z0 \] ... (3)

According to expression (3), the slot base gradient angle (p1) is determined from the X axis and Z axis end point positions (x1, z1).

The Z axis movement amount is determined by the slot base gradient angle (p1) and X axis position.

In the above diagram, the exponential function interpolation's constant value (r1) is determined with the following expression using the workpiece left edge radius (r2), X axis start point (x0), X axis position at workpiece left edge (x2) and taper gradient angle (i1).

\[r1 = r2 - \left\{ (x2 - x0) \times \tan(i1) \right\} \]
The taper gradient angle \((i_1)\) and torsion angle \((j_1)\) are each issued with the command address I and J. Note that if the shape is a reverse taper shape, the taper gradient angle \((i_1)\) is issued as a negative value. The torsion direction \((\omega)\) is changed with the G code. (Forward rotation when G02.3 is commanded, negative rotation when G03.3 is commanded) The above settings allow uniform helix machining of a taper shape (or reverse taper shape).

Command and operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Operation</th>
<th>Machining program example</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2.3 (Equivalent to G3.3 if (j_1<0))</td>
<td>(X_{\text{movement direction }}>0)</td>
<td>N10 G28XYZC; N20 G91G0 X100. Z100.; N30 G2.3 X100. Z100. I50. J80. R105. F500.; N40 M30;</td>
</tr>
<tr>
<td>(X_{\text{movement direction }} <0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i1>0</td>
<td></td>
<td>N10 G28XYZC; N20 G91G0 X100. Z200.; N30 G2.3 X100. Z-100. I-50. J80. R105. F500.; N40 M30;</td>
</tr>
<tr>
<td>i1<0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Operation</th>
<th>Machining program example</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3.3 (Equivalent to G2.3 if (j_1>0))</td>
<td>(X_{\text{movement direction }}>0)</td>
<td>N10 G28XYZC; N20 G91G0 X100. Z100.; N30 G3.3 X100. Z100. I50. J80. R105. F500.; N40 M30;</td>
</tr>
<tr>
<td>(X_{\text{movement direction }} <0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i1>0</td>
<td></td>
<td>N10 G28XYZC; N20 G91G0 X-100. Z100.; N30 G3.3 X-100. Z100. I50. J80. R105. F500.; N40 M30;</td>
</tr>
<tr>
<td>i1<0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machining program example

N10 G28XYZC; N20 G91G0 X100. Z100.; N30 G2.3 X100. Z100. I50. J80. R105. F500.; N40 M30;
6. Interpolation Functions

6.11 Exponential Interpolation

Precautions for programming

1. When G02.3/G03.3 is commanded, interpolation takes place with the exponential function relational expression using the start position of the linear axis and rotation axis as 0.

2. Linear interpolation will take place in the following cases, even if in the G02.3/G03.3 mode. The feed rate for linear interpolation will be the F command in that block. (Note that the normal F modal is not updated.)
 - The linear axis designated with the parameter (#1514 expLinax) is not commanded, or the movement amount for that axis is 0.
 - The rotation axis designated with the parameter (#1515 expRotax) is commanded.

3. Tool length offset and nose R compensation cannot be used during the G02.3/G03.3 mode. Note that the tool length offset started before interpolation is started before the G02.3/G03.3 mode will normally continue.

4. A program error (P481) will occur if commands are issued during the polar coordinate interpolation, cylindrical interpolation or milling interpolation modes.

5. Program error (P612) will occur if commands are issued during the mirror image.

6. G02.3/G03.3 will function with feed per minute even during the feed per revolution mode.

7. If the parameter "#1515 expRota" setting is the same axis name as the initial C axis, the axis selected with the C axis selection signal will interpolate as the rotation axis.
7. Feed Functions

7.1 Rapid Traverse Rate

Function and purpose

The rapid traverse rate can be set independently for each axis. The speed range that can be set is 1mm/min to 10000000mm/min. Note that the upper limit speed is limited by the machine specification. Refer to the specifications manual of the machine for the rapid traverse rate settings.

Two paths are available during positioning: the interpolation type where the area from the start point to the end point is linearly interpolated or the non-interpolation type where movement proceeds at the maximum speed of each axis. The type is selected by parameter "#1086 G0Intp". The positioning time is the same in each case.

(Note) Rapid traverse override

Override can be applied by an external input signal for both manual and automatic rapid traverse. There are 2 types which are determined by the PLC specifications.

Type 1: Override in 4 steps: 1%, 25%, 50% and 100%
Type 2: Override in 1% steps from 0% to 100%.

7.2 Cutting Feed Rate

Function and purpose

This function specifies the feed rate of the cutting commands, and a feed amount per spindle rotation or feed amount per minute is commanded. Once commanded, it is stored in the memory as a modal value. The feed rate modal is cleared to zero only when the power is turned ON.

The maximum cutting feed rate is clamped by the cutting feed rate clamp parameter (whose setting range is the same as that for the cutting feed rate).

The cutting feed rate is assigned with address F and 8-digit number. The F8 digits are assigned with a decimal point for a 5-digit integer and a 3-digit fraction. The cutting feed rate is valid for the G01, G02, G03, G33 and G34 commands.

Examples (asynchronous feed)

<table>
<thead>
<tr>
<th>Feed rate</th>
<th>Command</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 X100. Z100. F200 ;</td>
<td>200.0mm/min</td>
<td>F200. or F200.000 gives the same rate.</td>
<td></td>
</tr>
<tr>
<td>F1 X100. Z100. F123.4 ;</td>
<td>123.4mm/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 X100. Z100. F56.789;</td>
<td>56.789mm/min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speed range that can be commanded (when input setting unit is 1μm)

<table>
<thead>
<tr>
<th>Command mode</th>
<th>Feed rate command range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/min</td>
<td>0.001 to 10000000 mm/min</td>
<td></td>
</tr>
<tr>
<td>inch/min</td>
<td>0.0001 to 1000000 inch/min</td>
<td></td>
</tr>
<tr>
<td>°/min</td>
<td>0.001 to 1000000 °/min</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) A program error (P62) results when there is no F command in the first cutting command (G01, G02, G03, G33, G34) after the power has been turned ON.
7. Feed Functions

7.3 F1-digit Feed

Function and purpose

By setting the F1-digit feed parameter, the feed rate which has been set to correspond to the 1-digit number following the F address serves as the command value.

When F0 is assigned, the rapid traverse rate is established and the speed is the same as for G00. (The G modal does not change, but the acceleration/deceleration method follows the rapid traverse setting.)

When F1 to F5 is assigned, the feed rate set to correspond to the command serves as the command value.

The command greater than F6 is considered to be the normal cutting feed rate.

The F1-digit command is valid in a G01, G02, G03, G02.1 or G03.1 modal.

The F1-digit command can also be used for fixed cycle.

Detailed description

The override function of the feed rate which is set in accordance to the F1-digit is performed by using the first manual handle. The feed rate cannot be changed with the 2nd and 3rd handle.

The amount by which the feed rate can be increased or reduced is determined by the following formula.

\[\pm \Delta F = \frac{FM}{K} \times (\pm \text{number of manual handle pulse generator pulses}) \]

Where "+" means increase, and "−" means reduction.

K : Operation constant (This is the number of FM divisions, and is the calculated constant of the increment/decrement speed per scale of the manual handle pulse generator.) This is set with the base specification parameter "#1507 F1_K".

FM : This is the clamp speed of F1 to F5 This is set with the base specification parameter "#1506 F1_FM".

Set the corresponding speed of F1 to F5 with the base specification parameters "#1185 spd_F1" to "#1189 spd_F5" respectively.

The increase/reduction range is from "0" to the set value of the parameter "#1506 F1_FM".

Operation alarm (104) will occur when the feed rate is 0.

(1) Operation method

(a) Make the F1-digit command valid. (Set the base specification parameter "#1079 F1digit" to 1.)

(b) Set FM and K.

Setting range

<table>
<thead>
<tr>
<th>K</th>
<th>1 to 32767</th>
<th>(Base specification parameter "#1507 F1_K")</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>0 to Fmax (mm/min)</td>
<td>(Base specification parameter "#1506 F1_FM")</td>
</tr>
</tbody>
</table>

(c) Set F1 to F5. (Base specification parameter "#1185 spd_F1" to "#1189 spd_F5")

133
(2) Special notes

(a) Use of both the F1-digit command and normal cutting feed rate command is possible when the F1-digit is valid.

(Example 1)

| F0 Rapid traverse rate |
| F1 to F5 F1-digit |
| F6 or more Normal cutting feed rate command |

(b) F1 to F5 are invalid in the G00 mode and the rapid traverse rate is established instead.

(c) If F0 is used in the G02 or G03 mode, a program error (P121) will result.

(d) When F1. to F5. (with decimal point) are assigned, the 1mm/min to 5mm/min direct commands are established instead of the F1-digit command.

(e) When the commands are used with the millimeter or degree units, the feed rate set to correspond to F1 to F5 serves as the assigned speed mm (°)/min.

(f) When the commands are used with inch units, one-tenth of the feed rate set correspond to F1 to F5 serves as the assigned speed inch/min.

(g) The number of manual handle pulses is 1 pulse per scale unit regardless of the scaling factor.

(h) During a F1-digit command, the F1-digit number and F1-digit command signal are output as the PLC signals.

(i) Even if F1-digit feed is commanded during feed per revolution (G95), it will be executed as a normal F command (direct numerical value command).

(3) F1-digit and G commands

(a) 01 group G command in same block as F1-digit commands

<table>
<thead>
<tr>
<th>Executed feed rate</th>
<th>Modal display rate</th>
<th>G modal</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0F0 F0G0</td>
<td>Rapid traverse rate</td>
<td>0</td>
</tr>
<tr>
<td>G0F1 F1G0</td>
<td>Rapid traverse rate</td>
<td>1</td>
</tr>
<tr>
<td>G1F0 F0G1</td>
<td>Rapid traverse rate</td>
<td>0</td>
</tr>
<tr>
<td>G1F1 F1G1</td>
<td>F1 contents</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) F1-digit and unmodal commands may be assigned in the same block. In this case, the unmodal command is executed and at the same time the F1-digit modal command is updated.

(4) Example of arithmetic constant K setting

When the handle scale unit is to be made ±10mm/min.

FM is made 15000 mm/min:

\[\Delta F = 10 = \frac{15000}{K} \]

Therefore, K is 1500.

The feed rate is made F (1 to 5) ±10 (mm/min) by rotating the handle through one scale unit.

(5) Valid manual handle conditions

The manual handle is valid during cutting feed (F1 to F5), automatic start, F1-digit valid and manual handle valid switch ON at the machine side as well as in the MDI mode, tape mode or memory mode provided that the machine lock (machine lock rapid traverse) or dry run status has not been established.

The function cannot be used when the handle specifications have not been provided.
Function and purpose

Using the G95 command, it is possible to assign the feed amount per rotation with an F code. When this command is used, the rotary encoder must be attached to the spindle.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94;</td>
<td>Feed per minute (mm/min) (asynchronous feed)</td>
</tr>
<tr>
<td>G95;</td>
<td>Feed per revolution (mm/rev) (synchronous feed)</td>
</tr>
</tbody>
</table>

The G95 command is a modal command and so it is valid until the G94 command (feed per minute) is next assigned.

(1) The F code command range is as follows. The movement amount per spindle rotation with synchronous feed (feed per revolution) is assigned by the F code and the command range is as shown in the table below.

Metric input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.001mm)</th>
<th>C (0.001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mode</td>
<td>Feed per minute</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td>Command address</td>
<td>F (mm/min)</td>
<td>F (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.00), (1. = 1.00)</td>
<td>1 (= 0.0001), (1. = 1.00)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.01 to 1000000.00</td>
<td>0.0001 to 9999.9999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>D (0.00001mm)</th>
<th>E (0.000001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mode</td>
<td>Feed per minute</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td>Command address</td>
<td>F (mm/min)</td>
<td>F (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.0000), (1. = 1.0000)</td>
<td>1 (= 0.000001), (1. = 1.00)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.0001 to 1000000.0000</td>
<td>0.000001 to 9999.999999</td>
</tr>
</tbody>
</table>
7. Feed Functions

7.4 Feed Per Minute/Feed Per Revolution (Asynchronous Feed/Synchronous Feed)

Inch input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.0001inch)</th>
<th>C (0.00001inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mode</td>
<td>Feed per minute</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td>Command address</td>
<td>F (inch/min)</td>
<td>F (inch/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.000), (1. = 1.000)</td>
<td>1 (= 0.0000001), (1. = 1.000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.001 to 100000.000</td>
<td>0.0000001 to 99.9999999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>D (0.000001inch)</th>
<th>E (0.0000001inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command mode</td>
<td>Feed per minute</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td>Command address</td>
<td>F (inch/min)</td>
<td>F (inch/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.000000), (1. = 1.000000)</td>
<td>1 (= 0.000000001), (1. = 1.000000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.000001 to 100000.000000</td>
<td>0.000000001 to 99.9999999999</td>
</tr>
</tbody>
</table>

(2) The effective speed (actual movement speed of machine) under feed per revolution conditions is given in the following formula (Formula 1).

\[FC = F \times N \times OVR \]

(\text{Formula 1})

Where \(FC \) = Effective rate (mm/min, inch/min) \(F \) = Commanded speed (mm/rev, inch/rev) \(N \) = Spindle rotation speed (r/min) \(OVR \) = Cutting feed override

When a multiple number of axes have been commanded at the same time, the effective rate FC in formula 1 applies in the vector direction of the command.

(Note 1) The effective rate (mm/min or inch/min), which is produced by converting the commanded speed, the spindle rotation speed and the cutting feed override into the feed per minute speed, appears as the FC on the monitor 1. screen of the setting and display unit.

(Note 2) When the above effective rate exceeds the cutting feed clamp rate, it is clamped at that clamp rate.

(Note 3) If the spindle rotation speed is zero when feed per revolution is executed, operation alarm (105) results.

(Note 4) During machine lock processing, the rate will be 1,000,000 mm/min (or 39,370 inch/min, 1,000,000 °/min) regardless of the commanded speed and spindle rotation speed.

(Note 5) Under dry run conditions, feed per minute applies and movement results at the manual feed rate (mm/min or inch/min).

(Note 6) Whether feed per minute (G94) or feed per revolution (G95) is to be established when the power is turned ON or when M02 or M30 is executed can be selected by setting parameter "#1074 I_Sync".
Function and purpose

It has already been mentioned that a machine has a number of control axes. These control axes can be divided into linear axes which control linear movement and rotation axes which control rotary movement. The feed rate is designed to assign the displacement speed of these axes, and the effect exerted on the tool movement speed which poses problems during cutting differs according to when control is exercised over the linear axes or when it is exercised over the rotation axes.

The displacement amount for each axis is assigned separately for each axis by a value corresponding to the respective axis. The feed rate is not assigned for each axis but assigned as a single value. Therefore, when two or more axes are to be controlled simultaneously, it is necessary to understand how this will work for each of the axes involved.

The assignment of the feed rate is described with the following related items.

When controlling linear axes

Even when only one machine axis is to be controlled or there are two or more axes to be controlled simultaneously, the feed rate which is assigned by the F code functions as a linear speed in the tool advance direction.

(Example) When the feed rate is designated as "f" and linear axes (X and Z) are to be controlled

![Diagram of tool movement with equations for feed rates in X and Z axes.]

The feed rate for X axis = \(f \times \frac{X}{\sqrt{x^2 + z^2}} \)

The feed rate for Z axis = \(f \times \frac{Z}{\sqrt{x^2 + z^2}} \)

When only linear axes are to be controlled, it is sufficient to designate the cutting feed in the program. The feed rate for each axis is such that the designated rate is broken down into the components corresponding to the movement amounts.
Note When the circular interpolation function is used and the tool is moved along the circumference of an arc by the linear control axis, the rate in the tool advance direction, or in other words the tangential direction, will be the feedrate designated in the program.

![Diagram](image)

Example When the feed rate is designated as "f" and the linear axes (X and Z) are to be controlled using the circular interpolation function.

In this case, the feed rate of the X and Z axes will change along with the tool movement. However, the combined speed will always be maintained at the constant value "f".

When controlling rotation axes

When rotation axes are to be controlled, the designated feed rate functions as the rotation speed of the rotation axes or, in other words, as an angular speed.

Consequently, the cutting feed in the tool advance direction, or in other words the linear speed, varies according to the distance between the center of rotation and the tool. This distance must be borne in mind when designating the feedrate in the program.

Example When the feed rate is designated as "f" and rotation axis (C) is to be controlled ("f" units = °/min)

![Diagram](image)

In this case, in order to make the cutting feed (linear speed) in the tool advance direction "fc":

\[
fc = f \times \frac{180}{\pi \cdot r}
\]

Therefore, the feed rate to be designated in the program must be:

\[
f = fc \times \frac{\pi \cdot r}{180}
\]
When linear and rotation axes are to be controlled at the same time

The NC unit proceeds in exactly the same way whether linear or rotation axes are to be controlled. When a rotation axis is to be controlled, the numerical value assigned by the coordinate words (C, H) is the angle and the numerical values assignees by the feed rate (F) are all handled as linear speeds. In other words, 1° of the rotation axis is treated as being equivalent to 1mm of the linear axis. Consequently, when both linear and rotation axes are to be controlled simultaneously, the components for each axis of the numerical values assigned by F will be the same as for section (1) above (applying when linear axes are to be controlled). However, although in this case both the size and direction of the speed components based on linear axis control do not vary, the direction of the speed components based on rotation axis control will change along with the tool movement (their size will not change). This means, as a result, that the combined tool advance direction feed rate will vary along with the tool movement.

(Example) When the feed rate is designated as "f" and linear (X) and rotation (C) axes are to be controlled simultaneously

If the X-axis incremental command value is "x" and the C-axis incremental command value is "c":

- Size and direction are fixed for fx.
- Size is fixed for fc but direction varies.
- Both size and direction vary for ft.
X-axis feed rate (linear speed) "fx" and C-axis feed rate (angular speed) "ω" are expressed as:

\[fx = f \times \frac{x}{\sqrt{x^2 + c^2}} \]
\[\omega = f \times \frac{c}{\sqrt{x^2 + c^2}} \]

Linear speed "fc" based on C-axis control is expressed as:

\[fc = \omega \times \frac{\pi \times r}{180} \]

If the speed in the tool advance direction at start point P, is "ft" and the component speeds in the X-axis and Y-axis directions are "ftx" and "fty" respectively. Then these can be expressed as:

\[ftx = -rsin \left(\frac{\pi}{180} \theta \right) \times \frac{\pi}{180} \omega + fx \]
\[fty = -rcos \left(\frac{\pi}{180} \theta \right) \times \frac{\pi}{180} \omega \]

Where \(r \) is the distance between center of rotation and tool (in mm units), and \(\theta \) is the angle between the P1 point and the X axis at the center of rotation (in units °). The combined speed "ft" according to formulae (1), (2), (3), (4) and (5) is:

\[ft = \sqrt{ftx^2 + fty^2} \]

\[= f \times \frac{x^2 - x \times c \times rsin \left(\frac{\pi}{180} \theta \right) \pi}{x^2 + c^2} + \left(\frac{\pi \times r \times c}{180} \right)^2 \]

Consequently, feed rate "f" designated by the program must be as follows:

\[f = \frac{ft \times \sqrt{x^2 + c^2}}{\sqrt{x^2 - x \times c \times rsin \left(\frac{\pi}{180} \theta \right) \pi + \left(\frac{\pi \times r \times c}{180} \right)^2}} \]

"ft" in formula (6) is the speed at the P1 point and the value of \(\theta \) changes as the C axis rotates, which means that the value of "ft" will also change. Consequently, in order to keep the cutting feed "ft" as constant as possible, the angle of rotation which is designated in one block must be reduced to as low as possible and the extent of the change in the \(\theta \) value must be minimized.
F7-digit or E8-digit commands for thread leads can be issued for the thread cutting mode (G33, G34, G76, G78 commands). The thread lead command range is 0.0001 to 999.9999mm/rev (F7 digits) or 0.0001 to 999.99999 mm/rev (E8 digits) (with input unit of µm).

Thread Cutting Metric Input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.001mm)</th>
<th>C (0.0001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (mm/rev)</td>
<td>E (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (=1.000), (1.=1.000)</td>
<td>1 (= 1.000000), (1.=1.000000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.001 to 999.999</td>
<td>0.00001 to 999.99999</td>
</tr>
</tbody>
</table>

Thread Cutting Inch Input

<table>
<thead>
<tr>
<th>Input setting unit</th>
<th>B (0.0001inch)</th>
<th>C (0.0001inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least command increment</td>
<td>1 (=1.0000), (1.=1.0000)</td>
<td>1 (= 1.0000000), (1.=1.0000000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.0001 to 99.999</td>
<td>0.000001 to 39.3700787</td>
</tr>
</tbody>
</table>

Input setting unit

<table>
<thead>
<tr>
<th>D (0.00001mm)</th>
<th>E (0.000001mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command address</td>
<td>F (mm/rev)</td>
</tr>
<tr>
<td>Least command increment</td>
<td>1 (= 1.000000), (1.=1.000000)</td>
</tr>
<tr>
<td>Command range</td>
<td>0.0001 to 999.99999</td>
</tr>
</tbody>
</table>
7.7 Automatic Acceleration/Deceleration

Function and purpose

The rapid traverse and manual feed acceleration/deceleration pattern is linear acceleration and linear deceleration. Time constant T_R can be set independently for each axis using parameters in 1ms steps from 1 to 500ms. The cutting feed (not manual feed) acceleration/deceleration pattern is exponential acceleration/deceleration. Time constant T_c can be set independently for each axis using parameters in 1ms steps across a range from 1 to 500ms. (Normally, the same time constant is set for all axes.)

![Diagram of acceleration/deceleration patterns](image_url)

Rapid traverse acceleration/deceleration pattern
($T_R =$ Rapid traverse time constant)
($T_d =$ Deceleration check time)

Cutting feed acceleration/deceleration pattern
($T_c =$ Cutting feed time constant)

With rapid traverse and manual feed, the following block is executed after the command pulse of the present block has become "0" and the tracking error of the acceleration/deceleration circuit has become "0". However, with cutting feed, the following block is executed as soon as the command pulse of the present block becomes "0" although an external signal (error detection) can detect that the tracking error of the acceleration/deceleration circuit has reached "0" and the following block can be executed. When the in-position check has been made valid (selected by parameter "#1193 inpos") during the deceleration check, it is first confirmed that the tracking error of the acceleration/deceleration circuit has reached "0", then it is checked that the position deviation is less than the parameter setting value "#2204 SV024", and finally the following block is executed. It depends on the machine as to whether the error detection function can be activated by a switch or M function and so reference should be made to the instructions issued by the machine tool builder.
7.8 Rapid Traverse Constant Inclination Acceleration/Deceleration

Function and purpose

This function performs acceleration and deceleration at a constant inclination during linear acceleration/deceleration in the rapid traverse mode. Compared to the method of acceleration/deceleration after interpolation, the constant inclination acceleration/deceleration method makes for improved cycle time.

Detailed description

(1) Rapid traverse constant inclination acceleration/deceleration are valid only for a rapid traverse command. Also, this function is effective only when the rapid traverse command acceleration/deceleration mode is linear acceleration and linear deceleration.

(2) The acceleration/deceleration patterns in the case where rapid traverse constant inclination acceleration/deceleration are performed are as follows.

<When the interpolation distance is longer than the acceleration and deceleration distance>

\[
\theta = \tan^{-1} \left(\frac{\text{rapid}}{\text{Ts}} \right)
\]

\[
T = \frac{L}{\text{rapid}} + \text{Ts}
\]

\[
\text{Td} = \text{Ts} + (0 \sim 1.7 \text{ ms})
\]

<When the interpolation distance is shorter than the acceleration and deceleration distance>

\[
\theta = \tan^{-1} \left(\frac{\text{rapid}}{\text{Ts}} \right)
\]

\[
T = 2 \times \sqrt{\frac{\text{Ts} \times L}{\text{rapid}}}
\]

\[
\text{Td} = \frac{T}{2} + (0 \sim 1.7 \text{ ms})
\]

\[
\theta = \tan^{-1} \left(\frac{\text{rapid}}{\text{Ts}} \right)
\]
(3) When 2-axis simultaneous interpolation (linear interpolations) is performed during rapid traverse constant inclination acceleration and deceleration, the acceleration (deceleration) time is the longest value of the acceleration (deceleration) times determined for each axis by the rapid traverse rate of commands executed simultaneously, the rapid traverse acceleration and deceleration time constant, and the interpolation distance, respectively. Consequently, linear interpolation is performed even when the axes have different acceleration and deceleration time constants.

<2-axis simultaneous interpolation (When linear interpolation is used, Tsx < Tsz, and Lx ≠ Lz)>

(4) The program format of G0 (rapid traverse command) when rapid traverse constant inclination acceleration/deceleration are executed is the same as when this function is invalid (time constant acceleration/deceleration).

(5) This function is valid only for G0 (rapid traverse).
7.9 Speed Clamp

Function and purpose

This function exercises control over the actual cutting feed rate in which override has been applied to the cutting feed rate command so that the speed clamp value which has been preset independently for each axis is not exceeded.

(Note) Speed clamping is not applied to synchronous feed and thread cutting.
7. Feed Functions

7.10 Exact Stop Check; G09

Function and purpose

In order for roundness to be prevented during corner cutting and for machine shock to be alleviated when the tool feed rate changes suddenly, there are times when it is desirable to start the commands in the following block once the in-position state after the machine has decelerated and stopped or the elapsing of the deceleration check time has been checked. The exact stop check function is designed to accomplish this purpose.

Whether to control with the deceleration check time or with the in-position state can be selected with the parameter. (Refer to the section "7.12 Deceleration check")

The in-position width is set into parameter the servo parameter "#2224 sv024" or "#2077 G0inps", "#2078 G1inps".

Command format

G09 G01 (G02, G03) ;

The exact stop check command G09 has an effect only with the cutting command (G01 to G03) in its particular block.

Example of program

<table>
<thead>
<tr>
<th>N001 G09 G01 X100.000 F150 ;</th>
<th>The commands in the following block are started once the deceleration check time or in-position state has been checked after the machine has decelerated and stopped.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N002 Z100.000 ;</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Exact stop check result

Solid line indicates speed pattern with G09 command. Broken line indicates speed pattern without G09 command.
Detailed description

(1) With continuous cutting feed

![Continuous cutting feed command](image1)

In Figs. 2 and 3:

\[
Ts = \text{Cutting feed acceleration/deceleration time constant}
\]

\[
Lc = \text{In-position width}
\]

As shown in Fig. 3, the in-position width "Lc" can be set into the servo parameter "#2224 SV024" as the remaining distance (shaded area in Fig. 3) of the previous block when the next block is started.

The in-position width is designed to reduce the roundness at the workpiece corners to below the constant value.

To eliminate corner roundness, set the value as small as possible to servo parameter and perform an in-position check or assign the dwell command (G04) between blocks.

(2) With cutting feed in-position check

![Block joint with cutting feed in-position check](image2)
7. Feed Functions

7.10 Exact Stop Check

(3) With deceleration check

(a) With linear acceleration/deceleration

![Diagram of linear acceleration/deceleration]

Ts : Acceleration/deceleration time constant
Td : Deceleration check time
Td = Ts + (0 to 14ms)

(b) With exponential acceleration/deceleration

![Diagram of exponential acceleration/deceleration]

Ts : Acceleration/deceleration time constant
Td : Deceleration check time
Td = 2 × Ts + (0 to 14ms)

(c) With exponential acceleration/linear deceleration

![Diagram of exponential acceleration/linear deceleration]

Ts : Acceleration/deceleration time constant
Td : Deceleration check time
Td = 2 × Ts + (0 to 14ms)

The time required for the deceleration check during cutting feed is the longest among the cutting feed deceleration check times of each axis determined by the cutting feed acceleration/deceleration time constants and by the cutting feed acceleration/deceleration mode of the axes commanded simultaneously.

(Note 1) To execute exact stop check in a fixed cycle cutting block, insert command G09 into the fixed cycle subprogram.
7. Feed Functions

7.11 Exact Stop Check Mode ; G61

Function and purpose

Whereas the G09 exact stop check command checks the in-position status only for the block in which the command has been assigned, the G61 command functions as a modal. This means that deceleration will apply at the end points of each block to all the cutting commands (G01 to G03) subsequent to G61 and that the in-position status will be checked. G61 is released by automatic corner override (G62), tapping mode (G63), or cutting mode (G64).

Command format

G61 ;

In-position check is executed in the G61 block, and thereafter, the in-position check is executed at the end of the cutting command block is executed until the check mode is canceled.
7.12 Deceleration Check

Function and purpose

The deceleration check is a function that determines the method of the check at the completion of the axis movement block's movement. The deceleration check includes the in-position check and commanded speed check method. The G0 and G1 deceleration check method combination can be selected. (Refer to section "Deceleration check combination"). With this function, the deceleration check in the reverse direction of G1 → G0 or G1 → G1 can be changed by changing the parameter setting.

(1) **Types of deceleration check**

<table>
<thead>
<tr>
<th>Commanded speed check</th>
<th>In-position check</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the commanded speed check, the completion of deceleration is judged when the command to the motor is completed.</td>
<td>With the in-position check, the completion of deceleration is judged when the motor moves to the in-position width designated with the parameter.</td>
</tr>
</tbody>
</table>
(2) Designating deceleration check

The deceleration check by designating a parameter includes "deceleration check specification type 1" and "deceleration check specification type 2". The setting is selected with the parameter "#1306 InpsTyp".

(a) Deceleration check specification type 1 ("#1306 InpsTyp" = 0)

The G0 and G1 deceleration check method can be selected with the base specification parameter deceleration check method 1 (#1193 inpos) and "deceleration check method 2" (#1223 aux07/bit1).

<table>
<thead>
<tr>
<th>Parameter (inpos (#1193))</th>
<th>Rapid traverse command</th>
<th>Other than rapid traverse command (G1 : other than G0 command)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0→XX (G0+G9→XX)</td>
<td>AUX07/BIT-1 (##1223/BIT-1)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Command deceleration check</td>
<td>Command deceleration check</td>
</tr>
<tr>
<td>1</td>
<td>In-position check</td>
<td>No deceleration check</td>
</tr>
</tbody>
</table>

(Note 1) XX expresses all commands.

(Note 2) "#1223 aux07" is the part system common parameter.

(b) Deceleration check specification type 2 ("#1306 InpsTyp" = 1)

Rapid traverse and cutting in-position are designated with the "#1193 inpos" parameter.

<table>
<thead>
<tr>
<th>Parameter (#1193 inpos)</th>
<th>Command block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>G0</td>
</tr>
<tr>
<td>Command deceleration check</td>
<td>Command deceleration check</td>
</tr>
<tr>
<td>1</td>
<td>In-position check</td>
</tr>
</tbody>
</table>

(Note 1) "#1193 inpos" is the parameter per part system.

(Note 2) "G0" means the rapid traverse, and "G1" means the cutting feed.
7. Feed Functions

7.12 Deceleration Check

7.12.1 G1 → G0 Deceleration Check

Detailed description

(1) In G1 → G0 continuous blocks, the parameter "#1502 G0lpfg" can be changed to change the deceleration check in the reverse direction.

<table>
<thead>
<tr>
<th>G0lpfg: 0</th>
<th>G0lpfg: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same direction</td>
<td>Reverse direction</td>
</tr>
<tr>
<td>G0lpfg: 0</td>
<td>G0lpfg: 1</td>
</tr>
<tr>
<td>G1 G0</td>
<td>G1 G0</td>
</tr>
<tr>
<td>G1</td>
<td>G1</td>
</tr>
<tr>
<td>G0</td>
<td>G0</td>
</tr>
<tr>
<td>The acceleration rate is excessive due to the composite speed of G1 and G0.</td>
<td>Command deceleration</td>
</tr>
</tbody>
</table>

Example of program

When there is a deceleration check in the movement of several axes:

(1) **G91 G1 X100. Z100. F4000 ; G0 X-100. Z120. ;** A deceleration check is carried out, because the X axis moves in the reverse direction in the program above.

(2) **G91 G1 X100. Z-100. F4000 ; G0 X80. Z100. ;** A deceleration check is carried out, because the Z axis moves in the reverse direction in the program above.

(3) **G90 G1 X100. Z100. F4000 ; G0 X80. Z120. ;** *(When the program start position is X0 Z0)* A deceleration check is carried out, because the X axis moves in the reverse direction in the program above.

(4) **G91 G1 X100. Z100. F4000 ; G0 X100. Z100. ;** A deceleration check is not carried out, because both the X axis and the Z axis move in the same direction in the program above.

(5) **G91 G1 X100. Z80. F4000 ; G0 X80. ;** A deceleration check is not carried out, because the X axis moves in the same direction, and there is no Z axis movement command in the program above.
7.12 Deceleration Check

7.12.2 G1 → G1 Deceleration Check

Detailed description

(1) In G1 → G1 continuous blocks, the parameter "#1503 G1Ipfg" can be changed to change the deceleration check of the reverse direction.

<table>
<thead>
<tr>
<th>Same direction</th>
<th>Reverse direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1Ipfg: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1Ipfg: 0

G1Ipfg: 1

![Diagram](image3) ![Diagram](image4)

Command deceleration

Example of program

When there is a deceleration check in the movement of several axes:

1. **G91 G1 X100. Z100. F4000 ;**
 - G1 X-100. Z120. ;
 - A deceleration check is carried out, because the X axis moves in the reverse direction in the program above.

2. **G91 G1 X100. Z-100. F4000 ;**
 - G1 X80. Z100. ;
 - A deceleration check is carried out, because the Z axis moves in the reverse direction in the program above.

3. **G90 G1 X100. Z100. F4000 ;**
 - G1 X80. Z120. ;
 - (When the program start position is X0 Z0)
 - A deceleration check is carried out, because the X axis moves in the reverse direction in the program above.

4. **G91 G1 X100. Z100. F4000 ;**
 - G1 X100. Z100. ;
 - A deceleration check is not carried out, because both the X axis and the Z axis move in the same direction in the program above.

5. **G91 G1 X100. Z80. F4000 ;**
 - G1 X80. ;
 - A deceleration check is not carried out, because the X axis moves in the same direction, and there is no Z axis movement command in the program above.
7.13 Automatic Corner Override ; G62

Function and purpose

With this command, when cutting with tool radius compensation, an override is automatically applied to the feed rate to reduce the load during inside corner cutting or during inside cutting of automatic corner R.
Automatic corner override is valid until the nose R compensation cancel (G40), exact stop check mode (G61), tapping mode (G63), or cutting mode (G64) command is issued.

Command format

G62 ;

Machining inside corners

When cutting an inside corner as in Fig. 1, the machining allowance amount increases and a greater load is applied to the tool. To remedy this, override is applied automatically within the corner set range, the feed rate is reduced, the increase in the load is reduced and cutting is performed effectively.
However, this function is valid only when finished shapes are programmed.

\[\theta \] : Max. angle at inside corner
\[Ci \] : Deceleration range (IN)

Fig. 1
(1) **Operation**

(a) When automatic corner override is not to be applied:

When the tool moves in the order of (1) → (2) → (3) in Fig. 1, the machining allowance at (3) increases by an amount equivalent to the area of shaded section S and so the tool load increases.

(b) When automatic corner override is to be applied:

When the inside corner angle θ in Fig. 1 is less than the angle set in the parameter, the override set into the parameter is automatically applied in the deceleration range C_i.

(2) **Parameter setting**

The following parameters are set into the machining parameters:

<table>
<thead>
<tr>
<th>#</th>
<th>Parameter</th>
<th>Parameter setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>#8007</td>
<td>OVERRIDE</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>#8008</td>
<td>MAX. ANGLE</td>
<td>0 to 180°</td>
</tr>
<tr>
<td>#8009</td>
<td>DSC. ZONE</td>
<td>0 to 99999.999mm or 0 to 3937.000 inches</td>
</tr>
</tbody>
</table>

Refer to the Instruction Manual for details on the setting method.

Automatic corner R

(1) The override set in the parameter is automatically applied at the deceleration range C_i and corner R section for inside offset with automatic corner R. (There is no angle check.)
Application example

(1) Linear - linear corner

The override set in the parameter is applied at Ci.

(2) Linear - arc (outside offset) corner

The override set in the parameter is applied at Ci.

(3) Arc (inside offset) - linear corner

The override set in the parameter is applied at Ci.

(Note) The deceleration range Ci where the override is applied is the length of the arc with an arc command.
7. Feed Functions

7.13 Automatic Corner Override

(4) Arc (inside offset) - arc (outside offset) corner

![Diagram of arc (inside offset) - arc (outside offset) corner]

The override set in the parameter is applied at Ci.

Relation with other functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Override at corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting feed override</td>
<td>Automatic corner override is applied after cutting feed override has been applied.</td>
</tr>
<tr>
<td>Override cancel</td>
<td>Automatic corner override is not canceled by override cancel.</td>
</tr>
<tr>
<td>Speed clamp</td>
<td>Valid after automatic corner override</td>
</tr>
<tr>
<td>Dry run</td>
<td>Automatic corner override is invalid.</td>
</tr>
<tr>
<td>Synchronous feed</td>
<td>Automatic corner override is applied to the synchronous feed rate.</td>
</tr>
<tr>
<td>Thread cutting</td>
<td>Automatic corner override is invalid.</td>
</tr>
<tr>
<td>G31 skip</td>
<td>Program error results with G31 command during nose R compensation.</td>
</tr>
<tr>
<td>Machine lock</td>
<td>Valid</td>
</tr>
<tr>
<td>Machine lock high speed</td>
<td>Automatic corner override is invalid.</td>
</tr>
<tr>
<td>G00</td>
<td>Invalid</td>
</tr>
<tr>
<td>G01</td>
<td>Valid</td>
</tr>
<tr>
<td>G02, G03</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Precautions

(1) Automatic corner override is valid only in the G01, G02, and G03 modes; it is not effective in the G00 mode. When switching from the G00 mode to the G01 (or G02 or G03) mode at a corner (or vice versa), automatic corner override will not be applied at that corner in the G00 block.

(2) Even if the automatic corner override mode is entered, the automatic corner override will not be applied until the nose R compensation mode is entered.

(3) Automatic corner override will not be applied on a corner where the nose R compensation is started or canceled.

(4) Automatic corner override will not be applied on a corner where the nose R compensation I, K vector command is issued.
(5) Automatic corner override will not be applied when intersection calculation cannot be executed.
Intersection calculation cannot be executed in the following case.
(a) When the movement command block does not continue for four or more times.

(6) The deceleration range with an arc command is the length of the arc.

(7) The inside corner angle, as set by parameter, is the angle on the programmed path.

(8) Automatic corner override will not be applied when the maximum angle in the parameter is set to 0 or 180.

(9) Automatic corner override will not be applied when the override in the parameter is set to 0 or 100.
7.14 Tapping Mode; G63

Function and purpose

The G63 command allows the control mode best suited for tapping to be entered, as indicated below:

1. Cutting override is fixed at 100%.
2. Deceleration commands at joints between blocks are invalid.
3. Feed hold is invalid.
4. Single block is invalid.
5. In-tapping mode signal is output.

G63 is released by the exact stop check mode (G61), automatic corner override (G62), or cutting mode (G64) command.

Command format

G63 ;

7.15 Cutting Mode; G64

Function and purpose

The G64 command allows the cutting mode in which smooth cutting surfaces are obtained to be established. Unlike the exact stop check mode (G61), the next block is executed continuously with the machine not decelerating and stopping between cutting feed blocks in this mode.

G64 is released by the exact stop check mode (G61), high-accuracy control mode (G61.1), automatic corner override (G62), or tapping mode (G63) command.

This cutting mode is established in the initialized status.

Command format

G64 ;
8. Dwell

The G04 command can delay the start of the next block.

8.1 Per-second Dwell ; G04

Function and purpose

The machine movement is temporarily stopped by the program command to make the waiting time state. Therefore, the start of the next block can be delayed. The waiting time state can be canceled by inputting the skip signal.

Command format

\[
\text{G04 X/U__ ; or G04 P__ ;}
\]

X, P, U Dwell time

The input command increment for the dwell time depends on the parameter. In addition to the address P and X, the address U (actually, the address corresponding to the X-axis designated with the #1014 incax) can be used. Note that this is invalid when the #1076 AbsInc is set to 0.

Detailed description

(1) When designating the dwell time with X or U, the decimal point command is valid.

(2) When designating the dwell time with P, the availability of the decimal point command can be selected with the parameter (#8112). When the decimal point command is invalid in the parameter setting, the command below the decimal point issued with P is ignored.

(3) When the decimal point command is valid or invalid, the dwell time command range is as follows.

<table>
<thead>
<tr>
<th>Command range when the decimal point command is valid</th>
<th>Command range when the decimal point command is invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 99999.999 (s)</td>
<td>0 to 99999999 (ms)</td>
</tr>
</tbody>
</table>

(4) The dwell time setting unit applied when there is no decimal point can be made 1s by setting 1 in the parameter #1078 Decpt2. This is effect only for X, U and P for which the decimal command is valid.

(5) When a cutting command is in the previous block, the dwell command starts calculating the dwell time after the machine has decelerated and stopped. When it is commanded in the same block as an M, S, T or B command, the calculation starts simultaneously.

(6) The dwell is valid during the interlock.

(7) The dwell is valid even for the machine lock.
The dwell can be canceled by setting the parameter #1173 dwlskp beforehand. If the set skip signal is input during the dwell time, the remaining time is discarded, and the following block will be executed.

Example of program

<table>
<thead>
<tr>
<th>Command</th>
<th>Dwell time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#1078 Decpt2 = 0</td>
</tr>
<tr>
<td></td>
<td>DECIMAL PNT-N</td>
</tr>
<tr>
<td>G04 X500 ;</td>
<td>0.5</td>
</tr>
<tr>
<td>G04 X5000 ;</td>
<td>5</td>
</tr>
<tr>
<td>G04 X5. ;</td>
<td>5</td>
</tr>
<tr>
<td>G04 X#100 ;</td>
<td>1000</td>
</tr>
<tr>
<td>G04 U500 ;</td>
<td>0.5</td>
</tr>
<tr>
<td>G04 U5000 ;</td>
<td>5</td>
</tr>
<tr>
<td>G04 U5. ;</td>
<td>5</td>
</tr>
<tr>
<td>G04 U#100 ;</td>
<td>1000</td>
</tr>
<tr>
<td>G04 P5000 ;</td>
<td>5</td>
</tr>
<tr>
<td>G04 P12.345 ;</td>
<td>0.012</td>
</tr>
<tr>
<td>G04 P#100 ;</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) The above examples are the results under the following conditions.
- Input setting unit 0.001mm or 0.0001inch
- #100 = 1000 ;

(2) "DECIMAL PNT-P" is a control parameter (#8112).

(3) If the input setting unit is 0.0001inch, the X before G04 will be multiplied by 10. For example for "X5. G04 ;", the dwell time will be 50 seconds.

Precautions and restrictions

(1) When using this function, command X or U after G04 in order to make sure that the dwell is based on X or U.
9. Miscellaneous Functions

9.1 Miscellaneous Functions (M8-digits BCD)

Function and purpose

The miscellaneous (M) functions are also known as M functions, and they include such numerically controlled machine functions as spindle forward and reverse rotation, operation stop and coolant ON/OFF. These functions are designated by an 8-digit number (0 to 99999999) following the address M with this controller, and up to 4 groups can be commanded in a single block.

Example

G00 Xx Mm1 Mm2 Mm3 Mm4 ;

When five or more commands are issued, only the last four will be valid.
The output signal is an 8-digit BCD code and start signal.
The eight commands of M00, M01, M02, M30, M96, M97, M98 and M99 are used as auxiliary commands for specific objectives and so they cannot be used as general auxiliary commands. This therefore leaves 92 miscellaneous functions which are usable as such commands. Reference should be made to the instructions issued by the machine tool builder for the actual correspondence between the functions and numerical values.

When the M00, M01, M02, and M30 functions are used, the next block is not read into the pre-read buffer due to pre-read inhibiting.

If the M function is designated in the same block as a movement command, the commands may be executed in either of the following two orders. The machine specifications determine which sequence applies.

1. The M function is executed after the movement command.
2. The M function is executed at the same time as the movement command.

Which of these sequences actually applies depends on the machine specifications.

Processing and completion sequences are required in each case for all M commands except M96, M97, M98 and M99. The 8 M functions used for specific purposes will now be described.

Program stop : M00

When the tape reader has read this function, it stops reading the next block. As far as the NC system's functions are concerned, only the tape reading is stopped. Whether such machine functions as the spindle rotation and coolant supply are stopped or not differs according to the machine in question.

Re-start is enabled by pressing the automatic start button on the machine operation board.

Whether resetting can be initiated by M00 depends on the machine specifications.
9. Miscellaneous Functions

9.1 Miscellaneous Functions (M8-digits BCD)

Optional stop : M01

If the tape reader reads the M01 command when the optional stop switch on the machine operation board is ON, it will stop and the same effect as with the M00 function will apply. If the optional stop switch is OFF, the M01 command is ignored.

(Example)

```
{ N10 G00 X1000 ;
  N11 M01 ;
  N12 G01 X2000 Z3000 F600 ;
}
```

Optional stop switch command is ignored.

Steps at N11 when switch is ON
Next command (N12) is executed without stopping at N11 when switch is OFF

Program end : M02 or M30

This command is normally used in the final block for completing the machining, and so it is primarily used for tape rewinding. Whether the tape is actually rewound or not depends on the machine specifications. Depending on the machine specifications, the system is reset by the M02 or M30 command upon completion of tape rewinding and any other commands issued in the same block. (Although the contents of the command position display counter are not cleared by this reset action, the modal commands and compensation amounts are canceled.)

The next operation stops when the rewinding operation is completed (the in-automatic operation lamp goes off). To restart the unit, the automatic start button must be pressed or similar steps must be taken.

(Note 1) Independent signals are also output respectively for the M00, M01, M02 and M30 commands and these outputs are each reset by pressing the reset key.

(Note 2) M02 or M30 can be assigned by manual data input (MDI). At this time, commands can be issued simultaneously with other commands just as with the tape.

Macro interruption : M96, M97

M96 and M97 are M codes for user macro interruption control. The M code for user macro interruption control is processed internally, and is not output externally. To use M96 and M97 as a miscellaneous function, change the setting to another M code with the parameter (#1109 subs_M and #1110 M96_M, #1111 M97_M).

Subprogram call/completion : M98, M99

These commands are used as the return instructions from branch destination subprograms and branches to subprograms. M98 and M99 are processed internally and so M code signals and strobe signals are not output.

Internal processing with M00/M01/M02/M30 commands

Internal processing suspends pre-reading when the M00, M01, M02 or M30 command has been read. Other tape rewinding operations and the initialization of modals by resetting differ according the machine specifications.
9.2 2nd Miscellaneous Functions (A8-digits, B8-digits or C8-digits)

Function and purpose

These serve to assign the indexing table positioning and other such functions. In this controller, they are assigned by an 8-digit number from 0 to 99999999 following address A, B or C. The machine tool builder determines which codes correspond to which positions.

If the A, B or C function is designated in the same block as a movement command, the commands may be executed in either of the following two orders. The machine specifications determine which sequence applies.

1. The A, B or C function is executed after the movement command.
2. The A, B or C function is executed simultaneously with the movement command.

Processing and completion sequences are required for all 2nd miscellaneous functions.

The table below given the various address combinations. It is not possible to use an address which is the same for the axis name of an additional axis and 2nd miscellaneous function.

<table>
<thead>
<tr>
<th>2nd miscellaneous function</th>
<th>Additional axis name</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

(Note) When "A" has been assigned as the 2nd miscellaneous function address, the following commands cannot be used.

1. Linear angle commands (\,A can be used.)
2. Geometric I commands
3. Deep hole drilling cycle 2 commands
9. Miscellaneous Functions

9.3 Index Table Indexing

Function and purpose

Index table indexing can be carried out by setting the index axis. The indexing command only issues the indexing angle to the axis set for indexing. It is not necessary to command special M codes for table clamping and unclamping, thus simplifying the program.

Detailed description

The index table index function carries out operations as follows.

(Example) G00 B90;

The axis that was designated as the index axis with parameter "#2076 index x".

(1) Set the "index_x" parameter (#2076) for the axis in which index table indexing will be carried out to "1".

(2) The movement command (either absolute or incremental) for the selected axis is executed with the program command.

(3) An unclamp process are carried out before the axis movement.

(4) The commanded axis movement starts after the unclamp process completes.

(5) The clamp process is carried out after the movement is completed.

(6) The next block is processed after the unclamp process completes.

<Operation time chart>

<table>
<thead>
<tr>
<th>Program command</th>
<th>G00 B90 ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclamp command</td>
<td></td>
</tr>
<tr>
<td>Unclamp completed</td>
<td></td>
</tr>
<tr>
<td>B axis movement</td>
<td></td>
</tr>
<tr>
<td>T10 FIN WAIT 0800</td>
<td></td>
</tr>
<tr>
<td>T10 FIN WAIT 0800</td>
<td></td>
</tr>
</tbody>
</table>
(1) Several axes can be set as index table indexing axes.

(2) The movement speed of index table indexing axes follows the feed rate of the modal (G0/G1) at that time.

(3) The unclamp process for the indexing axes is also issued when the index table indexing axes are commanded in the same block as other axes. Thus, the movement of other axes commanded in the same block is not carried out until the unclamp process completes. Note that the movement of other axes commanded in the same block is carried out for non-interpolation commands.

(4) Index table indexing axes are used as normal rotation axes, but this function performs an unclamp process even for linear axes.

(5) If some error that makes unclamp command OFF occurs during indexing axis movement in automatic operation, the unclamp state will be remained, and the indexing axis will execute a deceleration stop. Other axes commanded in the same block will also execute a deceleration stop, except for non-interpolation commands.

(6) If the axis movement is interrupted by an interlock, etc., during indexing axis movement, the unclamp state will be remained.

(7) The clamp and unclamp process are not executed when the movement commands of the index table indexing axis are continuous. Note that the clamp and unclamp process are executed even when the movement commands are continued during single block operation.

(8) Make sure that the command position is at a position where clamping is possible.
10. Spindle Functions

10.1 Spindle Functions (S2-digits BCD) During Standard PLC Specifications

Function and purpose

The spindle functions are also known simply as S functions and they assign the spindle rotation speed. In this controller, they are assigned with a 2-digit number following the address S ranging from 0 to 99, and 100 commands can be specified. Note that how many of these 100 types can be used, and which value corresponds to the actual rotation speed differs for each machine. Refer to the Instruction Manual issued by the machine tool builder for more details. When a number exceeding 2 digits is assigned, the last 2 digits will be valid.

If the S function is designated in the same block as a movement command, the commands may be executed in either of the following two orders. The machine specifications determine which sequence applies.

1. The S function is executed after the movement command.
2. The S function is executed simultaneously with the movement command.

Processing and completion sequences are required for all S commands from S00 to S99.

10.2 Spindle Functions (S6-digits Analog)

Function and purpose

When the S6-digits function is added, a 6-digit value (0 to 999999) can be designated after the S code. Other commands conform to the S2-digits function. Always select S command binary output when using this function.

In this function, the appropriate gear signal, voltage corresponding to the commanded spindle rotation speed, and start signal are output by the numeric command of the six digits following the S code.

Processing and completion sequences are required for all S commands.

The analog signal specifications are given below.

1. Output voltage............ 0 to 10V
2. Resolution.................. 1/4096 (2^{-12})
3. Load conditions.......... 10kΩ
4. Output impedance........ 220Ω

If the parameters for up to 4 gear stages are set in advance, the gear stage corresponding to the S command will be selected and the gear signal will be output. The analog voltage is calculated in accordance with the input gear signal.

1. Parameters corresponding to individual gears........ Limit rotation speed, maximum rotation speed, shift rotation speed and tapping rotation speed
2. Parameters corresponding to all gears............ Orientation rotation speed, minimum rotation speed
10.3 Spindle Functions (S8-digits)

Function and purpose

These functions are assigned with an 8-digit (0 to 99999999) number following the address S, and one group can be assigned in one block.
The output signal is a 32-bit binary data with sign and start signal. Processing and completion sequences are required for all S commands.
10.4 Constant Surface Speed Control; G96, G97

Function and purpose

These commands automatically control the spindle rotation speed in line with the changes in the radius coordinate values as cutting proceeds in the diametrical direction, and they serve to keep the cutting point speed constant during the cutting.

Command format

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G96 S__ P__;</td>
<td>Constant surface speed ON</td>
</tr>
<tr>
<td>S__</td>
<td>Surface speed</td>
</tr>
<tr>
<td>P__</td>
<td>Designation of constant surface speed control axis</td>
</tr>
</tbody>
</table>

Detailed description

1. The constant surface speed control axis is set by parameter (#1181 G96_ax).
 - 0: Fixed at 1st axis (P command invalid)
 - 1: 1st axis
 - 2: 2nd axis
 - 3: 3rd axis

2. When the above-mentioned parameter is not zero, the constant surface speed control axis can be designated by address P.
 - **Example** When G96_ax = 1

<table>
<thead>
<tr>
<th>Program</th>
<th>Constant surface speed control axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G96 S100 ;</td>
<td>1st axis</td>
</tr>
<tr>
<td>G96 S100 P3 ;</td>
<td>3rd axis</td>
</tr>
</tbody>
</table>

3. Example of selection program and operation

   ```
   G90
   G96 G01 X50 Z100 S200 ;
   }
   G97 G01 X50 Z100 F300 S500 ;
   }
   M02 ;
   ```

 - The spindle rotation speed is controlled so that the surface speed is 200 m/min.
 - The spindle rotation speed is controlled to 500 r/min.

4. The spindle subject to control is determined with the following.
 - For multiple-spindle control I (#1300 ext36 bit0 = 0), the spindle is determined by the spindle selection command in the G group 20.
 - For multiple-spindle control II (#1300 ext36 bit0 = 1), the spindle is determined by the spindle selection signal (SWS) from the PLC.
10.5 Spindle Clamp Speed Setting; G92

Function and purpose

The maximum clamp rotation speed of the spindle can be assigned by address S following G92 and the minimum clamp rotation speed by address Q.

Command format

G92 S__ Q__ ;
S Maximum clamp rotation speed
Q Minimum clamp rotation speed

Detailed description

Besides this command, parameters can be used to set the rotation speed range up to 4 stages in 1 r/min units to accommodate gear selection between the spindle and spindle motor. The lowest upper limit and highest lower limit are valid among the rotation speed ranges based on the parameters and based on "G92 Ss Qq ;".

Set in the parameter (#1146 Sclamp, #1227 aux11/bit5) whether to carry out rotation speed clamp only in the constant surface speed mode or even when the constant surface speed is canceled.

(Note) G92S command and rotation speed clamp operation

<table>
<thead>
<tr>
<th>Command</th>
<th>Sclamp = 0</th>
<th>Sclamp = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>In G96</td>
<td>aux11/bit5 = 0</td>
<td>aux11/bit5 = 1</td>
</tr>
<tr>
<td></td>
<td>ROTATION SPEED CLAMP COMMAND</td>
<td>ROTATION SPEED CLAMP COMMAND</td>
</tr>
<tr>
<td>In G97</td>
<td>aux11/bit5 = 0</td>
<td>aux11/bit5 = 1</td>
</tr>
<tr>
<td></td>
<td>SPINDLE ROTATION SPEED COMMAND</td>
<td>SPINDLE ROTATION SPEED COMMAND</td>
</tr>
<tr>
<td>Operation</td>
<td>In G96</td>
<td>aux11/bit5 = 0</td>
</tr>
<tr>
<td></td>
<td>ROTATION SPEED CLAMP EXECUTION</td>
<td>ROTATION SPEED CLAMP EXECUTION</td>
</tr>
<tr>
<td>In G97</td>
<td>aux11/bit5 = 0</td>
<td>aux11/bit5 = 1</td>
</tr>
<tr>
<td></td>
<td>NO ROTATION SPEED CLAMP</td>
<td>NO ROTATION SPEED CLAMP</td>
</tr>
</tbody>
</table>
10.6 Spindle/C Axis Control

Function and purpose

This function enables one spindle (MDS-A-SP and later) to also be used as a C axis (rotation axis) by an external signal.

Detailed description

(1) Spindle/C axis changeover
Changeover between the spindle and C axis is done by the C axis SERVO ON signal.

<table>
<thead>
<tr>
<th>Servo ON</th>
<th>Spindle</th>
<th>C axis</th>
<th>Spindle</th>
</tr>
</thead>
<tbody>
<tr>
<td>At servo OFF</td>
<td>Spindle (C axis control not possible)</td>
<td>The C axis is in a reference position return incomplete state.</td>
<td></td>
</tr>
<tr>
<td>At servo ON</td>
<td>C axis (spindle control not possible)</td>
<td>Reference position return is complete when the Z phase has been passed.</td>
<td></td>
</tr>
</tbody>
</table>

- Reference position return state
 - Reference position return is incomplete when the Z phase has not been passed.
 - Reference position return is complete when the Z phase has been passed.
- C axis position data
 - The NC’s internal C axis position data is updated even for the spindle rotation during spindle control.
 - The C axis coordinate value counter is held during spindle control, and is updated according to the amount moved during spindle control when the C axis servo READY is turned ON. (The C axis position at servo ON may differ from the position just before the previous servo OFF.)

(2) Changeover timing chart example

Estimated timing chart for calculation example

Motor speed

Servo ON

Servo READY

Spindle forward run/reverse run start

C axis command (automatic operation)

Reference position return complete status

Blocks being executed

Recalculation request

Blocks being calculated

Program error because the reference position return is incomplete at this calculation.

Reference position return complete at recalculation

Program error (P430 AXIS NOT RET.)
(Note) For axis commands, the reference position return complete is checked at calculation. Thus, when the C axis servo ON command and C axis command are continuous, the program error (P430) will occur as shown above in 1.2. In response to this kind of situation, the following two processes must be carried out on user PC, as shown above in 1.

- Input the recalculation request signal with a servo ON command.
- Wait for the completion of the servo ON command until the C axis enters a servo READY state.

(3) C axis gain
The C axis gain is changed over (the optimum gain is selected) by the C axis cutting condition. During C axis cutting feed, cutting gain is applied. During other axis' cutting feed (C axis face turning), non-cutting stop gain is applied. Non-cutting gain is applied in all other cases.

(4) Deceleration check in movement including spindle/C-axis
The deceleration check in a movement command including the spindle/C-axis is as the table described below when the following condition is fulfilled.

When the different values are set for the position loop gain in non-cutting mode (spindle parameter #3203 PGCO) and the position loop gain in cutting mode (spindle parameter #3330 PGC1 to #3333 PGC4).
That is because a vibration and so on occurs in the machine when the gain is changed during the axis movement.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rapid traverse command</th>
<th>Other than rapid traverse command (G1 : other than G0 command)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpos</td>
<td>G0→XX (G0+G9→XX)</td>
<td>G1+G9→XX</td>
</tr>
<tr>
<td>0</td>
<td>Command deceleration check</td>
<td>In-position check (Applicable only to SV024)</td>
</tr>
<tr>
<td>1</td>
<td>In-position check</td>
<td>No deceleration check</td>
</tr>
</tbody>
</table>

(Note 1) When G1 command is issued, the in-position check is performed regardless of the deceleration check parameter.

(Note 2) XX expresses all commands.
10.6 Spindle/C Axis Control

Precautions and Restrictions

1. The program error (P430) will occur if a C axis command is issued during servo OFF or during orientation.

2. Do not execute a servo OFF during a C axis command. The remaining C axis commands will be cleared at servo ON. (If servo OFF is executed during C axis control, the feed will stop and spindle control will occur.)

3. If servo ON is executed during spindle rotation, the rotation will stop and C axis control will occur.

4. Dog-type reference position return is not possible for the C axis. Set the reference position return to the orientation method in the parameters (Spindle base specifications parameters "#3106 zrn_typ/bit8" = 0), or set the axis to "Axis without reference position (zero point)" (Zero point return parameters "#2031 noref: 1").
10.7 Spindle Synchronization

Function and purpose

In a machine having two or more spindles, this function controls the rotation speed and phase of one spindle (basic spindle) in synchronization with the rotation of the other spindle (synchronous spindle). The function is used when the rotation speed of the two spindles must be matched, for example, if a workpiece grasped by the 1st spindle is to be grasped by a 2nd spindle, or if the spindle rotation speed has to be changed when one workpiece is grasped by both the 1st and 2nd spindles.

There are two types of spindle synchronization: Spindle synchronization I and Spindle synchronization II.

<table>
<thead>
<tr>
<th>The spindle synchronization control I</th>
<th>The designation of the synchronous spindle and start/stop of the synchronization are executed by commanding G codes in the machining program.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The spindle synchronization function II</td>
<td>The selections of the synchronized spindle and synchronization start, etc., are all designated from the PLC. Refer to the instruction manual issued by the machine tool builder for details.</td>
</tr>
</tbody>
</table>

Common setting for the spindle synchronization control I and II

When the spindle synchronization control is carried out, the followings must be set.

- Chuck close
- Error temporary cancel
- Multi-speed acceleration/deceleration

For details, refer to the "10.7.3 Precautions for Using Spindle Synchronization Control".
10.7 Spindle Synchronization

10.7.1 Spindle Synchronization Control I

Function and purpose

With the spindle synchronization control I, the designation of the synchronous spindle and start/stop of the synchronization are executed by commanding G codes in the machining program.

Command format

(1) Spindle synchronization ON (G114.1)

This command designates the basic spindle and synchronous spindle, and synchronizes the two designated spindles. By commanding the synchronous spindle phase shift amount, the phases of the basic spindle and synchronous spindle can be aligned.

\[\text{G114.1 } H_ D_ R_ A_ ; \]

- **H**: Basic spindle selection
- **D**: Synchronous spindle selection
- **R**: Synchronous spindle phase shift amount
- **A**: Spindle synchronization acceleration/deceleration time constant

(2) Spindle synchronization cancel (G113)

This command cancels the synchronous state of the two spindles rotating in synchronization with the spindle synchronization command.

\[\text{G113 } ; \]

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Basic spindle selection</td>
<td>1 to 6</td>
<td>• A program error (P35) will occur if a value exceeding the command range or spindle No. without specifications is commanded.</td>
</tr>
<tr>
<td></td>
<td>Select the No. of the spindle to be used as the basic spindle from the two spindles.</td>
<td>1: 1st spindle 2: 2nd spindle 3: 3rd spindle 4: 4th spindle 5: 5th spindle 6: 6th spindle</td>
<td>• A program error (P33) will occur if there is no command.</td>
</tr>
<tr>
<td>D</td>
<td>Synchronous spindle selection</td>
<td>1 to 6 or -1 to -6</td>
<td>• A program error (P35) will occur if a value exceeding the command range is commanded.</td>
</tr>
<tr>
<td></td>
<td>Select the No. of the spindle to be synchronized with the basic spindle from the two spindles.</td>
<td>1: 1st spindle 2: 2nd spindle 3: 3rd spindle 4: 4th spindle 5: 5th spindle 6: 6th spindle</td>
<td>• A program error (P33) will occur if there is no command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A program error (P33) will occur if the same spindle as that commanded for the basic spindle selection is designated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The rotation direction of the synchronous spindle in respect to the basic spindle is commanded with the D sign.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A program error (P700) will occur if a spindle not serially connected is commanded.</td>
</tr>
</tbody>
</table>
10.7 Spindle Synchronization

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| R | Synchronous spindle phase shift amount
> Command the shift amount from the reference point (one rotation signal) of the synchronous spindle. | 0 to 359.999 (°) or 0 to 35999 (° * 10⁻³) | • A program error (P35) will occur if a value exceeding the command range is commanded.
• The commanded shift amount is effective in the clockwise direction of the basic spindle.
• If there is no R command, the phases will not be aligned. |
| A | Spindle synchronization acceleration/deceleration time constant
> Command the acceleration/deceleration time constant for when the spindle synchronization command rotation speed changes. (Command this to accelerate or decelerate at a speed slower than the time constant set in the parameters.) | 0.001 to 9.999 (s) or 1 to 9999 (ms) | • A program error (P35) will occur if a value exceeding the command range is commanded.
• If the commanded value is smaller than the acceleration/deceleration time constant set with the parameters, the value set in the parameters will be applied. |

Rotation speed and rotation direction

1. The rotation speed and rotation direction of the basic spindle and synchronous spindle during spindle synchronization are the rotation speed and rotation direction commanded for the basic spindle. Note that the rotation direction of the synchronous spindle can be reversed from the basic spindle through the program.
2. The basic spindle’s rotation speed and rotation direction can be changed during spindle synchronization.
3. The synchronous spindle’s rotation command is also valid during spindle synchronization. When spindle synchronization is commanded, if neither a forward run command nor reverse run command is commanded for the synchronous spindle, the synchronization standby state will be entered without starting the synchronous spindle’s rotation. If the forward run command or reverse run command is input in this state, the synchronous spindle will start rotation. The synchronous spindle’s rotation direction will follow the direction commanded in the program. If spindle stop is commanded for the synchronous spindle during spindle synchronization (when both the forward run and reverse run commands are turned OFF), the synchronous spindle rotation will stop.
4. The rotation speed command (S command) and constant surface speed control are invalid for the synchronous spindle during spindle synchronization. Note that the modal is updated, so these will be validated when the spindle synchronization is canceled.
5. The constant surface speed can be controlled by issuing a command to the basic spindle even during spindle synchronization.
Rotation synchronization

(1) When rotation synchronization control (command with no R address) is commanded with the G114.1 command, the synchronous spindle rotating at an arbitrary rotation speed will accelerate or decelerate to the rotation speed commanded beforehand for the basic spindle, and will enter the rotation synchronization state.

(2) If the basic spindle's commanded rotation speed is changed during the rotation synchronization state, acceleration/deceleration will be carried out while maintaining the synchronization state following the spindle acceleration/deceleration time constants set in the parameters, and the commanded rotation speed will be achieved.

(3) In the rotation synchronization state, the basic spindle can be controlled to the constant surface speed even when two spindles are grasping one workpiece.

(4) Operation will take place in the following manner.

```
M23 S2=750 ;    ... Forward rotate 2nd spindle (synchronous spindle) at 750 r/min (speed command)
    :            
M03 S1=1000 ;   ... Forward rotate 1st spindle (basic spindle) at 1000 r/min (speed command)
    :            
G114.1 H1 D-2;  ... Synchronize 2nd spindle (synchronous spindle) to 1st spindle (basic spindle) with reverse run
    :            
S1=500 ;        ... Change 1st spindle (basic spindle) rotation speed to 500 r/min
    :            
G113 ;          ... Cancel spindle synchronization
```

<Operation>

![Diagram showing rotation synchronization](image)

- **Basic spindle**
- **Synchronous spindle**

- 2nd spindle (synchronous spindle) forward run
- 1st spindle (basic spindle) forward run
- 2nd spindle (synchronous spindle) reverse run synchronization
- 1st spindle (basic spindle) rotation speed change
- Spindle synchronization cancel
Phase synchronization

(1) When phase synchronization (command with R address) is commanded with the G114.1 command, the synchronous spindle rotating at an arbitrary rotation speed will accelerate or decelerate to the rotation speed commanded beforehand for the basic spindle, and will enter the rotation synchronization state. Then, the phase is aligned so that the rotation phase commanded with the R address is reached, and the phase synchronization state is entered.

(2) If the basic spindle's commanded rotation speed is changed during the phase synchronization state, acceleration/deceleration will be carried out while maintaining the synchronization state following the spindle acceleration/deceleration time constants set in the parameters, and the commanded rotation speed will be achieved.

(3) In the phase synchronization state, the basic spindle can be controlled to the constant surface speed even when two spindles are grasping one workpiece.

(4) Operation will take place in the following manner.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M23 S2=750 ;</td>
<td>Forward rotate 2nd spindle (synchronous spindle) at 750 r/min (speed command)</td>
</tr>
<tr>
<td>M03 S1=1000 ;</td>
<td>Forward rotate 1st spindle (basic spindle) at 1000 r/min (speed command)</td>
</tr>
<tr>
<td>G114.1 H1 D-2 Rxx ;</td>
<td>Synchronize 2nd spindle (synchronous spindle) to 1st spindle (basic spindle) with reverse run. Shift phase of synchronous spindle by R command value</td>
</tr>
<tr>
<td>S1=500 ;</td>
<td>Change 1st spindle (basic spindle) rotation speed to 500 r/min</td>
</tr>
<tr>
<td>G113 ;</td>
<td>Cancel spindle synchronization</td>
</tr>
</tbody>
</table>
10. Spindle Functions

10.7 Spindle Synchronization

<Operation>

1000
750
500
0
–500
–750
–1000

Basic spindle
Synchronous spindle

Forward run
Reverse run

Phase alignment
Spindle synchronization cancel

2nd spindle (synchronous spindle) reverse run synchronization
1st spindle (basic spindle) forward run
2nd spindle (synchronous spindle) reverse run

1st spindle (basic spindle) rotation speed change

(Note 1) Acceleration/Deceleration at the phase synchronization is the step synchronization method when "#3130 syn_spec/bit1" = "0", the multi-step acceleration/deceleration method when "#3130 syn_spec/bit1" = "1".
10. Spindle Functions

10.7 Spindle Synchronization

Spindle synchronization phase shift amount calculation function

The spindle phase shift amount calculation function obtains and saves the phase difference of the basic spindle and synchronous spindle by turning the PLC signal ON when the phase synchronization command is executed. When the phase is positioned to the automatically saved phase difference before executing the phase synchronization control command, phases can be aligned easier when re-grasping profile materials.

(1) Saving the basic spindle and synchronous spindle phase difference

(a) Set a profile material in the main spindle (basic spindle).
(b) Set the profile material in the rear spindle.
(c) Turn the phase shift calculation request signal (SSPHM) ON.
(d) Input a rotation command, with 0 speed, for the main spindle (basic spindle) and rear spindle (synchronous spindle).
 <Example> M3 S1=0 M24 S2 = 0;
(e) Execute the rotation synchronization signal (with no R address command).
 <Example> G114.1 H1 D-2;
(f) Rotate the main spindle at the speed actually used when re-grasping.
 <Example> S1 = 3000;
(g) Check that the phase difference has been saved by looking at the spindle speed synchronization complete signal.
(h) Stop both spindles.
(i) Turn the phase shift calculation request signal OFF.

<Example of operation>

Example of operation macro M6; M15; G113; M3 S1=0
M24 S2=0; G114.1 H1 D-2;
S1=3000; M77; S1=0; G4X_; G113; …

Automatic operation start (ST, PLC → CNC)
Phase shift calculation request signal (SSPHM, PLC → CNC)
Spindle rotation speed synchronization complete signal (FSPRV, CNC → PLC)
Basic spindle chuck close M code
Basic spindle forward run command (M3)
Spindle synchronization complete check M code
Basic spindle reverse run command (M24)
NC reset

Example of operation macro M6; M15; G113; M3 S1=0
M24 S2=0; G114.1 H1 D-2;
S1=3000; M77; S1=0; G4X_; G113; …

Automatic operation start (ST, PLC → CNC)
Phase shift calculation request signal (SSPHM, PLC → CNC)
Spindle rotation speed synchronization complete signal (FSPRV, CNC → PLC)
Basic spindle chuck close M code
Basic spindle forward run command (M3)
Spindle synchronization complete check M code
Basic spindle reverse run command (M24)
NC reset
10. Spindle Functions

10.7 Spindle Synchronization

(2) **Automatic phase alignment of basic spindle and synchronous spindle**

(a) Turn the phase offset request signal ON.

(b) Issue the phase synchronization command (with R command).
 Example G114.1 H1 D-2 R0;

(c) The phase is aligned by offsetting the phase synchronization command by the phase difference obtained with the spindle synchronization phase shift calculation function. The state in which the synchronous spindle phase shift amount designation R value is 0 is the same as the reference state (state obtained with phase shift calculation request signal).

![Diagram of basic and synchronous spindle phase alignment](image)

<Example of operation>

<table>
<thead>
<tr>
<th>Machining program example</th>
<th>Spindle synchronization complete check M code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G114.1 H1 D-2 R_</td>
<td></td>
</tr>
<tr>
<td>M77;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase offset request signal (SSPHF, PLC → CNC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle phase synchronization complete signal (FSPPH, CNC → PLC)</td>
</tr>
</tbody>
</table>

Basic spindle and synchronous spindle phase alignment complete
10. Spindle Functions

10.7 Spindle Synchronization

Multi-step acceleration/deceleration

Acceleration/deceleration time constants for up to eight steps can be selected according to the spindle rotation speed for the acceleration/deceleration during spindle synchronization. The acceleration/deceleration in each step is as follows.

Time required from minimum rotation speed to maximum rotation speed in each step
= [Time constant without multi-step acceleration deceleration] * [Magnification of time constant in each step] * [Rate of rotation speed width in each step in respect to rotation speed width up to limit rotation speed]

Time required to rotate to sptc1 set rotation speed from stopped state (a)
= spt (or A command when G114.1 is commanded) * sptc1/slimit

Time required to reach sptc2 set rotation speed from sptc1 (b)
= spt (or A command when G114.1 is commanded) * spdiv1 * (sptc2 - sptc1)/slimit

Time required to reach sptc3 set rotation speed from sptc2 (c)
= spt (or A command when G114.1 is commanded) * spdiv2 * (sptc3 - sptc2)/slimit

Time required to reach sptc4 set rotation speed from sptc3 (d)
= spt (or A command when G114.1 is commanded) * spdiv3 * (sptc4 - sptc3)/slimit

Time required to reach sptc5 set rotation speed from sptc4 (e)
= spt (or A command when G114.1 is commanded) * spdiv4 * (sptc5 - sptc4)/slimit

Time required to reach sptc6 set rotation speed from sptc5 (f)
= spt (or A command when G114.1 is commanded) * spdiv5 * (sptc6 - sptc5)/slimit

Time required to reach sptc7 set rotation speed from sptc6 (g)
= spt (or A command when G114.1 is commanded) * spdiv6 * (sptc7 - sptc6)/slimit

Time required to reach sptc8 set rotation speed from sptc7 (h)
= spt (or A command when G114.1 is commanded) * spdiv7 * (slimit - sptc7)/slimit

To decrease the number of acceleration/deceleration steps during spindle synchronization, set one of the following for the unnecessary step.
- Magnification for time constant changeover speed (spdiv7 to spdiv1) = 0 (or 1)
- Spindle synchronous multi-step acceleration/deceleration changeover speed (sptc7 to sptc1) = Limit rotation speed (slimit) or higher
10. Spindle Functions

10.7 Spindle Synchronization

Cautions on programming

(1) To enter the rotation synchronization mode while the basic spindle and synchronous spindle are chucking the same workpiece, turn the basic spindle and synchronous spindle rotation commands ON before turning the spindle synchronization mode ON.

1 (1st part system)

M6 ; 1st spindle chuck close

!2 ; --------------------------------!1 ; Synchronization between part systems

M5 S1=0 ; 1st spindle stops at S=0

M3 ; 1st spindle rotation command ON

M24 ; 2nd spindle rotation command ON

M15 ; 2nd spindle chuck close

!2 ; --------------------------------!1 ; Synchronization between part systems

G114.1 H1 D-2 ; Rotation synchronization mode ON

S1=1500 ; Synchronous rotation at S=1500

S1=0 ; Both spindles stop

G113 ; Synchronization mode OFF

2 (2nd part system)

M25 S2=0 ; 2nd spindle stops at S=0

M24 ; 2nd spindle rotation command ON

G114.1 H1 D-2 R0 ; Phase synchronization mode ON

M24 ; 2nd spindle rotation command ON

M15 ; 2nd spindle chuck close (Note 1)

(2) To chuck the same workpiece with the basic spindle and synchronous spindle in the phase synchronization mode, align the phases before chucking.

1

M6 ; 1st spindle chuck close

M3 S1=1500 ; 1st spindle rotation command ON

G114.1 H1 D-2 R0 ; Phase synchronization mode ON

M24 ; 2nd spindle rotation command ON

M15 ; 2nd spindle chuck close (Note 1)

2

(Note 1) Close the chuck after confirming that the spindle phase synchronization complete signal (X18AA) has turned ON (phase alignment complete).

⚠️ CAUTION

⚠️ Do not make the synchronous spindle rotation command OFF with one workpiece chucked by the basic spindle and synchronous spindle during the spindle synchronous mode. Failure to observe this may cause the synchronous spindle stop, and hazardous situation.
Precautions and restrictions

(1) The spindle rotating with spindle synchronization will stop when emergency stop is applied.

(2) The rotation speed clamp during spindle synchronization will follow the smaller clamp value set for the basic spindle or synchronous spindle.

(3) Orientation of the basic spindle and synchronous spindle is not possible during the spindle synchronization mode. To carry out orientation, cancel the spindle synchronization mode first.

(4) The rotation speed command (S command) is invalid for the synchronous spindle during the spindle synchronization mode. Note that the modal will be updated, so this will be validated when spindle synchronization is canceled.

(5) The constant surface speed control is invalid for the synchronous spindle during the spindle synchronization mode. Note that the modal will be updated, so this will be validated when spindle synchronization is canceled.

(6) The rotation speed command (S command) and constant surface speed control for the synchronous spindle will be validated when spindle synchronization is canceled. Thus, the synchronous spindle may carry out different operations when this control is canceled.

(7) If the phase difference is not obtained with the phase shift calculation request signal and the phase synchronization command is executed by turning the phase offset request signal ON, the phase shift amount will not be calculated correctly.

(8) The spindle Z phase encoder position parameter (sppst) is invalid when using the spindle synchronous phase shift amount calculation function. (It is ignored)

 The spindle Z phase encoder position parameter (sppst) is valid when the phase offset request signal is OFF.

(9) If the phase synchronization command (command with R address) is issued while the phase shift calculation request signal is ON, an operation error (1106) will occur.

(10) If the phase shift calculation request signal is ON and the basic spindle or synchronous spindle is rotation while rotation synchronization is commanded, an operation error (1106) will occur.

(11) If the phase synchronization command R0 (<Ex.> G114.1 H1 D-2 R0) is commanded while the phase offset request signal is ON, the basic spindle and synchronous spindle phases will be aligned to the phase error of the basic spindle and synchronous spindle saved in the NC memory.

(12) If a value other than the phase synchronization command R0 (<Ex.> G114.1 H1 D-2 R000) is commanded while the phase offset request signal is ON, the phase error obtained by adding the value commanded with the R address command to the phase difference of the basic spindle and synchronous spindle saved in the NC memory will be used to align the basic spindle and synchronous spindle.

(13) The phase offset request signal will be ignored when the phase shift calculation request signal is ON.

(14) The phase error of the basic spindle and synchronous spindle saved in the NC is valid only when the phase shift calculation signal is ON and for the combination of the basic spindle selection (H_) and synchronous spindle (D_) commanded with the rotation synchronization command (no R address).

 For example, if the basic spindle and synchronous spindle phase error is saved as "G114.1 H1 D-2 ;", the saved phase error will be valid only when the phase offset request signal is ON and "G114.1 H1 D_2 R****;" is commanded. If "G114.1 H2 D-1 R****;" is commanded in this case, the phase shift amount will not be calculated correctly.

(15) The basic spindle and synchronous spindle phase difference saved in the NC is held until the next spindle synchronous phase shift calculation (rotation synchronization command is completed with phase shift calculation request signal ON).

(16) When the spindle synchronization commands are being issued with the PLC I/F method (#1300 ext36/bit7 OFF), a program error (P610) will occur if the spindle synchronization is commanded with G114.1/G113.

(17) Always set the "Chuck close". If the "Chuck close" is not set, an excessive load may be applied on the machine or an alarm may occur.
10.7.2 Spindle Synchronization II

Function and purpose

For spindle synchronization function II, selection of the synchronized spindle and synchronization start, etc., are all designated from the PLC. Refer to the instruction manual issued by the machine tool builder for details.

Basic spindle and synchronous spindle selection

Select the basic spindle and synchronous spindle for synchronous control from the PLC.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7016</td>
<td>Basic spindle selection</td>
<td>-</td>
<td>Select a serially connected spindle to be controlled as the basic spindle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0: 1st spindle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: 1st spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: 2nd spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: 3rd spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4: 4th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5: 5th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6: 6th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 1) Spindle synchronization will not take place if a spindle not connected in serial is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2) If "0" is designated, the 1st spindle will be controlled as the basic spindle.</td>
</tr>
<tr>
<td>R7017</td>
<td>Synchronous spindle selection</td>
<td>-</td>
<td>Select a serially connected spindle to be controlled as the synchronous spindle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0: 2nd spindle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: 1st spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: 2nd spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: 3rd spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4: 4th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5: 5th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6: 6th spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 3) Spindle synchronization will not take place if a spindle not connected in serial is selected or if the same spindle as the basic spindle is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 4) If "0" is designated, the 2nd spindle will be controlled as the synchronous spindle.</td>
</tr>
</tbody>
</table>
Starting spindle synchronization

The spindle synchronization mode is entered by inputting the spindle synchronization signal (SPSYC). The synchronous spindle will be controlled in synchronization with the rotation speed commanded for the basic spindle during the spindle synchronization mode. When the difference of the basic spindle and synchronous spindle rotation speeds reaches the spindle synchronization rotation speed reach level setting value (#3050 sprlv), the spindle rotation speed synchronization complete signal (FSPRV) will be output.

The synchronous spindle's rotation direction is designated with the spindle synchronization rotation direction designation as the same as the basic spindle or the reverse direction.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y18B0</td>
<td>Spindle synchronization</td>
<td>SPSYC</td>
<td>The spindle synchronization mode is entered when this signal turns ON.</td>
</tr>
<tr>
<td>X18A8</td>
<td>In spindle synchronization</td>
<td>SPSYN1</td>
<td>This notifies that the mode is the spindle synchronization.</td>
</tr>
<tr>
<td>X18A9</td>
<td>Spindle rotation speed synchronization complete</td>
<td>FSPRV</td>
<td>This turns ON when the difference of the basic spindle and synchronous spindle rotation speeds reaches the spindle rotation speed reach level setting value during the spindle synchronization mode. This signal turns OFF when the spindle synchronization mode is canceled, or when an error exceeding the spindle rotation speed reach level setting value occurs during the spindle synchronization control mode.</td>
</tr>
<tr>
<td>Y18B2</td>
<td>Spindle synchronization rotation direction designation</td>
<td>-</td>
<td>Designate the basic spindle and synchronous spindle rotation directions for spindle synchronization. 0: The synchronous spindle rotates in the same direction as the basic spindle. 1: The synchronous spindle rotates in the reverse direction of the basic spindle.</td>
</tr>
</tbody>
</table>

186
Spindle phase alignment

Spindle phase synchronization starts when the spindle phase synchronization signal (SPPHS) is input during the spindle synchronization mode. The spindle phase synchronization complete signal is output when the spindle synchronization phase reach level setting value (#3051 spplv) is reached.

The synchronous spindle's phase shift amount can also be designated from the PLC.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y18B1</td>
<td>Spindle phase synchronization control</td>
<td>SPPHS</td>
<td>Spindle phase synchronization starts when this signal is turned ON during the spindle synchronization mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 1) If this signal is turned ON in a mode other than the spindle synchronization mode, it will be ignored.</td>
</tr>
<tr>
<td>X18AA</td>
<td>Spindle phase synchronization complete</td>
<td>FSPPH</td>
<td>This signal is output when the spindle synchronization phase reach level is reached after starting spindle phase synchronization.</td>
</tr>
<tr>
<td>R7018</td>
<td>Phase shift amount setting</td>
<td>-</td>
<td>Designate the synchronous spindle's phase shift amount. Unit: 360°/4096</td>
</tr>
</tbody>
</table>

(Note 2) Turns OFF temporarily to change the rotation speed during phase synchronization.
Calculating the spindle synchronization phase shift amount and requesting phase offset

The spindle phase shift amount calculation function obtains and saves the phase difference of the basic spindle and synchronous spindle by turning the PLC signal ON during spindle synchronization. When calculating the spindle phase shift, the synchronous spindle can be rotated with the handle, so the relation of the phases between the spindles can also be adjusted visually. If the spindle phase synchronization control signal is input while the phase offset request signal (SSPHF) is ON, the phases will be aligned using the position shifted by the saved phase shift amount as a reference.

This makes aligning of the phases easier when grasping the material that the shape of one end differs from the other end.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y18B3</td>
<td>Phase shift calculation request</td>
<td>SSPHM</td>
<td>If spindle synchronization is carried out while this signal is ON, the phase difference of the basic spindle and synchronous spindle will be obtained and saved.</td>
</tr>
<tr>
<td>Y18B4</td>
<td>Phase offset request</td>
<td>SSPHF</td>
<td>If spindle phase synchronization is carried out while this signal is ON, the phases will be aligned using the position shifted by the saved phase shift amount as a basic position.</td>
</tr>
</tbody>
</table>
| R6516 | Phase difference output | - | The delay of the synchronous spindle in respect to the basic spindle is output. Unit: 360°/4096
(Note 1) If either the basic spindle or synchronous spindle has not passed through the Z phase, etc., and the phase cannot be calculated, -1 will be output.
(Note 2) This data is output only while calculating the phase shift or during spindle phase synchronization. |
| R6518 | Phase offset data | - | The phase difference saved with phase shift calculation is output. Unit: 360°/4096
(Note 3) This data is output only during spindle synchronization. |

(Note 4) The phases cannot be aligned while calculating the phase shift.

(Note 5) The synchronous spindle cannot be rotated with the handle when the manual operation mode is set to the handle mode.
Precautions and restrictions

1. When carrying out spindle synchronization, a rotation command must be issued to both the basic spindle and synchronous spindle. The synchronous spindle's rotation direction will follow the basic spindle rotation direction and spindle synchronization rotation direction designation regardless of whether a forward or reverse run command is issued.

2. The spindle synchronization control mode will be entered even if the spindle synchronization control signal is turned ON while the spindle rotation speed command is ON. However, synchronous control will not actually take place. Synchronous control will start after the rotation speed command has been issued to the basic spindle, and then the spindle synchronization complete signal will be output.

3. The spindle rotating with spindle synchronization will stop when emergency stop is applied.

4. An operation error will occur if the spindle synchronization signal is turned ON while the basic spindle and synchronous spindle designations are illegal.

5. The rotation speed clamp during spindle synchronization will follow the smaller clamp value set for the basic spindle or synchronous spindle.

6. Orientation of the basic spindle and synchronous spindle is not possible during the spindle synchronization. To carry out orientation, turn the spindle synchronization signal OFF first.

7. The rotation speed command is invalid for the synchronous spindle during the spindle synchronization. The commanded rotation speed will be validated after spindle synchronization is canceled.

8. The constant surface speed control is invalid for the synchronous spindle during the spindle synchronization.

9. If the phase offset request signal is turned ON before the phase shift is calculated and then spindle phase synchronization is executed, the shift amount will not be calculated.

10. The spindle Z-phase encoder position parameters are invalid when phase offset is carried out.

11. If spindle phase synchronization is started while the phase shift calculation request signal is ON, the error "M01 operation error 1106" will occur.

12. Turn the phase shift calculation request signal ON when the basic spindle and synchronous spindle are both stopped. If the phase shift calculation request signal is ON while either of the spindles is rotating, the error "M01 operation error 1106" will occur.

13. The phase shift amount saved in the NC is held until the next phase shift is calculated. (This value is saved even when the power is turned OFF.)

14. Always set the "Chuck close". If the "Chuck close" is not set, an excessive load may be applied on the machine or an alarm may occur.
10. Spindle Functions

10.7 Spindle Synchronization

10.7.3 Precautions for Using Spindle Synchronization Control

Function and purpose

Some PLC signals must be set when spindle synchronization control I or II is used. If these signals are not set, an excessive load or an alarm may occur. Refer to the instruction manual issued by the machine tool builder for details. In this section, each function and the signal are explained.

Chuck close signal

The synchronous spindle side carries out droop compensation while the chuck is opened, and aligns itself with the basic spindle. However, when the chuck is closed, the droop compensation is added, and the synchronization error with the base increases. Droop compensation is prevented with the chuck close signal and the position where the chuck is grasped is maintained with position compensation.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y18B9</td>
<td>Chuck close</td>
<td>-</td>
<td>This turns ON when the chuck is closed. When this signal turns ON, the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>compensation between the basic spindle and synchronous spindle will</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>change from droop compensation to position compensation.</td>
</tr>
<tr>
<td>X18AC</td>
<td>Chuck close confirmation</td>
<td>-</td>
<td>This turns ON when the chuck close signal is received during the spindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>synchronization mode.</td>
</tr>
</tbody>
</table>

(Note 1) Use the error temporary cancel only when there is still an error between the spindle and synchronization with the chuck close signal.
10. Spindle Functions

10.7 Spindle Synchronization

Error temporary cancel function

When spindle synchronization is carried out while grasping the workpiece with the basic spindle and rotating, if the chuck is closed to grasp the workpiece with the synchronous spindle, the speed will fluctuate due to external factors and an error will occur. If spindle synchronization is continued without compensating this error, the workpiece will twist. This torsion can be prevented by temporarily canceling this error.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y18B5</td>
<td>Error temporary cancel</td>
<td>SPDRP0</td>
<td>The error is canceled when this signal is ON.</td>
</tr>
</tbody>
</table>

Phase error monitor

The phase error can be monitored during spindle phase synchronization.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Signal name</th>
<th>Abbrev.</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6519</td>
<td>Phase error monitor</td>
<td>-</td>
<td>The phase error during spindle phase synchronization control is output as a pulse unit.</td>
</tr>
<tr>
<td>R6520</td>
<td>Phase error monitor (lower limit value)</td>
<td>-</td>
<td>The lower limit value of the phase error during spindle phase synchronization control is output as a pulse unit.</td>
</tr>
<tr>
<td>R6521</td>
<td>Phase error monitor (upper limit value)</td>
<td>-</td>
<td>The upper limit value of the phase error during spindle phase synchronization control is output as a pulse unit.</td>
</tr>
</tbody>
</table>

Multi-speed acceleration/deceleration

Up to eight steps of acceleration/deceleration time constants for spindle synchronization can be selected according to the spindle rotation speed.

\[
\text{Rotation speed} \\
\text{Sptc1} \quad \text{Sptc2} \quad \text{Sptc3}
\]

(1) Time required from stopped state to sptc1 setting rotation speed
\[
spt * (\text{sptc1/maximum rotation speed})
\]
(2) Time required from sptc1 to sptc2 setting rotation speed
\[
spt * ((\text{sptc2–sptc1)/maximum rotation speed}) + \text{spdiv1}
\]
(3) Time required from sptc2 to sptc3 setting rotation speed
\[
spt * ((\text{sptc3–sptc2)/maximum rotation speed}) + \text{spdiv2}
\]
10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon); G114.2

Function and purpose

In a machine having a rotary tool controlled with a serial connection and having a spindle controlled with a serial connection as the workpiece axis, polygon machining can be carried out by controlling the workpiece axis rotation in synchronized with the rotation of the rotary tool axis.

The serial connection control of spindle and rotary tool axis can be carried out with MDS-+-SP or MDS-+-SPJ2.

Command format

(1) Tool spindle synchronization IA (Spindle-Spindle, Polygon) ON (G114.2)
This command sets the polygon machining mode that rotates the two axes in synchronized with differing speeds by designating the rotary tool axis and workpiece axes and the rotation ratio (Number of the rotary tool gear teeth and workpiece corners) of the two designated axes (spindle and spindle).

G114.2 H__ D__ E__ L__ R__ ;
H Rotary tool axis (Basic spindle)
D Workpiece axis (Synchronous spindle)
E Rotary tool axis rotation ratio
L Workpiece axis rotation ratio
R Synchronous spindle phase shift amount

(2) Spindle synchronization cancel (G113)
This command cancels the synchronization state of rotating two spindles by the spindle synchronization command.

G113 ;

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| H | Rotary tool axis | 1 to number of spindles | • If a value exceeding the command range is commanded, a program error (P35) will occur.
• If there is no command, a program error (P33) will occur.
• If the same value as the D command is commanded, a program error (P33) will occur.
• If a spindle that is not serially connected is selected, a program error (P700) will occur. |
| | Of the two spindles, the spindle No. of the select rotation axis. | 1: 1st spindle
2: 2nd spindle
3: 3rd spindle
4: 4th spindle | |
10. Spindle Functions

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon)

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| D | Workpiece axis | 1 to number of spindles or -1 to - (number of spindles) | • A program error (P35) will occur if a value exceeding the command range is commanded.
• If there is no command, a program error (P33) will occur.
• The rotation direction of the workpiece axis in respect to the rotary tool axis is commanded with the D sign.
• If the same value as the H command is commanded, a program error (P33) will occur.
• If a spindle that is not serially connected is selected, a program error (P700) will occur. |
| E | Rotary tool axis rotation ratio | 1 to 10 | • A program error (P35) will occur if a value exceeding the command range is commanded.
• If there is no command, the rotation ratio will be interpreted as 1. |
| L | Workpiece axis rotation ratio | 1 to 999 | • A program error (P35) will occur if a value exceeding the command range is commanded.
• If there is no command, the rotation ratio will be interpreted as 1. |
| R | Synchronized spindle phase shift amount | 0 to 359.999 (°) | • A program error (P35) will occur if a value exceeding the command range is commanded.
• The commanded shift amount is applied in the clockwise direction of the spindle.
• If there is no R command, phase alignment will not be carried out. |
10. Spindle Functions

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon)

Rotation axis and rotation direction

The rotary tool axis and workpiece axis rotation speed and rotation direction during tool spindle synchronization IA (Polygon) command are as follows.

1. The rotation speed and rotation direction of the rotary tool axis are the rotation speed commanded with the S command and the rotation direction commanded with the M command, etc., for the spindle selected as the rotary tool axis.

2. The workpiece axis rotation speed is determined by the number of the rotary tool gear teeth workpiece corners commanded with G114.2.

\[\text{Sw} = \text{Sh} \times \frac{L}{E} \]

Sw : Workpiece axis rotation speed (r/min)
Sh : Rotary tool axis rotation speed (r/min)
L : Rotary tool axis rotation ratio (Number of rotary tool gear teeth)
E : Workpiece axis rotation ratio (Number of workpiece corners)

3. The workpiece axis rotation direction is determined by the sign of the address D commanded with G114.2. In other words, when the D sign is "+", the workpiece axis rotates in the same direction as the rotary tool axis, and when "-", the workpiece axis rotates in the reverse direction of the rotary tool axis.

4. After tool spindle synchronization IA (Polygon) mode is commanded, the relation of the rotary tool axis and workpiece axis rotation is held in all automatic or manual operation modes until spindle synchronization cancel (G113) is commanded, the spindle synchronization cancel signal is input, or reset (reset 1, reset 2, reset & rewind) is executed when "#1239 set11/bit3" is set to 1.

Operation for spindle-spindle polygon

The workpiece axis will be controlled in the following manner.

1. When the spindle synchronization IA (polygon machining) mode is commanded, if neither a forward run command nor a reverse run command is input for the workpiece axis, the workpiece axis will not start rotating even if the polygon axis is rotating, and instead will wait for synchronization.

 If a forward run command or reverse run command is input for the workpiece axis in this state, the workpiece axis will start rotation.

2. If spindle stop is commanded (both forward run command and reverse run command are turned OFF) in respect to the workpiece axis during the spindle synchronization IA (polygon machining) mode, the workpiece axis rotation will stop even when the rotary tool axis is rotating.

3. The rotation command (S command) and constant surface speed control are invalid in respect to the workpiece axis during the tool spindle synchronization IA (polygon) mode. Note that the modal will be updated, so these will be effective after the spindle synchronization is canceled.

4. If a rotary tool axis rotation speed that exceeds the workpiece axis maximum rotation speed is commanded, the rotary tool axis rotation speed will be clamped so that the workpiece axis rotation speed does not exceed the workpiece axis maximum rotation speed.
Multi-step acceleration/deceleration control

1. Acceleration/deceleration time constants for up to eight steps can be selected according to the spindle rotation speed for the acceleration/deceleration during Spindle-Spindle polygon machining.

The acceleration/deceleration in each step is as follows.

Time required from minimum rotation speed to maximum rotation speed in each step

\[\text{Time} = \text{[Time constant without multi-step acceleration deceleration]} \times \text{[Magnification of time constant in each step]} \times \text{[Rate of rotation speed width in each step in respect to rotation speed width up to limit rotation speed]} \]

1. Time required to rotate to sptc1 set rotation speed from stopped state (a)

\[\text{Time} = \text{spt} \times \text{sptc1/limit} \]

1. Time required to reach sptc2 set rotation speed from sptc1 (b)

\[\text{Time} = \text{spt} \times \text{spdiv1} \times \text{(sptc2 - sptc1)/limit} \]

1. Time required to reach sptc3 set rotation speed from sptc2 (c)

\[\text{Time} = \text{spt} \times \text{spdiv2} \times \text{(sptc3 - sptc2)/limit} \]

1. Time required to reach sptc4 set rotation speed from sptc3 (d)

\[\text{Time} = \text{spt} \times \text{spdiv3} \times \text{(sptc4 - sptc3)/limit} \]

1. Time required to reach sptc5 set rotation speed from sptc4 (e)

\[\text{Time} = \text{spt} \times \text{spdiv4} \times \text{(sptc5 - sptc4)/limit} \]

1. Time required to reach sptc6 set rotation speed from sptc5 (f)

\[\text{Time} = \text{spt} \times \text{spdiv5} \times \text{(sptc6 - sptc5)/limit} \]

1. Time required to reach sptc7 set rotation speed from sptc6 (g)

\[\text{Time} = \text{spt} \times \text{spdiv6} \times \text{(sptc7 - sptc6)/limit} \]

1. Time required to reach sptc8 set rotation speed from sptc7 (h)

\[\text{Time} = \text{spt} \times \text{spdiv7} \times \text{(limit - sptc7)/limit} \]

To decrease the number of acceleration/deceleration steps, set one of the following for the unnecessary step.

- Magnification for time constant changeover speed (spdiv7 to spdiv1) = 0 (or 1)
- Spindle synchronous multi-step acceleration/deceleration changeover speed (sptc7 to sptc1) = Limit rotation speed (limit) or higher

2. The rotary tool axis accelerates/decelerates linearly according to the spindle synchronous acceleration/deceleration time constant (spt) setting value of the spindle selected as the rotary tool axis and workpiece axis, whichever is larger.

3. If the rotary tool axis command rotation speed is changed during spindle synchronization, the axis will accelerate/decelerate to the commanded rotation speed according to the spindle acceleration/deceleration set in the parameters while maintaining the synchronized state.
Phase alignment control

(1) If the tool spindle synchronization IA command (with R designation) is commanded with the G114.2 command, the synchronous spindle rotating at an arbitrary rotation speed will accelerate or decelerate to the rotation speed following the basic spindle and synchronous spindle rotation ratio command, and the spindle synchronization state will be entered. After that, the phase will be aligned to match the rotation phase commanded with the R address.

(2) The spindle synchronization phase shift amount is commanded as the shift amount from the synchronous spindle's (workpiece axis) reference point (one rotation signal). There is no shift amount in respect to the basic spindle (rotary tool axis).

(3) If the basic spindle's (rotary tool axis) commanded rotation speed is changed during the spindle synchronization state, acceleration/deceleration will be carried out following the spindle acceleration/deceleration set in the parameters while maintaining the synchronization state, and will reach the commanded rotation speed.

(4) The following type of operation will take place.

M03 S1=0 ;Carries out forward run (speed command) 1st spindle (synchronous spindle)
• Txx00 ;Rotary tool selection
M83 S4=500 ;Carries out forward run (speed command) 4th spindle (basic spindle)
• G114.2 H4 D1 E1 L5Carries out forward run 1st spindle (synchronous spindle) and synchronizes with 4th spindle (basic spindle).
• Rxx ;Shifts synchronous spindle phase by amount of R command value.
• G113 ;Cancels tool-spindle synchronization IA
10. Spindle Functions

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Rotation speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic spindle</td>
<td>Synchronous spindle</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

- No. 1 spindle (synchronous spindle) forward run synchronization
- No. 4 spindle (basic spindle) forward run
- No. 1 spindle (synchronous spindle) forward run
- cancels Spindle synchronization
- Phase alignment
10. Spindle Functions

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon)

Example of program

M03 S1=0 ; 1st spindle forward run
Txx00 ; Rotary tool selection
M83 S4=500 ; 4th spindle forward run
G00 X40.Z-5. ;

G114.2 H4 D1 E1 L10 R0 ; Tool spindle synchronization IA (Spindle-Spindle, Polygon mode) ON
- Rotary tool axis : 4th spindle
- Workpiece axis : 1st spindle
- Number of rotary tool gear teeth : 1
- Rotation ratio : Number of workpiece corners as 10
- Synchronous spindle phase shift amount : 0°

S1 starts rotating by forward run in synchronization with S4.
The phase is aligned with shift amount 0°.
The S1 rotation speed is 50 r/min (S2:S1 = 10:1).

G99 ; Synchronous feed mode selection
G00 X18. ;
G01 Z20. F0.1 ;
G00 X40. ;
Z-5. ;

G00 X14. ;
G01 Z20. F0.1 ;
G00 X40. ;
Z-5. ;

G113 ; Spindle synchronization cancel
M85 ; 4th spindle stop
M05 ; 1st spindle stop

1st cut in
Z axis feed rate is 0.1mm per workpiece axis rotation

Final cut in
Z axis feed rate is 0.1mm per workpiece axis rotation
10. Spindle Functions

10.8 Tool Spindle Synchronization IA (Spindle-Spindle, Polygon)

Precautions for programming

(1) The axis address (X, Z, C) command in the same block as G114.2 will be ignored.
ex. G114.2 X_ ; ignored.

(2) If a modal is commanded in the same block as G114.2, the modal will be updated.
ex. G114.2 G01 ; G01 is set to G01.

(3) If a miscellaneous command (M, S, T) is commanded in the same block as G114.2, the
miscellaneous command will be executed simultaneously with the change to the rotary tool
machining mode.
ex. G114.2 M03 ; M03 is executed simultaneously with G114.2.

(4) If there is a group 00 G code command in the same block as G114.2, the G code commanded
last in the block will have the priority.
ex. G114.2 G4 P30 ; G4 P30. is executed.

Precautions and Restrictions

(1) Restrictions regarding phase alignment control
(a) Make sure that the rotation ratio of spindle (and rotary tool axis spindle) actual rotation
speed and encoder rotation speed has the following relation.

Spindle rotation speed/encoder rotation speed = n ("n" is an integer of 1 or more)

If this relation is not established, the encoder’s reference position will not stay at a
constant position of the spindle, and thus the phase (position) will deviate with each phase
alignment command.

Note that even in this case, if the number of rotary tool gear teeth (Number of workpiece
corners) is equivalent to the rotation ratio, the blade and workpiece phase (position) will
not deviate. (Following relation)

(Rotary tool axis spindle rotation speed \times Number of rotary tool gear teeth) / encoder rotation speed = n ("n" is an integer of 1 or more)

(b) During phase alignment control, phase alignment is carried out following each spindle
encoder’s reference position, so if the positional relation of the workpiece and reference
position (rotary tool and reference position) deviates when the power is turned OFF/ON or
when the tool is changed, etc., the phase will deviate.

(2) If S is commanded in the same block as G114.2, the synchronization speed will be created at
the previous S command until the S command ends, so the spindle speed may fluctuate
momentarily. Thus, do not command S in the same block if possible.

(3) Always command G114.2 in an independent block.

(4) The tool spindle synchronization 1 (Spindle-Spindle, Polygon) mode cannot be commanded
during the spindle synchronization mode commanded with G114.*. "M01 Operation error
1005" will occur.

(5) If Spindle-Spindle polygon machining is commanded while the phase shift calculation request
signal SSPHM is ON, "M01 Operation error 1106" will occur.

(6) Spindle-Spindle polygon machining cannot be executed by designating a spindle being used
for synchronous tapping with the G114.2 command. "M01 Operation error 1007" will occur.

(7) When the spindle/C-axis is used for the Spindle-Spindle-spindle polygon machining cannot be
executed by designating the C axis mode spindle with the G114.2 command. "M01 Operation
error 1026" will occur.

(8) After G114.2 is commanded, the cutting feed block will not start until synchronization is
established. Operation will stop with "M01 Operation error 1033".
10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon); G51.2
(Only 6 and 7 in G code list)

Function and purpose

In machines having a serial connection-controlled workpiece axis, and furthermore having a serial connection-controlled spindle as a rotary tool axis, Spindle-Spindle polygon machining can be carried out by controlling the rotation of the rotary tool axis rotation in synchronization with the workpiece axis.

The mode can be changed between polygon machining and Spindle-Spindle polygon machining with parameter #1501.

#1501 polyax = 0 : Spindle-Spindle polygon machining
Other than 0 : NC axis- spindle polygon machining

The workpiece axis and rotary tool axis can be serially connected and controlled with MDS-∗-SP or MDS-∗-SPJ2.

This function is valid when the G code system is 6 or 7.

Command format

(1) Polygon machining mode command

This command designates the rotary tool axis and workpiece axis, and enters the polygon machining mode that enables synchronized rotation of two axes at differing speeds. It does this by designating the rotation ratio (number of rotary tool teeth and workpiece corners) of the two designated spindles (spindle and spindle).

G51.2 H__ D__ P__ Q__ R__ ; Tool spindle synchronization IB (Spindle-Spindle, Polygon mode) ON

<table>
<thead>
<tr>
<th>G51.2</th>
<th>Polygon machining command</th>
</tr>
</thead>
<tbody>
<tr>
<td>(or G251)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Workpiece axis selection (Basic spindle)</td>
</tr>
<tr>
<td>D</td>
<td>Rotary tool axis selection (Synchronous spindle)</td>
</tr>
<tr>
<td>P</td>
<td>Rotary tool axis rotation ratio designation</td>
</tr>
<tr>
<td>Q</td>
<td>Workpiece axis rotation ratio designation</td>
</tr>
<tr>
<td>R</td>
<td>Synchronous spindle phase shift amount</td>
</tr>
</tbody>
</table>

(2) Polygon machining mode cancel command

The synchronous state of the two spindles rotating in synchronization with the tool spindle synchronization command is canceled.

G50.2 ; Tool spindle synchronization IB (Spindle-Spindle, Polygon mode) OFF

The Spindle-Spindle polygon machining mode is also canceled in the following cases.

- Power OFF
- Emergency stop
- Reset (reset 1, reset 2, reset & rewind)
 (only when #1239 set11/bit3 = 1)
- Spindle-Spindle polygon machining cancel signal
<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Workpiece axis selection</td>
<td>Command the spindle No. of the workpiece axis.</td>
<td>1 to number of spindles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Rotary tool axis selection</td>
<td>Command the spindle No. of the rotary tool axis.</td>
<td>1 to number of spindles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Workpiece axis rotation ratio designation</td>
<td>Command the workpiece axis rotation ratio (number of workpiece corners).</td>
<td>1 to 999</td>
</tr>
<tr>
<td>Q</td>
<td>Rotary tool axis rotation ratio designation</td>
<td>Command the rotary tool axis rotation ratio (number of tool teeth).</td>
<td>1 to 999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–1 to –999</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Synchronous spindle phase shift amount designation</td>
<td>Command the shift amount from the reference point (one rotation signal) of the rotary tool axis spindle.</td>
<td>0 to 359.999 (°)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Spindle Functions

10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon)

Rotation and rotation direction

The workpiece axis and rotary tool axis rotation speed and rotation direction during spindle-spindle polygon machining are as follows.

1. The workpiece axis rotation speed and rotation direction are rotation speed commanded with the S command and the rotation direction commanded with the M command, etc., for the spindle selected as the workpiece axis.

2. The rotary tool axis rotation speed is determined by the number of rotary tool teeth and number of workpiece corners commanded with G51.2.

\[
Sw = Sh \times \frac{Q}{P}
\]

Sw : Rotary tool axis rotation speed (r/min)
Sh : Workpiece axis rotation speed (r/min)
P : Workpiece axis rotation ratio (number of workpiece corners)
Q : Rotary tool axis rotation ratio (number of rotary tool teeth)

3. The rotary tool axis rotation direction is determined by the sign of the rotary tool axis selection Q commanded with G51.2.
 - If the Q sign is "+", the rotary tool axis will rotate in the same direction as the workpiece axis.
 - If the Q sign is "-", the rotary tool axis will rotate in the direction opposite the workpiece axis.

4. After Spindle-Spindle polygon machining is commanded, the relation of the workpiece axis and rotary tool axis rotation is held until Spindle-Spindle polygon machining cancel (G50.2) is commanded, the Spindle-Spindle polygon machining cancel signal is input, or until the reset or emergency stop signal is input.

Polygon machining with rotary tool axis

1. When the Spindle-Spindle polygon machining mode is commanded, even if neither the forward run nor reverse run command is input for the rotary tool axis, the rotary tool axis will start rotating.

2. If spindle stop is commanded to a rotary tool axis during the Spindle-Spindle polygon machining mode (when the spindle stop signal is ON), the rotary tool axis will stop rotating even if the workpiece axis is rotating.

3. The rotation speed command (S command) and constant surface speed control are invalid for the rotary tool axis during the Spindle-Spindle polygon machining mode. Note that the modal is updated, so these will be validated when the Spindle-Spindle polygon machining is canceled.

4. If a workpiece axis rotation speed that exceeds the rotary tool axis's maximum rotation speed is commanded, the workpiece axis rotation speed will be clamped so that the rotary tool axis rotation does not exceed the rotary tool axis's maximum rotation speed.
10. Spindle Functions

10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon)

Acceleration/deceleration control

(1) Acceleration/deceleration of the workpiece axis will be carried out linearly according to the spindle synchronization acceleration/deceleration time constant (spt) of the spindle selected as the workpiece axis.

(2) By setting the spindle synchronization multi-speed acceleration/deceleration time constant changeover speed (spdct1 to 7) and the scale for the time constant changeover speed (spddiv 1 to 7), the acceleration/deceleration time can be changed in up to eight steps.

(3) If the workpiece axis command rotation speed is changed during the spindle synchronization state, the commanded speed will be reached by accelerating or decelerating according to the spindle acceleration/deceleration set in the parameters while maintaining the synchronized state.

Phase alignment control

(1) If the Spindle-Spindle polygon command (R=0 with no R command) is commanded with G51.2, the workpiece axis spindle rotating at an arbitrary rotation speed will accelerate/decelerate to the rotation speed following the rotation ratio command of the workpiece axis spindle and rotary tool axis spindle. The spindles will then enter the spindle synchronization state. After that, the phases will be aligned to realize the rotation phase commanded with the R address.

(2) The spindle synchronization phase shift amount commands the shift amount from the rotary tool axis spindle's reference point (one rotation signal). This is not the shift amount for the workpiece axis.
(3) Operation takes place in the following manner.

<Program example 1> With phase error (#1239 set11/bit4=0)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
<th>Phase alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece axis</td>
<td>600</td>
<td>1st axis (workpiece axis) forward run synchronization</td>
</tr>
<tr>
<td>Workpiece axis</td>
<td>500</td>
<td>Spindle synchronization cancel</td>
</tr>
<tr>
<td>Rotary tool axis</td>
<td>1st spindle (workpiece axis) forward run</td>
<td></td>
</tr>
<tr>
<td>Rotary tool axis</td>
<td>600</td>
<td>3rd spindle (rotary tool axis) forward run</td>
</tr>
<tr>
<td>Rotary tool axis</td>
<td>300</td>
<td>Synchronization complete</td>
</tr>
<tr>
<td>Rotary tool axis</td>
<td>0</td>
<td>Phase alignment</td>
</tr>
</tbody>
</table>

Txx00 ; Select rotary tool
M03 S100 ; Forward rotate 1st spindle (workpiece axis) (speed command)
G51.2 H1 D3 P1 Q5 Rxx ; Spindle-Spindle polygon command, synchronize 3rd spindle (rotary tool axis) to 1st spindle (workpiece axis spindle) with forward run. Shift synchronous spindle's phase by R command value.
G50.2 ; Cancel Spindle-Spindle polygon mode
10. Spindle Functions

10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon)

<Program example 2> No phase error (#1239 set11/bit4=1)

```plaintext
Txx00 ; Select rotary tool
M03 S100 ; Forward rotate 1st spindle (workpiece axis) (speed command)
G51.2 H1 D3 P1 Q5 ; Spindle-Spindle polygon command, synchronize 3rd spindle (rotary tool axis) to 1st spindle (workpiece axis spindle) with forward run.
G50.2 ; Cancel Spindle-Spindle polygon mode
```

<Operation>

<table>
<thead>
<tr>
<th>Time</th>
<th>Workpiece axis</th>
<th>Rotary tool axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>600</td>
<td>0</td>
</tr>
</tbody>
</table>

- Synchronization complete
- Spindle synchronization cancel
- 3rd spindle (rotary tool axis) forward run synchronization
- 1st spindle (workpiece axis) forward run synchronization
- G51.2 command spindle-spindle polygon machining start
- 3rd spindle (rotary tool axis) forward run
- 1st spindle (workpiece axis) forward run
Example of program

```
Txx00 ;
M03 S500 ;
G00 X40. Z-5. ;

G51.2 H1 D3 P1 Q3 R0 ;

G99 ;
G00 X18. ;
G01 Z20. F0.1 ;
G00 X40. ;
    Z-5. ;

G00 X14. ;
G01 Z20. F0.1 ;
G00 X40. ;
    Z-5. ;

S50.2 

M05 ;
```

- `Txx00 ;` Select rotary tool
- `M03 S500 ;` 1st spindle forward run
- `G00 X40. Z-5. ;` Spindle-Spindle polygon machining mode ON
- `G51.2 H1 D3 P1 Q3 R0 ;` Select 1st spindle as workpiece axis and 3rd spindle as rotary tool axis
- `Designate rotation ratio as one workpiece corner and three rotary tool teeth`
- `Designate rotary tool axis spindle phase shift amount as 0°.`
- `Start synchronous rotation of S3 to S1 with forward run. Align phases with 0° shift amount.
 S3 rotation speed is 1500 r/min (S1:S3=1:3)`
- `G99 ;` Select synchronous feed mode
- `G00 X18. ;` If synchronization is not completed, wait to start cutting feed
- `G01 Z20. F0.1 ;` 1st cut
- `G00 X40. ;
 Z-5. ;`
- `G00 X14. ;
G01 Z20. F0.1 ;
G00 X40. ;
 Z-5. ;`
- `S50.2` Cancel Spindle-Spindle polygon machining
- `M05 ;` Stop 3rd spindle
- `Stop 1st spindle`
10. Spindle Functions

10.9 Tool Spindle Synchronization IB (Spindle-Spindle, Polygon)

Cautions for programming

1. Always command G51.2 and G50.2 in independent blocks.
2. The R command can be omitted when entering the Spindle-Spindle polygon mode, but the P and Q commands must always be issued. Failure to do so will cause a program error (P33).
3. To change the P, Q or R modal value while in the Spindle-Spindle polygon mode, command G51.2 again. In this case, R can be commanded independently. However, if either P or Q is also changed, always command P and Q again.
4. Commands can be issued to each part system, but two part systems cannot be used simultaneously. The part system commanded first will be valid, and the operation error 1005 will occur for that commanded last.
5. The spindle No. designated in the parameters will be used if D_H_ is omitted from the G51.2 command.
6. A program error (P610) will occur if the workpiece axis No. (#1518) and rotary tool axis No. (#1519) are the same as the value set in the parameters. Program error (P33) will occur if the spindle is not serially connected.
7. The cutting feed block will not start until synchronization is established after the G51.2 command. (Operation will stop with the operation error 1033.)

Precautions and restrictions

1. Limits to phase alignment control

 a) Make sure that the spindle (and workpiece axis spindle) actual rotation speed and encoder rotation speed's rotation ratio has the following relation.

 \[
 \frac{\text{Spindle rotation speed}}{\text{encoder rotation speed}} = n \quad (n \text{ is an integer higher than 1})
 \]

 If this relation is not established, the encoder's reference position will not be set at a set spindle position. Thus, the phase (position) will deviate each time the phase alignment command is executed.

 Note that even in this case, if the number of workpiece corners (number of rotary tool teeth) corresponds to the rotation ratio, the phase (position) of the blade and workpiece will not deviate. (Following relation)

 \[
 \frac{\text{Workpiece axis spindle rotation speed} \cdot \text{number of workpiece teeth}}{\text{encoder rotation speed}} = n \quad (n \text{ is an integer higher than 1})
 \]

 b) During phase alignment control, the phases are aligned to the reference position of each spindle's encoder. Thus, if the positional relation of the workpiece and reference position (workpiece and reference position) deviates when the power is turned ON/OFF or the tool is replaced, etc., the phase will deviate.

 c) When the spindle speed is reached, the speed may decelerate momentarily because of phase synchronization separately from the above phase alignment control.
10. Spindle Functions

10.10 Tool Spindle Synchronization IC (Spindle-NC Axis, Polygon)

10.10 Tool Spindle Synchronization IC (Spindle-NC Axis, Polygon); G51.2 (Only 6 and 7 in G code list)

Function and purpose

This function carries out polygon machining by controlling the workpiece (spindle) and tool axis (NC servo axis) to rotate in synchronization at the commanded ratio.

Command format

(1) Polygon machining mode ON

```
G51.2 P__ Q__ ;  Spindle synchronization start (Start of polygon machining mode)
```

- **P,Q** Spindle and rotary tool axis rotation ratio (P__:Q__)
 - P : Spindle
 - Q : Rotary tool axis
 - Command range : Integer value between 1 and 9, –1 and –9

 The rotation direction is designated with a sign.
 - (+) : Forward rotation
 - (–) : Reverse rotation

(2) Polygon machining mode OFF

```
G50.2 ;  Spindle synchronization cancel (Polygon machining mode cancel)
```

Explanation of operation

<table>
<thead>
<tr>
<th>Program</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1000 ;</td>
<td>The spindle rotation speed (workpiece rotation speed) is commanded</td>
</tr>
</tbody>
</table>
| G51.2 P1 Q2 ; | The polygon machining mode is entered with the G51.2 command.
 The spindle and rotary tool axis start rotating, and control is applied so that the spindle rotation speed and tool axis rotation speed are the commanded ratio (P:Q). |
| Cutting into workpiece | |
| G50.2 ; | The polygon machining mode between the spindle and rotary tool axis is canceled by the G50.2 command, and the spindle and rotary tool axis rotation stop. |

The rotary tool axis is designated with the base specifications parameters "#1501 polyax".

Canceling the polygon machining mode

The polygon machining mode is canceled in the following cases.

- G50.2 command
- Power OFF
- Emergency stop
- Reset (Reset 1, Reset 2, Reset & Rewind)
10. Spindle Functions

10.10 Tool Spindle Synchronization IC (Spindle-NC Axis, Polygon)

Rotation direction

(1) The spindle rotation direction during the polygon machining mode is determined by the P command sign and the spindle parameter "#3393 SP193(SPECT)/bit 4:command polarity".

<table>
<thead>
<tr>
<th>P command sign</th>
<th>#3393 SP193/bit 4</th>
<th>Rotation direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>0</td>
<td>CW</td>
</tr>
<tr>
<td>(+)</td>
<td>1</td>
<td>CCW</td>
</tr>
<tr>
<td>(-)</td>
<td>0</td>
<td>CCW</td>
</tr>
<tr>
<td>(-)</td>
<td>1</td>
<td>CW</td>
</tr>
</tbody>
</table>

(2) The rotation direction of the rotary tool axis during the polygon machining mode is determined by the Q command sign and the base specifications parameters "#1018 CCW".

<table>
<thead>
<tr>
<th>Q command sign</th>
<th>#1018 CCW</th>
<th>Rotation direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)</td>
<td>0</td>
<td>CW</td>
</tr>
<tr>
<td>(+)</td>
<td>1</td>
<td>CCW</td>
</tr>
<tr>
<td>(-)</td>
<td>0</td>
<td>CCW</td>
</tr>
<tr>
<td>(-)</td>
<td>1</td>
<td>CW</td>
</tr>
</tbody>
</table>

Example of program

An example of the program is shown below.

```
N10 G00 X100. Z20. ; Positioning
N20 S1000 ; Spindle (workpiece) rotation speed command
N30 G51.2 P1 Q2 ; Spindle/tool axis rotation start
    (Spindle rotation speed 1000 [r/min], tool axis rotation speed 2000 [r/min])
N40 G01 X80. F10. ; X axis cut in
N50 G04 X2. ; Dwell
N60 G00 X100. ; X axis retract
N70 G50.2 ; Spindle/tool axis rotation stop
```

(Note) Always command G51.2 and G50.2 in independent blocks.
Precautions

1. The "spindle synchronization (Polygon)" specifications must be provided to use this function. If G51.2 or G50.2 is commanded without the specifications, the program error (P39) will occur.

2. Always command G51.2 and G50.2 in independent blocks.
 - If the G51.2 (G50.2) command and group 0 G code are commanded in the same block, the G code commanded last in the block will have the priority.
 - If the G51.2 (G50.2) command and G code other than a group 0 code are commanded in the same block, the program error (P33) will occur.

3. While in the polygon machining mode, a movement command cannot be issued in the machining program for a servo axis set as the rotary tool axis. If a movement command is issued to the rotary tool axis during the polygon machining mode, the program error (P32) will occur.

4. The servo axis set as the rotary tool axis can be used as a feed axis in modes other than the polygon machining mode.

5. The following functions are invalid for the rotary tool axis during the polygon machining mode.
 - Override
 - Feed hold
 - Stored stroke limit

6. The spindle rotation speed can be changed with the S command even during the polygon machining mode. The spindle override and spindle rotation speed clamp are also valid. If the spindle rotation speed is changed, the rotary tool axis rotation speed will also change so that the spindle and rotary tool axis establish the P:Q ratio.

7. The forward run/reverse run commands are invalid for the spindle during the polygon machining mode.

8. If the feed rate for the rotary tool axis exceeds the rapid traverse rate (axis specifications parameters "#2001 rapid") during the polygon machining mode, the speed will be clamped at the rapid traverse rate. If the rotary tool axis is clamped at the rapid traverse rate, the spindle speed will also be set to lower than the command speed so that the spindle and rotary tool axis establish the P:Q ratio.

9. The position loop gain for the rotary tool axis will be the value set in the axis specifications parameters "#2017 tap_g" during the polygon machining mode. The position loop gain for the spindle will be the spindle parameters "#13002 PGN" setting value.

10. The following functions cannot be used simultaneously with polygon machining.
 - Synchronous tap
 - Thread cutting

11. If an axis other than the rotary tool axis reaches the stroke end during the polygon machining mode, the axis other than the rotary tool axis will stop moving, but the rotary tool axis and spindle rotation will not stop.

12. If the rotary tool axis reaches the stroke end during the polygon machining mode, the rotary tool axis and spindle rotation will stop, and the movement of axes other than the rotary tool axis will also stop.

13. By setting the spindle basic specifications parameters "#3106 zrn_typ/bit4" to "0", the polygon machining will start after the spindle returns to the zero point.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing) ; G114.3

Function and purpose

This function is to cut the gear with hob (hob cutter).
A spur gear can be machined by synchronizing and rotating the hob axis and the workpiece axis in a constant ratio.
A helical gear can be machined by compensating the workpiece axis according to the gear torsion angle for the Z axis movement.

By synchronizing and rotating the hob axis and the workpiece axis in a constant rotation ratio, a gear is machined so that the cutter is engaged with gear.

In this manual, the hob axis and the workpiece axis are defined as follows:
- Hob axis : Rotary tool axis on which a hob is mounted
- Workpiece axis : Rotary axis on which a workpiece is mounted
- Hob threads : Number of the screw paths created by cutter part on hob. Usually this is 1 row.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

Command format

(1) Hobbing mode commands (for spur gear)
The hobbing mode for spur gear in which two axes are synchronously rotated at different speeds is entered by designating the hob axis and workpiece axis, and by designating the rotation ratio (hob threads and number of gear teeth) for the two designated axes.

<table>
<thead>
<tr>
<th>G114.3 H__ D__ E__ L__ R__ ;</th>
<th>Tool spindle synchronization control II (hobbing mode) ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>H : Hob axis</td>
<td>D : Workpiece axis</td>
</tr>
<tr>
<td>E : Hob axis rotation ratio</td>
<td>L : Workpiece axis rotation ratio</td>
</tr>
<tr>
<td>R : Workpiece axis phase shift amount</td>
<td></td>
</tr>
</tbody>
</table>

(2) Hobbing mode commands (for helical gear)
The hobbing mode for helical gear is entered by additionally designating the gear torsion angle and module or diametrical pitch.

<table>
<thead>
<tr>
<th>G114.3 H__ D__ E__ L__ P__ Q__ R__ ;</th>
<th>Tool spindle synchronization control II (hobbing mode) ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>H : Hob axis</td>
<td>D : Workpiece axis</td>
</tr>
<tr>
<td>E : Hob axis rotation ratio</td>
<td>L : Workpiece axis rotation ratio</td>
</tr>
<tr>
<td>P : Gear torsion angle</td>
<td>Q : Module or diametrical pitch</td>
</tr>
<tr>
<td>R : Workpiece axis phase shift amount</td>
<td></td>
</tr>
</tbody>
</table>

(3) Hobbing mode cancel command
The synchronous state of the hob axis and workpiece axis rotating in synchronization with the tool spindle synchronous II (hobbing) command is canceled.

<p>| G113 ; | Tool spindle synchronization II (hobbing) |</p>
<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| H | Hob axis | 1 to 6 | - If there is no command, a program error (P33) will occur.
| | Set the spindle No. of the hob axis. | | - If an analog connected spindle is selected, a program error (P33) will occur.
| | | | - If the spindle No. not connected is designated, a program error (P35) will occur. |
| D | Workpiece axis | -9 to -1, 1 to 9 | - If there is no command, a program error (P33) will occur.
| | Set the rotation No. of the workpiece axis. | ±1 to 6 | - The rotation direction of the workpiece axis in respect to the hob axis is commanded with the D sign.
| | | Axis No. (in part system) | - If the D sign is "+", the workpiece axis will rotate in the forward direction when the hob axis rotates in the forward direction. If the D sign is "-", the workpiece axis will rotate in the reverse direction when the hob axis rotates in the forward direction.
| | | ±9 : C axis | - If the axis specified as the workpiece axis is not a rotation axis, a program error (P33) will occur.
| | | | - If C axis is selected when there is no C axis, a program error (P33) will occur. |
| E | Hob axis rotation ratio | 0 to 999 | - If there is no command, the rotation ratio will be interpreted as 1.
| | Set the hob axis rotation ratio (hob threads). | | - If E0 is commanded, the workpiece axis will stop (synchronized with the Z axis for a helical gear). (Note 2) |
| L | Workpiece axis rotation ratio | 1 to 999 | - If there is no command, the rotation ratio will be interpreted as 1. |
| | Set the workpiece axis rotation ratio (number of gear teeth). | | |
| R | Workpiece axis phase shift amount | 0 to 359999 (0 to 359.999") | - The commanded shift amount will be applied in the workpiece axis counter's positive direction.
| | Command the amount to shift from the workpiece axis reference point to synchronize with the hob axis reference point. | Decimal point input possible (Note 3) | - If there is no R command, phase alignment will not be carried out. |

(Note 2) When using a helical gear, the workpiece axis should be synchronized with the Z axis.
(Note 3) Decimal point input is possible.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Gear torsion angle</td>
<td>-89000 to 89000 (-89.000 to 89.000)</td>
<td>If there is no P command, or if P0 is commanded, spur gear will be machined. To move the Z axis in the pulse direction after entering the hobbing mode, command the direction that the workpiece axis is twisted.</td>
</tr>
<tr>
<td></td>
<td>Command the torsion angle for the helical gear.</td>
<td>Decimal point input possible (Note 3)</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Module</td>
<td>Metric input Module 100 to 25000 0.1 to 25. (0.1 to 25 mm)</td>
<td>If there is no Q command for helical gear (when P is designated), a program error (P33) will occur. For spur gear (when P is not designated, or P0 is commanded), the Q command will be ignored.</td>
</tr>
<tr>
<td></td>
<td>Command the normal module for helical gear. When inch input, command the diametrical pitch.</td>
<td>Inch input Designate diametrical pitch 1000 to 250000 0.1 to 25. (0.1 to 25 inch⁻¹)</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) If a value exceeding the command range is commanded, a program error (P35) will occur.

(Note 2) When address E = 0 is commanded, the workpiece axis will not rotate. Do not use this except for special cutting (cutting of only part of the gears, etc.).

(Note 3) The range which can be set depends on the input setting unit (parameter "#1003 iunit"). (Example) When the input setting unit is 0.000001°, the range is 0 to 359.999999°.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

Rotation ratio change during the tool spindle synchronization control II mode

The rotation ratio and the number of hob threads can be changed stopping neither the hob axis nor the workpiece axis during tool spindle synchronization control II (hobbing) mode.

<table>
<thead>
<tr>
<th>G114.3 E__ L__ P__ Q__ ;</th>
<th>Rotation ratio change</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Hob axis rotation ratio</td>
</tr>
<tr>
<td>L</td>
<td>Workpiece axis rotation ratio</td>
</tr>
<tr>
<td>P</td>
<td>Gear torsion angle</td>
</tr>
<tr>
<td>Q</td>
<td>Module or diametrical pitch</td>
</tr>
</tbody>
</table>

(1) The G114.3 command during the tool spindle synchronization control II (hobbing) mode can omit each address. If the address is omitted, modal value of the last command is used. (Example) When changing only the workpiece axis rotation ratio (the modal value of the last command is used excluding L.)

G114.3 L50;

(2) If the followings are issued, a program error (P33) will occur.
 (a) When R command (workpiece axis phase shift amount) is issued.
 (b) When the hob axis No. and workpiece axis No. are changed.
 (c) When other than 0 is commanded by E command in E=0 state, or 0 is commanded by E command in E≠0 state.

(3) The workpiece axis rotation speed may be changed by changing ratio. Acceleration/deceleration time constant follows spindle multi-step acceleration/deceleration time constant based on spindle rotation region of hob axis calculated in consideration for rotation ratio at workpiece axis rotation speed.

(4) Spindle rotation speed synchronization completion signal is turned OFF by changing the rotation ratio. This signal is turned ON when the workpiece axis rotation speed reaches the prescribed range for hob axis rotation speed after completing the rotation ratio change.

(5) The hob axis rotation speed cannot be changed while the rotation ratio is changed (during workpiece axis acceleration/deceleration). If the rotation command is issued for hob axis during the rotation ratio change, the commanded rotation speed is applied after completing the rotation ratio speed change.

(6) The helical gears machining by Z axis movement do not be executed while the rotation ratio is changed (during workpiece axis acceleration/deceleration).

The helical gear machining is executed after completing the rotation ratio change.

(7) The phase of hob axis and workpiece axis during rotation ratio changing (during workpiece axis acceleration/deceleration) or after changing is not warrantable. A phase cannot be aligned with gears machining of the last command.

(8) The "Hob axis delay (advance) monitoring", "Compensation control by workpiece axis" and "The workpiece axis feedforward control" are invalid while the rotation ratio is changed (during workpiece axis acceleration/deceleration).

These functions are valid after finishing the rotation ratio change.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

Rotation speed and rotation direction

The rotation speed and rotation direction of hob axis and workpiece axis during tool spindle synchronization control II (hobbing) are as follows.

(1) The rotation speed and rotation direction of hob axis are the rotation speed commanded with the S command and the rotation direction commanded with the M command, etc., for the spindle selected as the hob axis.

<table>
<thead>
<tr>
<th>When the sign of D command is +</th>
<th>When the sign of D command is -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hob axis: Forward rotation</td>
<td>Hob axis: Reverse rotation</td>
</tr>
<tr>
<td>Workpiece axis: + direction</td>
<td>Workpiece axis: - direction</td>
</tr>
</tbody>
</table>

(2) The workpiece axis rotation speed is determined by the number of the rotary tool gear teeth workpiece corners commanded with G114.2.

\[Sw = Sh \times \frac{E}{L} \]

Sw: Workpiece axis rotation speed (r/min)
Sh: Hob axis rotation speed (r/min)
E: Hob axis rotation ratio (hob threads)
L: Workpiece axis rotation ratio (number of gear teeth)

(3) The workpiece axis rotation direction is determined by the sign of the address D commanded with G114.3.

In other words, when the D sign is "+", the workpiece axis will rotate in the same direction as the hob axis, and when "-", the workpiece axis will rotate in the direction opposite the hob axis.

(4) After tool spindle synchronization control II (hobbing) is commanded the relation of the hob axis and workpiece axis rotation is held in all operation modes of automatic and manual modes until spindle synchronization cancel (G113) is commanded or until the spindle synchronization cancel signal is input.

Even during reset or feed hold, the hob axis and workpiece axis synchronization state is held.
Workpiece axis control

1. The workpiece axis will start rotating in synchronization with the hob axis simultaneously with the commanding of G114.3. Thus, the workpiece axis accelerates rapidly when commanding G114.3 while the hob axis is rotating. So, stop the hob axis to avoid this before G114.3 commanded.

2. The axis selection signal and in axis motion signal of workpiece axis are not output during the tool spindle synchronization control II (hobbing) mode.

3. If a manual movement command is issued to the workpiece axis during the tool spindle synchronization control II (hobbing) mode, the manual movement will be superimposed on the workpiece axis movement with tool spindle synchronization. In this case, the axis selection signal and in axis motion signal of workpiece axis will be output. Note that, if the movement command is issued in the manual reference position return mode, an operation error (0005) occurs. An automatic movement command can be issued to the workpiece axis during the tool spindle synchronization control II (hobbing) mode. Refer to "(2) Command compensation" in "Compensation control by workpiece axis" for details of the command to the workpiece axis.

4. The input signals of external deceleration, interlock and machine lock are following below for the workpiece axis during the tool spindle synchronization control II (hobbing) mode.

<table>
<thead>
<tr>
<th>Movement by the hobbing function</th>
<th>Interlock</th>
<th>Machine lock</th>
<th>External deceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement by manual command</td>
<td>Valid for manual interlock</td>
<td>Valid for manual machine lock</td>
<td>Valid</td>
</tr>
<tr>
<td>Automatic compensation by incremental command</td>
<td>Valid for automatic interlock</td>
<td>Valid for automatic machine lock</td>
<td>Valid</td>
</tr>
</tbody>
</table>

5. If a servo OFF signal is input for the workpiece axis during the tool spindle synchronization control II (hobbing) mode, the tool spindle synchronization control II (hobbing) is canceled because synchronization cannot be maintained.

6. The workpiece axis rotation speed is determined according to the hob axis rotation speed, so designate the hob axis rotation speed so that the workpiece axis cutting clamp speed is not exceeded.

7. The C axis counter on each screen will be updated as shown below during the tool spindle synchronization control II (hobbing) mode.

<table>
<thead>
<tr>
<th>Coordinate value when the hobbing starts</th>
<th>Rotation range</th>
</tr>
</thead>
<tbody>
<tr>
<td>125.000 (*)</td>
<td>0.000 to 359.999 (*)</td>
</tr>
<tr>
<td>750.500 (*)</td>
<td>720.000 to 1079.999 (*)</td>
</tr>
<tr>
<td>-252.200 (*)</td>
<td>-360.000 to -0.001 (*)</td>
</tr>
</tbody>
</table>

8. If the hobbing command is issued before the workpiece axis completes zero point return, a program error (P430) will occur.
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

Acceleration/deceleration control

(1) The hob axis will carry out multi-step acceleration/deceleration with the spindle synchronization acceleration/deceleration time constant \(spt \) set for the spindle selected as the hob axis.

Phase alignment control (Machine configuration that the phase alignment is possible)

To carry out phase alignment during hobbing, the spindle detector commanded as the hob axis must have a Z phase and satisfy the following conditions.

<table>
<thead>
<tr>
<th>Control system</th>
<th>Gear ratio conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-closed control</td>
<td>Spindle side gear : motor side gear = 1 : 1</td>
</tr>
<tr>
<td>Full-closed control</td>
<td>Spindle end : encoder end = 1 : 1</td>
</tr>
</tbody>
</table>

Phase alignment control (Operation when the zero point of hob axis is not established)

When the zero point of hob axis is not established by the hob axis rotation after turning the power ON or the spindle gear changeover, carry out phase alignment by following operation.

(The zero point of hob axis is established within the range of (i) - (A) in figure.)

(1) When tool spindle synchronization control II (with R command) is commanded with G114.3, the rotation axis commanded as the workpiece axis will enter the tool spindle synchronization II (hobbing) control state.

(2) The hob axis will start rotation at the Z phase detection speed (parameter "#3109 zdetspd") set in the parameters with the first S command issued for the hob axis after the hobbing control state is entered.

At this time, the workpiece axis, will reach the rotation speed following the rotation ratio command for the hob axis and workpiece axis.

If this command rotation speed is 0 \((\text{r/min}) \), the hob axis will not start rotating, and instead will wait for the next S command.

(3) The hob axis and workpiece axis phases will be aligned in this state.

(4) After the phases are aligned, the hob axis will accelerate/decelerate to the rotation speed commanded with the S command. The workpiece axis will accelerate/decelerate to the rotation speed obtained based on the hob axis rotation speed allowing for the hob axis and workpiece axis rotation ratio, and will enter the synchronized state.

(5) The operation example is as follows.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Txx00;</td>
<td>Select the rotary tool.</td>
</tr>
<tr>
<td>M83 S4=0;</td>
<td>Forward run the fourth spindle (hob axis). (Rotation speed is 0)</td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>G114.3 H4 D9 E1 L5 R0;</td>
<td>Hobbing mode (phase alignment at phase difference 0) ON</td>
</tr>
<tr>
<td>S4=500;</td>
<td>Rotate fourth spindle (hob axis) at 500r/min.</td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>M85;</td>
<td>Stop fourth spindle.</td>
</tr>
<tr>
<td>G113;</td>
<td>Cancel hobbing mode.</td>
</tr>
</tbody>
</table>
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

<Operation>

![Diagram showing phase alignment control (Operation when the zero point of hob axis is established)]

Phase alignment control (Operation when the zero point of hob axis is established)

When the zero point of hob axis has already been established, the zero point of hob axis establishment is omitted. Thus, the process finishes fast compared with the case that the zero point of hob axis is not established.

(1) When tool spindle synchronization control II (with R command) is commanded with G114.3, the rotation axis commanded as the workpiece axis will enter the tool spindle synchronization II (hobbing) control state.

(2) The hob axis rotation speed according to the Z phase detection speed (parameter "#3109 zdetspd") set in the parameters is entered with the first S command issued for the hob axis after the hobbing control state. If this command rotation speed is 0 (r/min), the workpiece axis will not start rotating, and instead will wait for the next S command.

(3) When the state of the hob axis stopping and workpiece axis rotating, the phase alignment is carried out.

(4) After the phases are aligned, the hob axis will accelerate/decelerate to the rotation speed commanded with the S command. The workpiece axis will accelerate/decelerate to the rotation speed obtained based on the hob axis rotation speed allowing for the hob axis and workpiece axis rotation ratio, and will enter the synchronized state.

(5) The operation example is as follows.

<table>
<thead>
<tr>
<th>Txx00;</th>
<th>Select the rotary tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M83 S4=0;</td>
<td>Forward run the fourth spindle (hob axis). (Rotation speed is 0)</td>
</tr>
<tr>
<td>G114.3 H4 D9 E1 L5 R0;</td>
<td>Hobbing mode (phase alignment at phase difference 0) ON</td>
</tr>
<tr>
<td>S4=500;</td>
<td>Rotate fourth spindle (hob axis) at 500r/min. (1)</td>
</tr>
<tr>
<td>M85;</td>
<td>Stop fourth spindle. (2)</td>
</tr>
<tr>
<td>G113;</td>
<td>Cancel hobbing mode. (3)</td>
</tr>
</tbody>
</table>
Compensation control by workpiece axis

(1) Automatic compensation

The workpiece axis is controlled while constantly allowing for hob axis delay (advance) caused by disturbance, etc. This is especially effective in increasing the workpiece accuracy during heavy cutting. Automatic compensation is validated with parameters. When the amount of the compensation added to the workpiece axis by hobbing conditions etc. changes greatly and rapidly, a servo alarm might occur for the workpiece axis. In that case, with the compensation amount through the primary delay filter, this enables the compensation amount fluctuation to further smoothen. However, the more widely the primary delay time constant is set, the more the effect of the compensation decreases, so the effect of the workpiece accuracy might not improve.

[Spindle NC parameter] (Machine parameter)
#3130 syn_spec/bit0 Tool spindle synchronization II (hobbing) automatic compensation selection
OFF : No compensation
ON : Hob axis delay (advance) is compensated with workpiece axis
#3134 sphtc Tool spindle synchronization II (hobbing) automatic compensation primary delay time constant
0 : Primary delay filter control invalid
1 to 32768 : Primary delay filter time constant Setting unit (ms)

(2) Command compensation

Errors in the cutting workpiece shape caused by insufficient machine rigidity, etc., are compensated with the workpiece axis command in the machining program.
(a) Command the workpiece axis compensation amount as an incremental value.
(b) Command the workpiece axis compensation amount direction in the workpiece axis rotation direction using a "+" command, and in the direction opposite the workpiece axis rotation using a "-" command.
(c) When the movement command is issued with absolute value for the workpiece axis during the tool spindle synchronization control II (hobbing) mode, a program error (P32) will occur.
Feedforward control during tool spindle synchronization II (hobbing) mode

A feedforward control can be issued for the hob axis and the workpiece axis during the tool/spindle synchronization control II (hobbing) mode.

1) The hob axis feedforward control is controlled according to hob axis feedforward gain (#3135 sfwd_g).

2) The workpiece axis feedforward control is controlled according to hob axis feedforward gain (parameter "#3135 sfwd_g") for the workpiece axis rotation contents of the hob axis rotation. The feedforward control is controlled according to workpiece axis feedforward gain (#2155 hob_fwd_g) for the helical compensation of the Z axis movement.
Example of program

(1) Spur gear machining without phase alignment

```
Txx00;        .....Rotary tool selection
M** S4=0;     .....Fourth spindle stop (Rotation command forward rotation ON)
G00 X48. Z5.;  .....(1)

G114.3 H4 D9 E1 L10; .....Tool spindle synchronization II (hobbing) mode ON
                           Hob axis: Fourth spindle, workpiece axis: C axis
                           Hob threads: 1, rotation ratio: 10 teeth
S4=500;          .....C axis starts forward run synchronized with S4.
                   The C axis rotation speed is 50r/min (S4 : C = 10 : 1).
```
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

M**;Spindle speed synchronization completion confirmation

G94;Asynchronous feed mode selection

G01 Z-15. F10 ;First cut (2)
G00 X54. ; (3)
G00 X40. ; (4)
Z5.; (5)
G01 Z-15. F10 ;Second cut (6)
G00 X54. ; (7)

G113;Tool spindle synchronization II (hobbing) mode OFF

M** ;
M** ;Fourth spindle stop

(2) Helical gear machining with phase alignment

Txx00;Rotary tool selection
M** S4=0;Fourth spindle stop
 (Rotation command forward rotation ON)
G00 X48. Z5.;(1)

S114.3 H4 D9 E3 L10 P30. Q2000 R0.;Too spindle synchronization II (hobbing) mode ON

 Hob axis: Fourth spindle,
 workpiece axis: C axis hob threads: 3,
 rotation ratio: 10 teeth, torsion angle : 30°,
 module : 2mm
 Phase alignment at phase difference 0

S4=500;C axis starts forward run synchronized with S4.
 The C axis rotation speed is 150r/min (S4 : C = 10 : 3).
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

<table>
<thead>
<tr>
<th>G-Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M**;</td>
<td>.....Spindle speed synchronization completion confirmation</td>
</tr>
<tr>
<td>G94;</td>
<td>.....Asynchronous feed mode selection</td>
</tr>
<tr>
<td>G01 Z-15. F10 ;</td>
<td>.....First cut (2)</td>
</tr>
<tr>
<td>G00 X54. ;</td>
<td>..... (3)</td>
</tr>
<tr>
<td>Z5. ;</td>
<td>..... (4)</td>
</tr>
<tr>
<td>X46.</td>
<td>..... (5)</td>
</tr>
<tr>
<td>G01 Z-15. F10 ;</td>
<td>.....Second cut (6)</td>
</tr>
<tr>
<td>G00 X54. ;</td>
<td>..... (7)</td>
</tr>
<tr>
<td>G113;</td>
<td>.....Tool spindle synchronization II (hobbing) mode OFF</td>
</tr>
<tr>
<td>M** ;</td>
<td></td>
</tr>
<tr>
<td>M** ;</td>
<td>.....Fourth spindle stop</td>
</tr>
</tbody>
</table>
10. Spindle Functions

10.11 Tool Spindle Synchronization II (Hobbing)

Precautions

1. The tool spindle synchronization control II (hobbing) mode cannot be commanded during the spindle synchronization control (spindle rotation synchronization) mode or the tool spindle synchronization control I (polygon machining) mode. Only one of the three types of spindle synchronization control can be commanded at once.

2. Even if the reset signal is input, the tool spindle synchronization control II (hobbing) maintains synchronization. However, the synchronization is canceled at emergency stop.

3. When cutting helical gear, correct cutting feed will not be possible in the synchronous feed mode, so always cut in the asynchronous feed mode.

4. To carry out phase alignment when machining spur gear, correct phase alignment will not be possible if the Z axis is moving, so always carry out phase alignment control when the Z axis is stopped.

5. The linear-type rotation axis for the absolute position system cannot be used as the hobbing workpiece axis. If used, an error (Z70 Absolute position lost 0002) will occur after the power is turned OFF/ON.

6. If hobbing control is carried out using the linear-type rotation axis as the hob axis, the current value will be illegal when the hobbing is canceled. In this case, preset the counter after canceling hobbing.

7. Execute the G114.3 command when the hob axis rotation speed is 0, and the spindle rotation command (forward or reverse run) is ON. If G114.3 is commanded while the hob axis is rotating or when the rotation command is OFF, the following types of trouble will occur.
 (a) Phase alignment will not be carried out correctly.
 (b) If the hob axis rotation speed is high, the workpiece axis will suddenly accelerate and the servo alarm will occur.

8. If address E is set to 0, phase alignment will not be carried out. Address R will be ignored even if commanded.

9. When "Hob axis delay (advance) allowable angle" (parameter "#3133 spherr") is "0", "Hob axis delay excess" (X18B3) is not output.

10. During acceleration/deceleration of hob axis, "Hob axis delay angle" (R6516) and "Maximum hob axis delay angle" (R6517) are not updated.

11. Issue the commands for the workpiece axis from the machining program as a G0 incremental value or G1 incremental value. When an absolute value is commanded, program error (P32) will occur.

12. Always set the position loop gain of the hob axis and the workpiece axis to the same value. If different values are set, the machining accuracy is not warrantable.

 - Hob axis : #13003 SP003, #13036 SP036/BIT4
 - Workpiece axis (servo axis) : #2203 SV003, #2204 SV004, #2257 SV057
 - Workpiece axis (spindle/C axis) : #13002 SP002, #13035 SP035/BITC

13. If door interlock 1 or door interlock 2 is ON during the tool spindle synchronization control II (hobbing) mode, the tool spindle synchronization control II (hobbing) is canceled because synchronization cannot be maintained.

14. When the mixed synchronization control is commanded during hobbing, "M01 operation error 1035" will occur. The hobbing which uses the axis mixed synchronization controlling is possible.
Multiple-spindle control is a function used to control the sub-spindle in a machine tool that has a main spindle (1st spindle) and a sub-spindle (2nd spindle to 4th spindle). The spindle control method differs between multiple-spindle control I and multiple-spindle control II. Whether to use multiple-spindle control I or multiple-spindle control II depends on the parameter (#1300 ext36/bit0) setting.

Multiple-spindle control I: (ext36/bit0 = 0)
- Control following the spindle selection command (G43.1, etc.) and spindle control command ([S***** ;] or [SO=***** ;]), etc.

Multiple-spindle control II: (ext36/bit0 = 1)
- Control following the external signal (spindle command selection signal, spindle selection signal) and spindle control command ([S***** ;] only), etc.
- The spindle selection command [SO=***** ;] cannot be used.
10. Spindle Functions

10.12 Multiple-spindle Control

10.12.1 Multiple-spindle Control I (multiple spindle command)

Function and purpose

In addition to the S^{****} command, the 1st to 4th spindles can be identified and commanded with the $SO=*****$ command.

Command format

$S\{=*****$

O

Designate the spindle No. with one numeric character (1: 1st spindle/2: 2nd spindle/3: 3rd spindle/4: 4th spindle). A variable can be designated.

Rotation speed or constant surface speed command. A variable can be designated.

(1) Each spindle command is delimited by the details of O.

(Example)

$S1 = 3500$: 1st spindle 3500(r/min) command
$S2 = 1500$: 2nd spindle 1500(r/min) command

(2) Multiple spindles can be commanded in one block.

(3) If two or more commands are issued to the same spindle in a block, the command issued last will be valid.

(Example) $S1 = 3500$ $S1 = 3600$ $S1 = 3700$; $S1 = 3700$ will be valid.

(4) The S^{****} command and $SO=*****$ command can be used together. The spindle targeted for the S^{****} command is delimited by the spindle selection command.

(5) The commands for each spindle can be commanded from any machining program in either part system.

(See diagram)

(Note 1) A program error (P35) will occur if the O value is not 1 to 4.

(Note 2) A program error (P33) will occur if $G47.1$ is issued in a modal.
10.12 Multiple-spindle Control

10.12.2 Multiple-spindle Control I (spindle selection command)

Function and purpose

The following S commands (S****) can be changed for the 1st spindle to 4th spindle by issuing the spindle selection command (G43.1, etc. [G group 20]).

Command format

<table>
<thead>
<tr>
<th>Command Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G43.1;</td>
<td>1st spindle control mode ON</td>
</tr>
<tr>
<td>G44.1;</td>
<td>Selected spindle control mode ON (Selected spindle No. is set with SnG44.1)</td>
</tr>
<tr>
<td>G47.1;</td>
<td>All spindles simultaneous control mode ON</td>
</tr>
</tbody>
</table>

Detailed description

1. The selected spindle No. is set with the parameter (#1534 SnG44.1).
2. The spindle selection commands are modal G codes.
3. A program error (P33) will occur if the spindle selection command is issued while the multiple-spindle control II mode is valid.
4. The spindle control mode entered when the power is turned ON or reset can be set with the parameters for each part system. The state when the power is turned ON or reset is as follows.

<table>
<thead>
<tr>
<th>G group 20 modal state</th>
<th>Set with setup parameter "#1199 Sselect".</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:G43.1</td>
<td>1:G44.1</td>
</tr>
<tr>
<td>1:G44.1</td>
<td>2:G47.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G44.1 spindle No.</th>
<th>Set with setup parameter "#1534 SnG44.1".</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:2nd spindle</td>
<td>1:1st spindle</td>
</tr>
<tr>
<td>1:2nd spindle</td>
<td>2:2nd spindle</td>
</tr>
<tr>
<td>2:2nd spindle</td>
<td>3:3rd spindle</td>
</tr>
<tr>
<td>3:3rd spindle</td>
<td>4:4th spindle</td>
</tr>
</tbody>
</table>

5. If the S command is issued in the same block as the spindle selection command, it will be valid for the spindle switched to with the spindle selection command.

Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G43.1 S100 ;</td>
<td>Command 100 rotations for 1st spindle.</td>
</tr>
<tr>
<td>S200 G44.1 S300 ;</td>
<td>After commanding 200 rotations for 1st spindle, command 300 rotations for 2nd spindle.</td>
</tr>
</tbody>
</table>

6. If a spindle that does not exist is set, the 2nd spindle will be used. Note that if there is only one spindle, the 1st spindle will be used.
10. Spindle Functions

10.12 Multiple-spindle Control

(7) Commands can be issued from any part system.

Relation with other functions

The following functions change after the spindle selection command.

1. **S command (S*****)**
 - The S command in G97 (rotation speed command)/G96 (constant surface speed command) will be the command for the spindle designated with the spindle selection command.

2. **Spindle clamp speed command**
 - The spindle clamp speed command issued with G92 S_Q_ will also follow the spindle selection command mode.

3. **Per rotation command (synchronous feed)**
 - Even if F is commanded in the G95 mode, the per rotation feed rate for the spindle designated with the spindle selection command will be applied.

4. **Constant surface speed control spindle changeover**
 - The constant surface speed control will also follow the spindle selection command mode.

If spindle other than the current mode is commanded with SO=***** , the spindle rotation speed command designated with O will have the priority.

Example

- S2=**** in G43 system mode ... 2nd spindle rotation speed command
- S1=**** in G44 system 2nd spindle selection mode.... 1st spindle rotation speed command

Note that the constant surface speed command in the constant surface speed control (G96) will be modal information independent from the rotation speed command.
Spindle control rights

If the constant surface speed control, S command and spindle related M command are commanded arbitrarily from each part system to one spindle, the spindle may not operate correctly. For example, if S is commanded (feed per minute) during constant surface speed control with 1st part system, the rotation speed will not change from the 1st part system side, and the actual rotation speed will relay on 2nd part system from which S was commanded last. These commands must be commanded from only one part system, or commanded simultaneously while using standby, etc.

1st part system Execution program

1st spindle rotation speed

G43.1 G0 X50. S100 G01 X10. 1st part system

After this, 1st part system will machine S200 even if it appears to be S100

2nd part system Execution program

G43.1 G0 X50. G01 X30. S200 G01 X10. 2nd part system

[Spindle control rights transfer conditions] When G44.1 spindle No. is 2

(1) The part system that commanded the S command last has the spindle control rights.

1st part system Execution program

G43.1 G07 S1000 G44.1 S500 S3000 G43.1 S2=3000

2nd part system Execution program

G43.1 G0 X50. G06 S200 S100 G44.1 S300 S1=1000

(2) If different S commands are executed simultaneously in two part systems, the part system with the larger part system No. will have the priority. That part system will also have the control rights.

1st part system Execution program

G43.1 S300 S100 200r/min 300r/min 200r/min

2nd part system Execution program

G43.1 S200 200r/min S300 200r/min
10.12.3 Multiple-spindle Control II

Function and purpose

Multiple-spindle control II is a function that designates which spindle to select with the signals from PLC. The command is issued to the spindle with one S command.

Detailed description

1. **Spindle command selection, spindle selection**

 The S command to the spindle is output as the rotation speed command to the selected spindle when the spindle selection signal (SWS) from the PLC turns ON. The selected spindle rotates at the output rotation speed. The spindle whose selection is canceled when the spindle selection signal (SWS) turns OFF maintains the speed at which it was rotating at before being canceled. This allows each axis to be simultaneously rotated at differing rotation speeds. The spindle command selection signal is used to determine which part system each spindle receives the S command from.

 ![Diagram of spindle control](image)

 (Note) Refer to the PLC Interface Manual for details on each signal.
(1) Spindle clamp speed setting (G92)
 This is valid only on the spindle selected with the spindle selection signal (SWS).
 The spindle not selected with the spindle selection signal (SWS) maintains the speed at which
 it was rotating at before being canceled.
 (The spindle clamp speed is maintained with the G92 command.)

(2) Constant surface speed control
 Constant surface speed control can be applied on all spindles.
 The spindle rotation speed is automatically controlled during constant surface speed control, so
 when machining with constant surface speed, the spindle selection signal (SWS) for that spindle
 must be left ON.
 The spindle not selected with the spindle selection signal (SWS) maintains the speed at which
 it was rotating at before being canceled.

(3) Thread cutting/synchronous feed
 The threads are cut with the spindle selected with the spindle selection signal (SWS). The
 encoder feedback selected with the encoder selection signal is used.

(4) Polygon machining (servo-spindle)
 The polygon machining spindle is selected with the spindle selection signal (SWS). Do not
 select the polygon machining spindle multiple times, and do not change the polygon machining
 spindle selection signal during the polygon machining mode.
 If a C axis mode command is issued to the polygon machining spindle, the "M01 operation error
 1026" will occur. When the C axis command is canceled, the error will be canceled and
 machining will resume.
 If synchronous tap is commanded during polygon machining, a program error (P34) will occur.

(5) Synchronous tap
 The synchronous tap spindle is selected with the spindle selection signal (SWS).
 Select the synchronous tap spindle before issuing the synchronous tap command. Do not
 change the synchronous tap spindle selection signal during the synchronous tapping mode.
 If a C axis mode command is issued to the synchronous tap spindle, the "M01 operation error
 1026" will occur. When the C axis command is canceled, the error will be canceled and
 machining will resume.
 If a polygon machining command is issued to the synchronous tap spindle, the "M01 operation
 error 1026" will occur. When the polygon machining command is canceled, the error will be
 canceled and machining will resume.

(6) Asynchronous tap
 The asynchronous tap spindle is selected with the spindle selection signal (SWS).
 Select the asynchronous tap spindle before issuing the tap command. Input a calculation request
 to change the asynchronous tap spindle selection. Do not change the asynchronous tap spindle
 selection signal during the asynchronous tapping mode.

(7) Tapping retract
 The tapping retract spindle is selected with the spindle selection signal (SWS).
 Select the spindle for which the tap cycle execution in stopped before turning the tapping
 retract signal ON.
 If tapping retract is executed when a different spindle is selected, the "M01 operation error
 1032" will occur. Do not change the spindle selection signal during tapping retract.
10. Spindle Functions

10.12 Multiple-spindle Control

Restrictions

1. The S manual numerical value command is invalid when multiple-spindle control II is valid.
2. Setup parameter "#1199 Sselect" is invalid when multiple-spindle control II is valid.
3. The spindle control mode changeover G code cannot be used when multiple-spindle control II is valid. A program error (P34) will occur.
4. The "S1=***" and "S2=***" commands are invalid when multiple-spindle control II is valid. A program error (P33) will occur.
5. The spindle gear shift command output signal (GR1/GR2) is not output when multiple-spindle control II is valid.
11. Tool Functions

11.1 Tool Functions (T8-digits BCD)

Function and purpose

Tool functions are also known as T functions, and are used to designate the tool Nos. and tool compensation Nos. The designations are made by the 8 digits (0 to 99999999) following the address T. These commands are used with the higher-order six or seven digits indicating the tool No., and the lower-order one or two digits indicating the compensation No. Which is to be used is determined by setting in the parameter

Command format

<table>
<thead>
<tr>
<th>Command format</th>
</tr>
</thead>
<tbody>
<tr>
<td>T ******* * ;</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T ******* ** ;</td>
</tr>
</tbody>
</table>

Tool compensation No.
Tool No.

Tool compensation No.
Tool No.

Reference should be made to the instructions issued by the machine tool builder for the correspondence between the actual tools and the tool Nos. commanded in the program. BCD codes and start signals are output.

If the T function is designated in the same block as a movement command, the commands may be executed in either of the following two orders. The machine specifications determine which sequence applies.

(a) The T function is executed after the movement command.
(b) The T function is executed simultaneously with the movement command.

Processing and completion sequences are required for all T commands.
12. Tool Offset Functions

12.1 Tool Offset

Function and purpose

Tool offset is performed by the T functions which are commanded with the 3-, 4- or 8-digit number following address T. There are two types of tool offset: tool length offset and tool nose wear offset. There are two ways to issue the commands: the tool length offset and tool nose wear offset are designated by the last 1 or 2 digits of the T command or the tool nose wear offset is assigned by the last 1 or 2 digits of the T command and the tool length offset by the tool No. Parameter "#1098 TLno." is used to switch between them. Parameter "#1097 T1digit" is also used to select the last 1 or 2 digits for the offset.

One group of T command can be assigned in a block.

Command format

(1) When designating the tool length and tool nose wear offset No. using the last 1 or 2 digits of the T command.

<table>
<thead>
<tr>
<th>T</th>
<th>******</th>
<th>* ;</th>
<th>Tool length offset + tool nose wear offset Tool No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>******</td>
<td>** ;</td>
<td>Tool length offset + tool nose wear offset Tool No.</td>
</tr>
</tbody>
</table>

(2) When differentiating between the tool length offset No. and tool nose wear offset No.

<table>
<thead>
<tr>
<th>T</th>
<th>******</th>
<th>* ;</th>
<th>Tool nose wear offset Tool No. + tool length offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>******</td>
<td>** ;</td>
<td>Tool nose wear offset Tool No. + tool length offset</td>
</tr>
</tbody>
</table>

The lower two digits of the tool No. are the tool length offset No.

(Note 1) For multi-part systems

There are cases when each part system has tool data and when the part systems share common tool data. This can be selected with parameter (#1051 MemTol).

Parameter #1051 MemTol

0: Tool data provided for each part system
1: Tool data shared by part systems

When the tool data is shared by the part systems, the compensation amount for all part systems will be the same (when the same tool compensation) No. is commanded.
12. Tool Offset Functions

12.1 Tool Offset

12.1.1 Tool Offset Start

Detailed description

There are two ways to execute tool offset and these can be selected by parameter: executing offset when the T command is executed and executing offset in the block with a movement command without performing offset when the T command is executed.

(1) Offset with T command execution

N1	Tool after offset
	Offset amount
	Programmed path

Tool length offset and tool nose wear offset are conducted simultaneously.

(Note 1) The movement applying to offset with the T command execution is rapid traverse in a G00 modal and cutting feed with other modals.

(Note 2) When performing offset with T command execution, the path is offset as a linear movement in a circular modal.

(Note 3) When performing offset with T command execution, if the following G commands are issued in the same block as the T command, the wear will not be compensated in that block. The wear amount will be compensated in a block where other G commands are issued.

G04 : Dwell
G11 : Parameter input by program cancel
G92 : Coordinate system setting
G92.1 : Workpiece coordinate system pre-setting
G113 : Spindle synchronization cancel
G114.1 : Spindle synchronization I
G114.2 : Tool spindle synchronization IA
G114.3 : Tool spindle synchronization II

(Note 4) The following commands will cancel the offset amount for the axis with any movement commanded: automatic reference position return (G28), reference position return (G30), 2nd, 3rd, and 4th reference position return (G30) or basic machine coordinate system selection (G53).

(Note 5) If G53 command is issued in the same block as the T command, the offset amount for the axis with no movement commanded will be that in the previous block.
12. Tool Offset Functions

12.1 Tool Offset

(2) Offset with movement command

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool path after offset</td>
<td>Offset amount</td>
</tr>
<tr>
<td>Programmed machining path</td>
<td></td>
</tr>
</tbody>
</table>

N1 T0101;
N2 X100. Z200.;

Tool length offset and tool nose wear offset are conducted simultaneously.

(Note 1) When performing offset with a movement command, offset is applied if the offset amount is lower than the parameter "#1084 RadErr" when offset is performed for the first time with a circular command. If the amount is higher, the program error (P70) results. (This also applies when the arc command and T command are in the same block for offsetting with T command execution.)
12. Tool Offset Functions

12.1 Tool Offset

12.1.2 Expanded Method at Starting Tool Offset

Function and purpose

By setting the parameter "#1100 Tmove", the offset operation when T is commanded is selected whether that is carried out when the T command is executed or carried out with superimposed on the movement command.

In addition to these two methods, a type to compensate only the wear amount when the T command is executed and to compensate the tool length superimposed on the movement command can be selected with the parameter.

Detailed description

To select the type to compensate only the wear amount when the T command is executed and to compensate the tool length superimposed on the movement command, set the "#1100 Tmove" to 2.

When 2 is set, the length offset will follow setting 1 (superimposed on movement command), and the wear offset will follow setting 0 (move when T is commanded).

The offset operation for each "#1100 Tmove" setting is as shown below.

When Length offset amount: 7.000mm Wear offset amount: 0.500mm

<table>
<thead>
<tr>
<th>Machining program example</th>
<th>#1100 Tmove = 0</th>
<th>#1100 Tmove = 1</th>
<th>#1100 Tmove = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 X. ;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>G0 T116. ;</td>
<td>7.500</td>
<td>0.000</td>
<td>0.500</td>
</tr>
<tr>
<td>G0 X100. ;</td>
<td>107.500</td>
<td>107.500</td>
<td>107.500</td>
</tr>
</tbody>
</table>

(Note 1) When performing wear offset with T command execution, if the following G commands are issued in the same block as the T command, the wear will not be compensated in that block.

The wear amount will be compensated in a block where other G commands are issued.

G04: Dwell
G11: Program parameter input cancel
G92: Coordinate system setting
G92.1: Workpiece coordinate system pre-setting
G113: Spindle synchronization cancel
G114.1: Spindle synchronization I
G114.2: Tool spindle synchronization IA
G114.3: Tool spindle synchronization II

(Note 2) After the offset amount is temporarily canceled, the offset amount will return for each movement command axis. The movement at this time will follow parameter "#1101 Tabsmv" for both length offset and wear offset.

G command involving temporary cancel: G28, G30, G53

(Note 3) If G53 command is issued in the same block as the T command, the offset amount for the axis with no movement commanded will be that in the previous block.

(1) Relation with "#1101 Tabsmv" (tool offset amount superimposition during absolute command)

When "#1100 Tmove" is set to 2, the offset operation will follow the "#1101 Tabsmv" setting.
(2) Parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Items</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>Tmove</td>
<td>Designate the timing to perform tool length offset and wear offset.</td>
<td>0 to 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Compensates when T command is executed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Superimposes and compensates with the movement command in the block where the T command is located.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If there is no movement command in the same block, compensation will be executed after the movement command is superimposed in the next movement command block.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: Compensates wear amount when the T command is executed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superimposes and compensates a tool length offset amount with the movement command in the same block.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If there is no movement command in the same block, compensation will be executed after the movement command is superimposed in the next movement command block.</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>Tabsmv</td>
<td>Designate the type of movement command superimposed when #1100 Tmove is set to 1 or 2.</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Compensates regardless of the movement command type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Compensates only at the movement command in the absolute value command.</td>
<td></td>
</tr>
</tbody>
</table>
12.2 Tool Length Offset

Tool length offset amount setting

This function offsets the tool length with respect to the programmed basic position. This position may generally be set to either the center position of the turret or the tool nose position of the basic tool.

1. **Center position of turret**

 ![Diagram of center position of turret]

2. **Tool nose position of basic tool**

 ![Diagram of tool nose position of basic tool]

Tool length offset No. change

When tool Nos. are changed, the tool length offset corresponding to the new tool Nos. are added to the movement amounts in the machining program.

In this example, the tool length is offset with the tool No. and offset is performed in the block with the movement command.
12. Tool Offset Functions

12.2 Tool Length Offset

Tool length offset cancel

(1) When an offset No. of 0 has been assigned
Offset is canceled when 0 has been assigned as the tool length offset No. by the T command.

<table>
<thead>
<tr>
<th>Tool offset path</th>
<th>Programmed machining path</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 X10.0 Z10.0 F10 ;</td>
<td></td>
</tr>
<tr>
<td>N2 T0000 ;</td>
<td></td>
</tr>
<tr>
<td>N3 G1 X10.0 Z20.0 ;</td>
<td></td>
</tr>
</tbody>
</table>

In this case, offset is performed by the block with the movement command.

(2) When the assigned offset amount is 0
Offset is canceled when the offset amount in the tool length offset No. assigned by the T command is 0.

<table>
<thead>
<tr>
<th>Tool offset path</th>
<th>Programmed machining path</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 G1 X10.0 Z10.0 F10 ;</td>
<td></td>
</tr>
<tr>
<td>N2 T0100 ;</td>
<td></td>
</tr>
<tr>
<td>N3 G1 X10.0 Z20.0 ;</td>
<td></td>
</tr>
</tbody>
</table>

In this case, offset is performed by the block with the movement command.

(Note 1) When G28, G29 or G30 is commanded, the offset is temporarily canceled. Therefore, the machine moves to the position where the offset was canceled and the offset amount is stored in the memory. This means that with the next movement command the machine will move to the offset position.

(Note 2) When G28, G29 or G30 and the offset cancel are commanded in the same block, the machine is moved to the position where the offset was canceled, however the offset amount remains stored in the memory. This means that the display coordinate may be displayed including the offset amount. Issue these command in the separate block so that the offset amount should not be stored in the memory.

(Note 3) Even if the offset amount of the offset No. currently selected by MDI is changed during automatic operation, the changed offset amount will not be valid unless a T command with the same No. is executed again.

(Note 4) The tool length offset and tool nose wear offset amounts are cleared by resetting and by emergency stop. They can be retained by parameter "#1099 Treset".
12.3 Tool Nose Wear Offset

Tool nose wear offset amount setting

The wear sustained by the tool being used can be offset.

![Diagram showing X-axis and Z-axis tool nose wear offset amounts]

Tool nose wear offset cancel

Tool nose wear offset is canceled when 0 has been assigned as the offset No.

<table>
<thead>
<tr>
<th>Programmed machining path</th>
<th>Tool offset path</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 G1 X10.0 Z10.0 F10 ;</td>
<td>N1 G1 X10.0 Z10.0 F10 ;</td>
</tr>
<tr>
<td>N2 T0100 ;</td>
<td>N2 T0100 ;</td>
</tr>
<tr>
<td>N3 G1 X10.0 Z20.0 ;</td>
<td>N3 G1 X10.0 Z20.0 ;</td>
</tr>
</tbody>
</table>

In this case, offset is performed in the block with the movement command.

(Note 1) When G28, G29 or G30 is commanded, the offset is temporarily canceled. Therefore, the machine moves to the position where the offset was canceled and the offset amount is stored in the memory. This means that with the next movement command the machine will move to the offset position.

(Note 2) When G28, G29 or G30 and the offset cancel are commanded in the same block, the machine is moved to the position where the offset was canceled, however the offset amount remains stored in the memory. This means that the display coordinate may be displayed including the offset amount. Issue these command in the separate block so that the offset amount should not be stored in the memory.

(Note 3) Even if the offset amount of the offset No. currently selected by MDI is changed during automatic operation, the changed offset amount will not be valid unless a T command with the same No. is executed again.

(Note 4) The tool length offset and tool nose wear offset amounts are cleared by resetting and by emergency stop. They can be retained by parameter ":1099 Treset".
12.4 Tool Nose Radius Compensation; G40, G41, G42, G46

Function and purpose

The tool nose is generally rounded and so a hypothetical tool nose point is treated as the tool nose for programming purposes. When this is done, an error caused by the tool nose rounding arises during taper cutting or circular cutting between the actually programmed shape and the cutting shape. Tool nose radius compensation is a function for automatically calculating and offsetting this error by setting the tool nose radius value.

The command codes enable the offset direction to be fixed or automatically identified.

Functions and command formats

<table>
<thead>
<tr>
<th>Code</th>
<th>Function</th>
<th>Command format</th>
</tr>
</thead>
<tbody>
<tr>
<td>G40</td>
<td>Tool nose radius compensation mode cancel</td>
<td>G40 (Xx/Uu Zz/Ww li Kk) ;</td>
</tr>
<tr>
<td>G41</td>
<td>Tool nose radius compensation left mode ON</td>
<td>G41 (Xx/Uu Zz/Ww) ;</td>
</tr>
<tr>
<td>G42</td>
<td>Tool nose radius compensation right mode ON</td>
<td>G42 (Xx/Uu Zz/Ww) ;</td>
</tr>
<tr>
<td>G46</td>
<td>Tool nose radius compensation automatic direction identification mode ON</td>
<td>G46 (Xx/Uu Zz/Ww) ;</td>
</tr>
</tbody>
</table>

(Note 1) By means of the preset hypothetical tool nose point and movement commands in the machining program, the G46 tool nose radius compensation function automatically identifies the compensation direction and provides tool nose radius compensation.

(Note 2) G40 serves to cancel the tool nose radius compensation mode.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Tool nose radius compensation pre-reads the data in the following two movement command blocks (up to 5 blocks when there are no movement commands) and controls the tool nose radius center path by the intersection point calculation method so that it is offset from the programmed path by an amount equivalent to the nose radius.

Prior to the N1 block execution, the next movement command block is pre-read and the coordinates at the intersection point are calculated.

(Note 3) Tool nose radius compensation amount (nose radius).

(Note 5) The tool nose radius compensation amount corresponds to the tool length No. and it is preset along with the tool nose point.

(Note 4) In the above figure, "r" is the tool nose radius compensation amount (nose radius).

(Note 6) If there are 4 or more blocks without movement amounts among 5 continuous blocks, overcutting or undercutting will result.

(Note 7) Tool nose radius compensation is also valid for fixed cycles (G77 to G79) and for rough cutting cycles (G70, G71, G72, G73). However, in the rough cutting cycles, the finished shape with the tool nose radius compensation applied will be cut with the compensation canceled and, upon completion of the cutting, operation will automatically return to the compensation mode.

(Note 8) With thread cutting commands, compensation is temporarily canceled 1 block before.

(Note 9) A tool nose radius compensation (G41 or G42) command can be assigned during tool nose radius compensation (G46). Compensation does not need to be canceled with G40 at this time.

(Note 10) The compensation plane, movement axes, and next advance direction vector follow the plane selection command designated by G17, G18, or G19.

G17 X-Y plane X, Y, I, J
G18 Z-X plane Z, X, K, I
G19 Y-Z plane Y, Z, J, K
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.1 Tool Nose Point and Compensation Directions

Tool nose point

Since the tool nose is generally rounded, the programmed tool nose position is aligned with point P shown in the examples of the figures below. With tool nose radius compensation, one point among those in the figures below indicating the position relationship is selected for each tool length No. and preset. (Selection from points 1 to 8 in the G46 mode and 0 to 9 in the G41/G42 mode.)

![Tool nose point and compensation operation](image)

Tool nose point and compensation operation

(1) When the nose R center has been aligned with the machining start position
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

(2) When the tool nose point has been aligned with the machining start position

![Diagram showing tool nose radius compensation]

- **Compensation directions**

 1. The compensation direction of the G41/G42 commands is determined by the G41/G42 codes. The direction in a G46 command is automatically determined in accordance with the following table from the relationship between the tool nose points and the commanded movement vectors.

 2. When tool nose radius compensation has been started and the initial movement vector (including G0) corresponds to an "×" mark in the table, the compensation direction cannot be specified and so it is determined by the next movement vector. When the direction cannot be determined even after reading 5 blocks ahead, program error (P156) results.

 3. When an attempt is made to reverse the compensation direction during tool nose radius compensation, program error (P157) results except when the reversal is done in the G00 block. Even if the directions differ before and after the G28, G30 or G53 block, an error will not result since compensation is temporarily canceled. Using a parameter (#8106 G46 reverse axis error evade), the tool can also be moved unchanged in the same compensation direction.
When the compensation direction during tool nose radius compensation coincides with an "×" in the table below, the direction complied with the previous compensation direction. Determining the compensation direction by the movement vectors and tool nose point in command G46

<table>
<thead>
<tr>
<th>Compensation direction of tool nose</th>
<th>Tool nose points</th>
<th>Compensation direction of tool nose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of tool nose advance</td>
<td>1</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Left</td>
</tr>
</tbody>
</table>

(Note 1) An "×" mark in the tables indicates that the compensation direction is not determined from the movement vector (tool nose points).

(Note 2) The "×" mark denotes a movement vector in the 45° direction. (The other movement vectors are based on this.)

(Note 3) The "×" mark denotes a movement vector with a range larger than 45° and smaller than 135°. (The other movement vectors are based on this.)
(Example) With tool nose point 3, movement vector in the Z axis (-) direction (with ← movement vector)

As shown in the figure on the left, the workpiece is on the X axis (-) side from the tool nose position and tool movement direction. Consequently, the right side compensation of the workpiece in the direction of the tool’s advance serves as the compensation direction.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.2 Tool Nose Radius Compensation Operations

Tool nose radius compensation cancel mode

The tool nose radius compensation cancel mode is established by any of the following conditions.

1. After the power has been turned ON
2. After the reset button on the setting and display unit has been pressed
3. After the M02 or M30 command with reset function has been executed
4. After the compensation cancel command (G40) has been executed
5. After tool No. 0 has been selected (T00 has been executed)

The offset vectors are zero in the compensation cancel mode, and the tool nose point path coincides with the program path.

Programs including tool nose radius compensation must be terminated in the compensation cancel mode.
Tool nose radius compensation starts when all the following conditions are met in the compensation cancel mode.

(1) The movement command is issued after G41, G42 or G46.
(2) The movement command is any command except a circular command.

At the start of compensation, the operation is executed after at least 2 to 5 blocks have been read continuously for intersection point calculation regardless of single block operation (Two flocks are pre-read if movement commands are present; up to 5 blocks are pre-read if such commands are not present.)

During compensation mode, up to 5 blocks are pre-read and the compensation is arithmetically processed.

Control mode transition diagram

<table>
<thead>
<tr>
<th>Machining program</th>
<th>Pre-read buffer</th>
<th>Execution block</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T__; S__; G00__; G41__; G01__; G02__;)</td>
<td>(T__; S__; G00__; G41__; G01__; G02__;)</td>
<td>(T__; S__; G00__; G41__; G01__; G02__;)</td>
</tr>
</tbody>
</table>

There are two ways of starting the compensation operation: type A and type B.

Type A
- When the start-up and cancel commands are operated during nose R and radius compensation, their blocks are not handled by intersection operation processing; they are handled as offset vectors in the direction vertical to that of the commands.

Type B
- When the start-up and cancel commands are operated during nose R and radius compensation, the intersection operation processing of the command block and the next block is executed.

In the following explanatory figure, "S" denotes the single block stop point.
Start operation for tool nose radius compensation

With a G41, G42 or G46 command alone, the tool does not moves as much as the specified amount of tool nose radius compensation. It does not start tool nose radius compensation with a G00 command. It starts tool nose radius compensation normally with a G01, G02 or G03 command.

Note that even if there is an axis command, the tool nose radius compensation will not be applied unless there is movement.

(1) When an independent G41/G42/G46 command is issued at an inside corner

```
N1  G42 ;
N2  G00  X_Z_ ;
N3  G01  X_Z_F_ ;
}

N1  G42 ;
N2  G01  X_Z_F_ ;
N3  G01  X_Z_ ;
}

N1  G42 ;
N2  G01  X_Z_F_ ;
N3  G00  X_Z_ ;
N4  G01  X_Z_ ;
}

N1  G42 ;
N2  G00  X_Z_ ;
N3  G00  X_Z_ ;
N4  G01  X_Z_F_ ;
}
```
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

(2) When a G41/G42/G46 command is issued at an inside corner, in the same block as a movement command:

\[r = \text{Nose R radius} \]

(3) When an independent G41/G42/G46 command is issued at an outside corner (obtuse angle):

```
N1  G41 ;
N2  G00 X_Z_;
N3  G01 X_Z_F_; 
}

N1  G41 ;
N2  G01 X_Z_F_; 
N3  G01 X_Z_; 
}
```

```
N1  G41 ;
N2  G01 X_Z_F_; 
N3  G00 X_Z_; 
N4  G01 X_Z_; 
}
```
When a G41/G42/G46 command is issued at an outside corner (obtuse angle), in the same block as a movement command \([90^\circ \leq \theta < 180^\circ]\).
(5) When an independent G41/G42/G46 command is issued at an outside corner (acute angle)

```plaintext
{ 
N1  G41 ;
N2  G00  X_Z_ ;
N3  G01  X_Z_F_ ;
}

{ 
N1  G41 ;
N2  G01  X_Z_F_ ;
N3  G01  X_Z_ ;
}

{ 
N1  G41 ;
N2  G01  X_Z_F_ ;
N3  G00  X_Z_ ;
N4  G01  X_Z_ ;
}

{ 
N1  G41 ;
N2  G00  X_Z_ ;
N3  G00  X_Z_ ;
N4  G01  X_Z_F_ ;
}
```
(6) When a G41/G42/G46 command is issued at an outside corner (acute angle), in the same block as a movement command \[\theta < 90^\circ \]

(1) If there is axis movement command in the same block as G41 or G42, compensation is performed perpendicularly to the next block's direction.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Operations in compensation mode

The tool center path is obtained and compensated from the linear and arc designations for the program path (G00, G01, G02, G03). Compensation is valid both for positioning and for interpolation commands such as circular and linear interpolation. Even if the same compensation command (G41, G42, G46) is issued in a tool nose radius compensation (G41, G42, G46) mode, the command will be ignored. When 4 or more blocks not accompanying movement are commanded continuously in the compensation mode, overcutting or undercutting will result. When the M00 command has been issued during tool nose radius compensation, pre-reading is prohibited.

(1) Machining an outside corner

Linear → Linear (90° ≤ θ < 180°)

![Diagram](attachment:linear-linear-angle-90_to_180.png)

Linear → Linear (0° < θ < 90°)

![Diagram](attachment:linear-linear-angle-0_to_90.png)

Linear → Circular (90° ≤ θ < 180°)

![Diagram](attachment:linear-circular-angle-90_to_180.png)

Linear → Circular (0° < θ < 90°)

![Diagram](attachment:linear-circular-angle-0_to_90.png)
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Circular → Linear (90° ≤ θ < 180°)

Circular → Linear (0° < θ < 90°)

Circular → Circular (90° ≤ θ < 180°)

Circular → Circular (0° < θ < 90°)
(2) Machining an inner wall

Linear → Linear (Obtuse angle)

Linear → Linear (Acute angle)

Linear → Circular (Obtuse angle)

Linear → Circular (Acute angle)

Circular → Linear (Obtuse angle)

Circular → Linear (Acute angle)

Circular → Circular (Obtuse angle)

Circular → Circular (Acute angle)
(3) When the arc end point is not on the arc
If the error applying after compensation is within the parameter (#1084 RadErr), the area from
the arc start point to the end point is interpolated as a spiral arc.

(4) When the inner intersection point does not exist
In an instance such as that shown in the figure below, the intersection point of circulars A and
B may cease to exist due to the offset amount. In such cases, program error (P152) appears
and the tool stops at the end point of the previous block.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Tool nose radius compensation cancel

If either of the following conditions is met in the tool nose radius compensation mode, the compensation will be canceled. However, the movement command must be a command which is not a circular command.

If the compensation is canceled by a circular command, program error (P151) results.

(1) The G40 command has been executed.

(2) The T00 tool No. has been executed.

The cancel mode is established once the compensation cancel command has been read, 5-block pre-reading is suspended and 1-block pre-reading is applies instead.

Tool nose radius compensation cancel operation

Issuing a tool nose radius compensation cancel command results in the following.

(1) If the command before G40 is G00 after the tool nose radius compensation is completed, the tool nose radius compensation is temporarily stopped, and the tool nose radius compensation is canceled in that state by an independent G40 command.

(2) If there is an interpolation command before G40 after the tool nose radius compensation is completed, the tool nose radius compensation is not canceled by the independent G40 command, so the nose R center can stop in a vertical position. Instead, the tool nose radius compensation is canceled by the first axis movement command after G40. The nose radius compensation will not be canceled by the axis command if there is no axis movement. If there is no axis movement command after G40, and the program finishes by M02, etc., the tool nose radius compensation will remain valid. Resetting will cancel the tool nose radius compensation, but the operation will not be canceled.

(3) When an independent T00 command is issued in a block, a tool nose radius cancel mode will result in that block, and the axis will move to the tool nose radius cancel position.
(4) Relation of an inside corner/outside corner and cancel

(a)-1 When an independent G40 command is issued at an inside corner

```
N1  G01  X_Z_F_;  
N2  G00  X_Z_;   
N3  G40 ;
{
  N1  G01  X_Z_F_;  
  N2  G00  X_Z_;   
  N3  G01  X_Z_;   
  N4  G40 ;        
  N5  M05 ;        
  N6  G00  X_Z_;   
}

N1  G01  X_Z_F_;  
N2  G00  X_Z_;   
N3  G00  X_Z_;   
N4  G40 ;        
N5  M05 ;        
N6  G01  X_Z_;   
{
  N1  G01  X_Z_F_;  
  N2  G00  X_Z_;   
  N3  G00  X_Z_;   
  N4  G40 ;        
  N5  M05 ;        
  N6  G01  X_Z_;   
}
```

Diagram:

- Program path
- Nose R center path
- Intersection

Diagram:

- Program path
- Nose R center path
- Intersection

Diagram:

- Program path
- Nose R center path
- Intersection

Diagram:

- Program path
- Nose R center path
- Intersection

Diagram:

- Program path
- Nose R center path
- Intersection

Diagram:

- Program path
- Nose R center path
- Intersection
(a)-2 When a G40 command is issued at an inside corner, in the same block as a movement command.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

(b)-1 When an independent G40 command is issued at an outside corner (obtuse angle)

| { | N1 G01 X_Z_F_; |
| } |
| N2 G00 X_Z_; |
| N3 G40; |
| } |

| { | N1 G01 X_Z_F_; |
| } |
| N2 G00 X_Z_; |
| N3 G40; |
| N4 M05; |
| N5 G00 X_Z_; |
| } |

| { | N1 G01 X_Z_F_; |
| } |
| N2 G00 X_Z_; |
| N3 G01 X_Z_; |
| N4 G40; |
| N5 M05; |
| N6 G01 X_Z_; |
| } |

| { | N1 G01 X_Z_F_; |
| } |
| N2 G00 X_Z_; |
| N3 G00 X_Z_; |
| N4 G40; |
| } |
When a G40 command is issued at an outside corner (obtuse angle), in the same block as a movement command.
(c)-1 When an independent G40 command is issued at an outside corner (acute angle)

```
N1 G01 X_Z_F_
N2 G00 X_Z_;
N3 G40 ;
```

```
N1 G01 X_Z_F_
N2 G00 X_Z_;  
N3 G01 X_Z_
N4 G40 ;
N5 M05 ;
N6 G00 X_Z_; 
```

```
N1 G01 X_Z_F_
N2 G00 X_Z_;  
N3 G01 X_Z_
N4 G40 ;
N5 M05 ;
N6 G01 X_Z_; 
```

```
N1 G01 X_Z_F_
N2 G00 X_Z_;  
N3 G00 X_Z_
N4 G40 ;
N5 M05 ;
N6 G01 X_Z_; 
```

```
N1 G01 X_Z_F_
N2 G00 X_Z_;  
N3 G00 X_Z_
N4 G40 ;
N5 M05 ;
N6 G01 X_Z_; 
```
(c)-2 When a G40 command is issued at an outside corner (acute angle), in the same block as a movement command.
12.4.3 Other Operations during Tool Nose Radius Compensation

The compensation direction is determined by the tool nose radius compensation commands (G41, G42).

<table>
<thead>
<tr>
<th>G code</th>
<th>Compensation direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>G41</td>
<td>Left-side compensation</td>
</tr>
<tr>
<td>G42</td>
<td>Right-side compensation</td>
</tr>
</tbody>
</table>

The compensation direction can be changed by changing the compensation command in the compensation mode without the compensation having to be first canceled. However, no change is possible in the compensation start block and the following block.

- **Linear → Linear**
- **Linear ↔ Circular**
Circular → Circular

Program path

Tool center path

Center of circular

G41

G42

G41

G42

Center of circular

Linear return

Nose R center path

Program path

G41

G42

r

Arc exceeding 360° due to compensation method

Program path

Nose R center path

Section left uncut

G41

G42

G42

In the cases below, it is possible that the circular may exceed 360°.

a. With offset direction selection based on G41/G42

In cases like this, compensation is provided shown in the figure on the left and a section will be left uncut.
Tool nose radius compensation of path closed by G46/G41/G42

12.4 Tool Nose Radius Compensation

Tool nose radius compensation

12.4 Tool Nose Radius Compensation

- **(1) G46 command operation**
 - G00
 - G01
- **(2) G42 → G41 command operation**
 - G01 (G41)
 - G01 (G42)
- **(3) G42 → G41 command operation**
 - G01 (G42)
 - G01 (G41)
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Command for eliminating offset vectors temporarily

When the following command is issued in the compensation mode, the offset vectors are temporarily eliminated and a return is then made automatically to the compensation mode. In this case, the compensation is not canceled, and the tool goes directly from the intersection point vector to the point without vectors or, in other words, to the programmed command point. When a return is made to the compensation mode, it goes directly to the intersection point.

(1) Reference position return command

![Diagram showing the reference position return command](image)

N5	G01	U 30. W 60. ;
N6	G28	U-40. W 50. ;
N7		U-60. W 30. ;
N8		U 40. W 70. ;

(2) The compensation vector will be eliminated temporarily with the G53 command (basic machine coordinate system selection).

(Note 1) The offset vectors do not change with the coordinate system setting (G92) command.
(3) Positioning (G00) commands

Tool nose radius compensation is temporarily canceled for G00 commands.

```
N1  G01  X_Z_F_;  Nose R center path
N2  G00  X_Z_;    Program path
N3  G00  X_Z_;    Nose R center path
N4  G00  X_Z_;    Program path
N5  G01  X_Z_;    Nose R center path
```

(4) G33 thread cutting command

Tool nose radius compensation does not apply to the G33 block.
(5) Compound type fixed cycle for turning machining

When a compound type fixed cycle for turning machining (G70, G71, G72, G73) is assigned, the tool nose radius compensation is temporarily canceled, the finished shape to which tool nose radius compensation has been applied is cut with the compensation canceled and, upon completion, a return is automatically made to the compensation mode.

Blocks without movement

The following blocks are known as blocks without movement.

a. M03 ; M command
b. S12 ; S command
c. T0101 ; T command
d. G04 X500 ; Dwell
e. G10 P01R50 ; Offset amount setting
f. G92 X600. Z500. ; Coordinate system setting
g. Y40. ; G code only
h. G.00 ; G code only
i. U0 ; Zero movement amount

No movement

Movement amount is zero

(1) When commanded at compensation start

Compensation vector cannot be created when there are four or more successive without movement, or when pre-read prohibit M command is issued.

```
N1  U60. W30. T0101 ;
N2  G41 ;
N3  G4 X1000 ;
N4  F100 ;
N5  S500 ;
N6  M3 ;
N7  U-50. W20. ;
N8  U-20. W50. ;
```

(2) When command is assigned in the compensation mode

The normal intersection vector is created when there are four or more blocks without movement in succession during the compensation mode, or when the pre-read prohibit M command is not issued.

```
N6  U200. W100. ;
N7  G04 P1000 ; .... Block without movement
N8  W200. ;
```
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

The offset vector is created perpendicularly to the end point of the previous block when there are four or more successive blocks without movement, or when pre-read prohibit M command is issued.

N6 U200. W100. ;
N7 G4 X1000 ;
N8 F100 ;
N9 S500 ;
N10 M4 ;
N11 W100. ;

In this case, a cut result

(3) When commanded together with compensation cancel

Only the offset vectors are canceled when a block without movement is commanded together with the G40 command.

N6 U200. W100. ;
N7 G40 M5 ;
N8 U50. W100. ;

When I, J, K are commanded in G40

A perpendicular vector is created in the block before G40.
Corner movement

When a multiple number of compensation vectors are created at the joints between movement command blocks, the tool will move in a linear between those vectors. This action is called corner movement.

When the vectors do not coincide, the tool moves in order to machine the corner. Consequently, operation in the single block mode will execute the previous block + corner movement as a single block and the remaining joining movement + following block will be executed as a single block in the following operation.

![Diagram showing corner movement](image-url)
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.4 G41/G42 Commands and I, J, K Designation

Function and purpose

The compensation direction can be intentionally changed by issuing the G41/G42 command and I, J, K in the same block.

Command format

G18 (Z-X plane) G41/G42 X__ Z__ I__ K__ ;

Assign a linear command (G00, G01) in a movement mode.

I, K type vectors (G18 X-Z plane selection)

The new I, K type vector (G18 plane) created by this command is now described. (Similar descriptions apply to vector I, J for the G17 plane and to J, K for the G19 plane.) As shown in the figures below, the vectors with a size equivalent to the offset amount are made to serve as the I, K type compensation vector perpendicularly to the direction designated by I, K without the intersection point of the programmed path being calculated. The I, K vector can be commanded even in the mode (G41/G42 mode in the block before) and even at the compensation start (G40 mode in the block before).

(1) When I, K is commanded at compensation start

(2) When there are no movement commands at the compensation start
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

(3) When I, K has been commanded in the mode (G18 plane)

```
N100  G41  T0101 G01 W150. I50. ;
N110  G02  W100. I50. ;
N120  G01  W100.
```

(1) I, K type vector
(2) Intersection point calculation type vector

(4) When I, K has been commanded in a block without movement

```
N1  G41  T0101  G01  F1000 ;
N2  U100. W100.;
N3  G41  K50.;
N4  W150.;
N5  G40 ;
```
Direction of offset vectors

(1) In G41 mode
Direction produced by rotating the direction commanded by I, K through 90° to the left from the forward direction of the Y axis (3rd axis) as seen from the zero point.

<table>
<thead>
<tr>
<th>(Example 1) With K100.</th>
<th>(Example 2) With K -100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset vector direction</td>
<td>(0, -100) IK direction</td>
</tr>
<tr>
<td>(0, 100) IK direction</td>
<td>Offset vector direction</td>
</tr>
</tbody>
</table>

(2) In G42 mode
Direction produced by rotating the direction commanded by I, K through 90° to the right from the forward direction of the Y axis (3rd axis) as seen from the zero point.

<table>
<thead>
<tr>
<th>(Example 1) With K100.</th>
<th>(Example 2) With K -100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 100) IK direction</td>
<td>Offset vector direction</td>
</tr>
<tr>
<td>Offset vector direction</td>
<td>(0, -100) IK direction</td>
</tr>
</tbody>
</table>

Selection of offset modal

The G41 or G42 modal can be selected at any time.

```
N1    G28  X0Z0  ;
N2    G41 T0101 F1000  ;
N3    G01 U100.  W100.  ;
N4    G42  W100.  I-100.  K100.  T0102  ;
N5    U-100.  W100.  ;
N6    G40  ;
N7    M02  ;
%     
```
The offset amounts are determined by the offset No. (modal) in the block with the I, K designation.

<Example 1>

Vector (A) is the offset amount entered in tool offset No. modal 1 in the N100 block.

<Example 2>

Vector (B) is the offset amount entered in tool offset No. modal 2 in the N200 block.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

Precautions

1. Issue the I, K type vector in a linear mode (G0, G1). If it is issued in an arc mode at the start of compensation, program error (P151) will result.

 An I, K designation in an arc mode functions as an arc center designation in the offset mode.

2. When the I, K type vector has been designated, it is not deleted (avoidance of interference) even if there is interference. Consequently, overcutting may arise in such a case.

3. Refer to the following table for the offset methods based on the presence and/or absence of the G41 and G42 commands and I, K (J) command.

<table>
<thead>
<tr>
<th>G41/G42</th>
<th>I, K (J)</th>
<th>Offset method</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Intersection point calculation type vector</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Intersection point calculation type vector</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Intersection point calculation type vector</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>I, K type vector No insertion block</td>
</tr>
</tbody>
</table>

N1 G28 X0Z0 ;
N2 G41 T0101 F1000 ;
N3 W100. ;
N4 G41 U-100. W100. K10. ;
N5 U100. W100. ;
N6 G40 ;
N7 M02 ;
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.5 Interrupts during Tool Nose Radius Compensation

MDI interruption

Tool nose radius compensation is valid in any automatic operation mode - whether tape, memory or MDI mode.

An interrupt based on MDI will give the result as in the figure below after block stop during tape or memory mode.

1. **Interrupt without movement (tool path does not change)**

 N1 G41 T0101;
 N2 U50. W20. ; MDI interruption
 N3 G3 U-40. W40. R70. ; S1000 M3;

 ![Diagram of interrupt without movement](image)

2. **Interrupt with movement**

 The offset vectors are automatically re-calculated at the movement block after interrupt.

 With linear interrupt

 N1 G41 T0101;
 N2 U50. W20. ; MDI interruption

 ![Diagram of interrupt with linear movement](image)

 With circular interrupt

 N1 G41 T0101;
 N2 U50. W20. ; MDI interruption
 N3 G3 U-40. W40. R70. ; G2 U-40. W40. R70. ; G1 W40. ;

 ![Diagram of interrupt with circular movement](image)
(1) Interrupt with manual absolute OFF. The tool path is shifted by an amount equivalent to the interrupt amount.

(2) Interrupt with manual absolute ON. In the incremental value mode, the same operation results as with manual absolute OFF. In the absolute value mode, however, the tool returns to its original path at the end point of the block following the interrupted block, as shown in the figure.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.6 General Precautions for Tool Nose Radius Compensation

Assigning the compensation amounts

(1) The compensation amount is normally assigned by designating the No. of the compensation amount by the last 1 or 2 digits of the T code. Depending on the machine specifications, the high-order digits may be used. The T code will remain valid once designated until another T code is subsequently commanded. Besides being used to designate the compensation amounts for tool nose radius compensation, the T codes are also used to designate the offset amounts for tool length offset.

(2) The compensation amounts are normally changed when a different tool has been selected in the compensation cancel mode. However, when an amount is changed in the compensation mode, the vectors at the end point of the block are calculated using the compensation amount designated in that block.

Errors during tool nose radius compensation

(1) An error results when any of the following commands are programmed during tool nose radius compensation.
 - G17, G18, G19 ("P112" when a plane differing from that applying during the compensation has been commanded)
 - G31 ("P608")
 - G74, G75, G76 ("P155")
 - G81 to G89 ("P155")

(2) An error ("P158") results when a tool nose point other than 1 to 8 has been designated in the G46 mode.

(3) An error ("P156") results when the compensation direction is not determined by the movement vector of the initial cutting command even when the tool nose radius compensation operation has started in the G46 mode and 5 blocks have been pre-read.

(4) An error ("P151") results when a circular command is issued in the first or last block of the tool nose radius compensation.

(5) A program error ("P157") results when the offset direction is reversed in the G46 mode. A parameter can be set to move the tool in the same compensation direction. (Control parameter "#8106 G46 NO REV-ERR")

(6) A program error ("P152") results during tool nose radius compensation when the intersection point is not determined with single block skip in the interference block processing.

(7) A program error results when there is an error in one of the pre-read blocks during tool nose radius compensation.

(8) A program error ("P153") results when interference arises under no interference avoidance conditions during tool nose radius compensation.

(9) A program error ("P150") results when a tool nose radius compensation command is issued even though the tool nose radius compensation specification has not been provided.
12. Tool Offset Functions

12.4 Tool Nose Radius Compensation

12.4.7 Interference Check

Function and purpose

A tool, whose tool nose has been compensated under the tool nose radius compensation function by the usual 2-block pre-read, may sometimes cut into the workpiece. This is known as interference, and interference check is the function which prevents this from occurring.

There are three types of interference check, as indicated below, and each can be selected for use by parameter.

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference check alarm function</td>
<td>Interference check avoidance OFF Interference check invalid OFF</td>
<td>A program error results before the execution of the block in which the cut arises, and operation stops.</td>
</tr>
<tr>
<td>Interference check avoidance function</td>
<td>Interference check avoidance ON Interference check invalid OFF</td>
<td>The tool path is changed so that workpiece is not cut into.</td>
</tr>
<tr>
<td>Interference check invalid function</td>
<td>Interference check invalid ON</td>
<td>Cutting continues as is, even if the workpiece is cut into. Use in the fine segment program.</td>
</tr>
</tbody>
</table>

(Note) #8102 Interference avoidance
#8103 Interference check invalid

Detailed description

(Example)

(G41)

N1 G1 X100. Z50. ;
N2 Z70. ;
N3 X300. Z120. ;

1. With alarm function
The alarm occurs before N1 is executed and so, using the edit function, N1 can be changed as below and machining can be continued: N1 G1 X−100. Z−20. ;

2. With avoidance function
The intersection point of N1 and N3 is calculated and the interference avoidance vectors are created.

3. With interference check invalid function
The tool passes while cutting into the straight line between N1 and N3.

Operation during interference avoidance

In the case of the figure below, the groove will be left uncut.
The interference check alarm occurs under the following conditions.

1. When the interference check alarm function has been selected
 a. When all the vectors at the end block of its own block have been deleted

 When, as shown in the figure on the right, vectors 1 to 4 at the end point of the N1 block have all been deleted, program error (P153) results prior to N1 execution.

2. When the interference check avoidance function has been selected
 a. When there are valid vectors at the end point of the following block even when all the vectors at the end point of its own block have been deleted

 (i) When, in the figure on the right, the N2 in interference check is conducted, the N2 end point vectors are all deleted but the N3 end point vectors are regarded as valid. Program error (P153) now occurs at the N1 end point.
(ii) In a case such as that shown in the figure on the below, the tool will move in the reverse direction at N2. Program error (P153) now occurs prior to N1 execution.

(b) When avoidance vectors cannot be created

(i) Even when, as in the figure on the below, the conditions for creating the avoidance vectors are met, it may still be impossible to create these vectors or the interference vectors may interfere with N3. As a result, program error (P153) will occur at the N1 end point when the vector intersecting angle is more than 90°.
(c) When the program advance direction and the advance direction after compensation are reversed

In the following case, interference is still regarded as occurring even when there is actually no interference. When grooves which are narrower than the tool nose R diameter or which have parallel or widening walls are programmed.

![Diagram](image-url)
12. Tool Offset Functions

12.5 Compensation Data Input by Program; G10, G11

Function and purpose

The amount of tool offset and workpiece offset can be set or changed by the G10 command. When commanded with absolute values (X,Z,R), the commanded offset amounts serve as the new amounts; when commanded with incremental values (U,W,C), the new offset amounts are equivalent to the commanded amounts plus the current offset amount settings.

Command format

(1) Workpiece offset input (L2)

```
G10 L2 P__ X__ (U__ )Z__ (W__ ) ;
```

- **P**: Offset No.
- **X**: X-axis offset amount (absolute)
- **U**: X-axis offset amount (incremental)
- **Z**: Z-axis offset amount (absolute)
- **W**: Z-axis offset amount (incremental)

(2) Tool length offset input (L10)

```
G10 L10 P__ X__ (U__ )Z__ (W__ )R__ (C__ )Q__ ;
```

- **P**: Offset No.
- **X**: X-axis offset amount (absolute)
- **U**: X-axis offset amount (incremental)
- **Z**: Z-axis offset amount (absolute)
- **W**: Z-axis offset amount (incremental)
- **R**: Tool nose radius compensation amount (absolute)
- **C**: Tool nose radius compensation amount (incremental)
- **Q**: Hypothetical tool nose point

(3) Tool nose wear offset input (L11)

```
G10 L11 P__ X__ (U__ )Z__ (W__ )R__ (C__ )Q__ ;
```

- **P**: Offset No.
- **X**: X-axis offset amount (absolute)
- **U**: X-axis offset amount (incremental)
- **Z**: Z-axis offset amount (absolute)
- **W**: Z-axis offset amount (incremental)
- **R**: Tool nose radius compensation amount (absolute)
- **C**: Tool nose radius compensation amount (incremental)
- **Q**: Hypothetical tool nose point

(4) When there is no L command with tool length offset input (L10) or tool nose wear offset input (L11)

- **Tool length offset input command**: P = 10000 + offset No.
- **Tool nose wear offset input command**: P = offset No.

(5) Offset input cancel

```
G11;
```
Detailed description

(1) The following table shows the offset Nos. and the setting ranges of the hypothetical tool nose points.

<table>
<thead>
<tr>
<th>Address</th>
<th>Significance of address</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Offset Nos.</td>
</tr>
<tr>
<td></td>
<td>0: External workpiece offset</td>
</tr>
<tr>
<td></td>
<td>1: G54 workpiece offset</td>
</tr>
<tr>
<td></td>
<td>2: G55 workpiece offset</td>
</tr>
<tr>
<td></td>
<td>3: G56 workpiece offset</td>
</tr>
<tr>
<td></td>
<td>4: G57 workpiece offset</td>
</tr>
<tr>
<td></td>
<td>5: G58 workpiece offset</td>
</tr>
<tr>
<td></td>
<td>6: G59 workpiece offset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>When L command is present: 1 to Max. number of tool offset sets</td>
</tr>
<tr>
<td>L11</td>
<td>When L command is not present: 10001 to 10000 + Max. number of tool offset sets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>Hypothetical tool nose point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 9</td>
</tr>
</tbody>
</table>

(Note1) The maximum number of tool offset sets for P (offset No.) with tool offset input (L10 or L11) is up to a total of 80 with the addition of options. (The number of sets will differ according to the model so check the specifications.)

(2) The setting range for the offset amount is given below. Program error (P35) occurs for any value not listed in the table after command unit conversion. With an incremental value command, the setting range for the offset amount is the sum of the present setting and command value.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Tool length offset amount</th>
<th>Wear offset amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metric system</td>
<td>Inch system</td>
</tr>
<tr>
<td>#1003 = B</td>
<td>±99999.999 (mm)</td>
<td>±99999.999 (inch)</td>
</tr>
<tr>
<td>#1003 = C</td>
<td>±99999.999 (mm)</td>
<td>±99999.999 (inch)</td>
</tr>
<tr>
<td>#1003 = D</td>
<td>±99999.999 (mm)</td>
<td>±99999.999 (inch)</td>
</tr>
<tr>
<td>#1003 = E</td>
<td>±99999.999 (mm)</td>
<td>±99999.999 (inch)</td>
</tr>
</tbody>
</table>
12. Tool Offset Functions

12.5 Compensation Data Input by Program

Precautions and Restrictions

1. Offset amount setting range check
 The maximum value of the wear offset amount and the maximum additional value for the wear
 offset input check respectively take precedence for a single-time offset amount in the
 maximum value and incremental value command of the wear offset amount, and when an
 amount greater than these values has been commanded, program error (P35) results.

2. G10 is an unmodal command and is valid only in the commanded block.

3. Offset input can be performed similarly for the third axis but even when the C axis has been
designated as the third axis, address C is treated as an incremental command value of the tool
nose radius in the L10 or L11 command.

4. If an illegal L No. or tool compensation No. is commanded, program error (P172 or P170) will
result, respectively.

5. When the P command is omitted, it will be handled as the currently selected workpiece offset
input.

6. Program error (P35) results when the offset amount exceeds the setting range.

7. X, Z and U, W are input together in a single block but when an address that commands the
same offset input (X, U or Z, W) is commanded, the address which is input last is valid.

8. Offset will be input if even one address following G10 L(2/10/11) P_ is commanded. Program
error (P33) results when not even a single command has been assigned.

 (Example) G10 L10 P3 Z50. ;
 ↓
 [Tool length data]
 # Z
 3 50.000
 Input as per left

9. Decimal points are valid for offset amounts.

10. G40 to G42 are ignored when they have been commanded in the same block as G10.

11. Do not command G10 in the same block as fixed cycles and subprogram call commands.
 This will cause malfunctioning and program errors.

12. When a T command has been issued in the same block as G10 with parameter "#1100 Tmove"
 as zero, the offset will be accomplished in the following block.

13. For the multiple C-axis system, both C axis workpiece offsets are rewritten with the workpiece
 offset input.
12.6 Tool Life Management II

Function and purpose

Tool life management divides the tools being used into several groups, and manages the life (usage time, number of uses) of the tools in each group. When the life is reached, a similar spare tool in the same group will be selected in order. This tool life management function with spare tools allows unmanned operation over a long time.

(1) Number of life-managed tools
 - 1-part system: Maximum 80 tools,
 - Multi-part system: Maximum 40 tools/part system

(2) Number of groups
 - 1-part system: Maximum 80 groups,
 - Multi-part system: Maximum 40 groups/part system

(3) Group No.
 - 1 to 9999

(4) Number of tools in one group
 - Maximum 16 tools

(5) Life time
 - 0 to 999999 minutes (approx. 16667 hours)

(6) Number of lives
 - 0 to 999999 times

The tool life management data can be set from the NC program or from the Tool Life Management screen. Refer to the Operation manual for the method of setting from the Tool Life Management screen. When using the NC program, register the data with the same method as compensation data input by program.

Command format

```
G10 L3 ;       Life management data registration start
P__ L__ N__ ;  Registration of group No., life per tool, method
T__ ;          Registration of tool No.;
T__ ;

G11 ;          End of life management data registration
P              Group No., (1 to 9999)
L              Life per tool (0 to 999999 minutes, or 0 to 999999 times)
N              Method (0:Time management, 1: Number of times management)
T              Tool No.; the spare tool is selected in the order registered here.
               (Tool No. 1 to 999999. Compensation No. 1 to 80)
Tn follows the specifications.
```

Tn follows the specifications.
Precautions and restrictions

1. The tool life data is registered by executing the above program in the memory or MDI mode.

2. When the above program is executed, all data (group No., tool No., life data) registered previously will be deleted. The registered data is held even when the power is turned OFF.

3. The group No. designated with P does not have to be consecutive, but it should be set in ascending order if possible. This will make monitoring on the screen easier because it is displayed in ascending order. The group No. cannot be commanded in duplicate.

4. If the life data L_ is omitted, the life data for that group will be "0". If N_, which designates the method, is omitted, the method for that group will follow the base specification parameter "#1106 Tcount".

5. If the remaining life data (R_) is omitted, the remaining life data for that group will be "0". When the remaining life data is "0", the "Life prediction" signal is not output for the designated tool. If N_ which specifies method is omitted, the method for that group will follow the base specification parameter "#1106 Tcount". If the remaining life data (R_) is issued in larger value than life value (R_>L_), a program error (P35) will occur. If the data L_ is omitted and the remaining life data (R_) is issued, a program error (P33) will occur.

6. Programming with a sequence No. is not possible between G10 L3 and G11.

7. If the usage data count valid signal (YC8A) is ON, G10 L3 cannot be commanded. (P177 LIFE COUNT ACT)

Example of program

1. Format

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T99</td>
<td>Start use of group tool</td>
</tr>
<tr>
<td></td>
<td>(Equivalent to T00: 0 is No. of the tool being used).</td>
</tr>
<tr>
<td>88</td>
<td>Cancel group tool offset</td>
</tr>
<tr>
<td>M02 (M30)</td>
<td>End of machining program</td>
</tr>
</tbody>
</table>

(1) Programming with a sequence No. is not possible between G10 L3 and G11.
(2) Actual example

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0119 ;</td>
<td>Start use of group 01 tool</td>
</tr>
<tr>
<td>T0188 ;</td>
<td>Cancel group 01 tool offset</td>
</tr>
<tr>
<td>T0609 ;</td>
<td>Selects tool No. 06 and offset No. 09.</td>
</tr>
<tr>
<td>T0600 ;</td>
<td>Cancel of group 06 tool offset</td>
</tr>
<tr>
<td>T0299 ;</td>
<td>Start use of group 02 tool</td>
</tr>
<tr>
<td>T0199 ;</td>
<td>Start use of group 01 tool</td>
</tr>
</tbody>
</table>

Example of tool selection operation (When one tool has several compensation Nos.)

(1) To use several compensation Nos. with one tool, select the next compensation No. for each T0199 command.
(2) If T0199 is commanded for more times than the number of registered compensation Nos., the last compensation No. will be selected, and the operation will continue. (Refer to following.)

<table>
<thead>
<tr>
<th>Registration to group 1</th>
<th>Program</th>
<th>Tool selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1701</td>
<td>T0199 ;</td>
<td>Equivalent to T1701</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T1702</td>
<td>T0199 ;</td>
<td>Equivalent to T1702</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T1703</td>
<td>T0199 ;</td>
<td>Equivalent to T1703</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T2104</td>
<td>T0199 ;</td>
<td>Equivalent to T1703</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

(Group 1) : (Hereafter, same until tool 17 reaches life.)

(3) If the above program is executed after resetting with M02/M30, or by resetting with external reset, the selection will be made from the head compensation No.
12. Tool Offset Functions

12.6 Tool Life Management II

12.6.1 Counting the Tool Life

Function and purpose

The tool life can be counted with the time-count type or number of uses-count type. The count method and timing for the number of uses-count type can be changed to type 2 with the parameter setting (#1277 ext13/bit0).

If the usage data is equivalent to or more than the life data as a result of the count up, a spare tool in the group will be selected with the next group selection command (T††††99), and the newly selected tool will be counted.

When all tools in the group have reached their lives and a spare tool cannot be selected, the count will continue.

(1) Counting the time of uses when the time-count type method is selected

In the cutting mode (G01, G02, G03, G31, G33, etc.), the time that the tool is used is counted with 100ms units.

The time is not counted during dwell, machine lock, miscellaneous function lock or dry run. Whether to count or not for a single block can be changed by setting the parameter.

(Note)
- The maximum value for the life is 999999 minutes.
- The data is displayed as a minute unit on the Tool Life Management screen.
(2) Counting the number of uses when the number of uses-count type method is selected

(a) Type 1 (#1277 ext13/bit0: 0)

The number of uses is counted when the No. of the tool being used is changed with the tool selection command (T□□□□99) and when the program is in the cutting mode (excluding machine lock, miscellaneous function lock and dry run states).

The use is not counted if the cutting mode is not entered even once after the No. changes. Whether to count or not during single block can be changed with the parameter setting.

(Note)
- The maximum value for the life is 999999 times.
- If only the compensation No. of the tool being used changes, a count will not be made.

Example: When T code of tool being used is T12345678

\[
\begin{array}{c}
T12345678 \\
\end{array}
\]

Compensation No.: No count even when changed.
Tool No.: Counted when changed.

<<Operation example>>

<table>
<thead>
<tr>
<th>Program</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0199........ 1</td>
<td>T0199........ 1</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T0299</td>
<td>T0199</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T0199........ 2</td>
<td>T0199</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T0299</td>
<td>T0199</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>T0199........ 3</td>
<td>T0199</td>
</tr>
</tbody>
</table>

Group 01 has been used one time.

Group 01 has been used three times.

* The number of uses is for one program execution. If the program is executed again after resetting, it will be counted.

(b) Type 2 (#1277 ext13/bit0: 1)

(i) Only the group used for cutting from when the machining program starts to when it is reset is incremented by "1". The count is made at the reset.

(ii) If recount M is commanded, the group used up to that point will be incremented by "1" in the counter.

(Note 1) A count is not made in the machine lock, miscellaneous function lock or dry run states.

(Note 2) During single block, select whether to count with the parameter.

(Note 3) The maximum value of the life is 999999 times.
13. Program Support Functions

13.1 Fixed Cycles for Turning Machining

Function and purpose

When performing rough cutting and other such operations during turning, these functions enable shapes normally commanded in several blocks to be commanded in a single block. In other words, they simplify the machining program. The following types of fixed cycles for turning machining are available.

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G77</td>
<td>Longitudinal turning cycle</td>
</tr>
<tr>
<td>G78</td>
<td>Thread cutting cycle</td>
</tr>
<tr>
<td>G79</td>
<td>Face turning cycle</td>
</tr>
</tbody>
</table>

Command format

G77 X/U__ Z/W__ R__ F__ ;

(Same for G78, G79)

Detailed description

1. Fixed cycle commands are modal G codes and so they are valid until another command in the same modal group or a cancel command is issued. The following G code cancel commands are available.

 G00, G01, G02, G03
 G09,
 G10, G11,
 G27, G28, G29, G30,
 G31,
 G33, G34,
 G37,
 G92,
 G52, G53,
 G65,

2. The fixed cycle call becomes the movement command block call. The movement command block call calls the fixed cycle macro subprogram only when there is an axis movement command during the fixed cycle mode. It is executed until the fixed cycle is canceled.

3. A manual interruption can be applied while a fixed cycle for turning machining (G77 to G79) is being executed. Upon completion of the interrupt, however, the tool must be returned to the position where the manual interruption was applied and then the fixed cycle for turning machining should be resumed.

 If it is resumed without the tool having been returned, all subsequent operations will deviate by an amount equivalent to the manual interruption.
13.1.1 Longitudinal Cutting Cycle; G77

Straight thread cutting

This function enables continuous straight cutting in the longitudinal direction using the following command.

G77 X/U__ Z/W__ F__;

![Diagram of Straight thread cutting]

Taper thread cutting

This function enables continuous taper cutting in the longitudinal direction using the following command.

G77 X/U__ Z/W__ R__ F__;

![Diagram of Taper thread cutting]

R: Taper depth (radius designation, incremental value, sign required)

With a single block, the tool stops at the end points of operations 1, 2, 3 and 4.
Depending on the U, W and R signs, the following shapes are created.

<table>
<thead>
<tr>
<th>(1) U < 0, W < 0, R < 0</th>
<th>(2) U < 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3) U > 0, W < 0, R < 0</th>
<th>(4) U > 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program error (P191) results with shapes (2) and (3) unless the following condition is satisfied.

\[|u/2| \geq |r| \]
13.1.2 Thread Cutting Cycle; G78

Straight cutting

This function enables straight thread cutting using the following command.

\[\text{G78 } X/U_ Z/W_ F/E_ Q_ ; \]

![Straight Cutting Diagram](image)

Taper cutting

This function enables taper thread cutting using the following command.

\[\text{G78 } X/U_ Z/W_ R_ F/E_ Q_ ; \]

![Taper Cutting Diagram](image)

R: Taper depth (radius designation, incremental value, sign required)
Details for chamfering

\[\alpha \] : Chamfering amount of thread
If the thread lead is assumed to be \(L \),
then the parameter can be set in 0.1L units from 0 to 12.7L.

\[\theta \] : Chamfering angle of thread
The parameter can be set in 1° units from 0 to 89°

With a single block, the tool stops at the end points of operations 1, 3 and 4.
When the feed hold function is applied during a thread cutting cycle, automatic operation will stop if no thread is then being cut, or if applied in the interval from the execution of the thread cutting command to the axis movement. If thread cutting is proceeding when the function is applied, the operation stops at the next movement completion position (completion of operation 3) of the thread cutting.
The dry run valid/invalid status does not change during thread cutting.
Depending on the U, W and R signs, the following shapes are created.

<table>
<thead>
<tr>
<th>(1) U < 0, W < 0, R < 0</th>
<th>(2) U < 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3) U > 0, W < 0, R < 0</th>
<th>(4) U > 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program error (P191) results with shape (2) and (3) unless the following condition is satisfied.

\[\frac{|u|}{2} \geq |r| \]

(Note 1) The thread cutting start shift angle is not a modal. If there is no Q command with G78, this will be handled as "Q0".

(Note 2) If a value exceeding 360.000 is command for G78 Q, this will be handled as "Q360.000".

(Note 3) G78 cuts one row with one cycle. To cut two rows, change the Q value, and issue the same command.
13. Program Support Functions

13.1 Fixed Cycles for Turning Machining

13.1.3 Face Cutting Cycle; G79

Straight cutting

This function enables continuous straight cutting in the face direction using the following command.

G79 X/U__ Z/W__ F__ ;

![Diagram of G79 face cutting cycle]
13. Program Support Functions

13.1 Fixed Cycles for Turning Machining

Taper cutting

This function enables continuous taper thread cutting using the following command.

G79 X/U__ Z/W__ R__ F__ :

![Diagram of Taper Cutting](image_url)

- **X** axis
- **Z** axis
- **U** / **2**: Rapid traverse
- **F**: Cutting feed
- **R**: Taper depth (radius designation, incremental value, sign required)

With a single block, the tool stops at the end points of operations 1, 2, 3 and 4.
Depending on the U, W and R signs, the following shapes are created.

<table>
<thead>
<tr>
<th>(1) U < 0, W < 0, R < 0</th>
<th>(2) U < 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3) U > 0, W < 0, R < 0</th>
<th>(4) U > 0, W < 0, R > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program error (P191) results with shapes (2) and (3) unless the following condition is satisfied.

\[|w| \geq |r| \]
13. Program Support Functions
13.2 Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

13.2 Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

Function and purpose

When performing rough cutting and other such operations during turning, these functions enable shapes normally commanded in several blocks to be commanded in a single block. In other words, they simplify the machining program.

When using the MITSUBISHI CNC special format (#1265 ext01/bit1 ON), some addresses differ from the normal format. The sections that differ from the normal format are shown below.

Refer to section "13.1 Fixed cycle for turning machining" for details on the fixed cycles for turning machining.

Command format

G77 X(U)__ Z(W)__ I__ F__ ;
(The same for G78)

G79 X(U)__ Z(W)__ K__ F__ ;

Detailed description

(1) Comparison of MITSUBISHI CNC special format and normal format

Some addresses in the MITSUBISHI CNC special format differ from the normal format.

<table>
<thead>
<tr>
<th>Function</th>
<th>MITSUBISHI CNC special format</th>
<th>Normal format</th>
<th>Difference from normal format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal turning cycle</td>
<td>G77 X Z I F ; or G77 U W I F ;</td>
<td>G77 X Z R F ; or G77 U W R F ;</td>
<td>Taper depth Designate with R → I</td>
</tr>
<tr>
<td>Thread cutting cycle</td>
<td>G78 X Z I F ; or G78 U W I F ;</td>
<td>G78 X Z R F ; or G78 U W R F ;</td>
<td>Taper depth Designate with R → I</td>
</tr>
<tr>
<td>Face turning cycle</td>
<td>G79 X Z K F ; or G79 U W K F ;</td>
<td>G79 X Z R F ; or G79 U W R F ;</td>
<td>Taper depth Designate with R → K</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Function and purpose

These functions enable prepared fixed cycle to be executed by commanding the corresponding program in a block.
The types of fixed cycles are listed below.

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
<th>Function and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>G70</td>
<td>Finishing cycle</td>
<td>Compound type fixed cycle for turning machining I</td>
</tr>
<tr>
<td>G71</td>
<td>Longitudinal rough cutting cycle (finished shape chamfering)</td>
<td></td>
</tr>
<tr>
<td>G72</td>
<td>Face rough cutting cycle (finished shape chamfering)</td>
<td></td>
</tr>
<tr>
<td>G73</td>
<td>Formed material rough cutting cycle</td>
<td></td>
</tr>
<tr>
<td>G74</td>
<td>Face cut-off cycle</td>
<td>Compound type fixed cycle for turning machining II</td>
</tr>
<tr>
<td>G75</td>
<td>Longitudinal cut-off cycle</td>
<td></td>
</tr>
<tr>
<td>G76</td>
<td>Compound thread cutting cycle</td>
<td></td>
</tr>
</tbody>
</table>

If, with any of the above functions for the compound type fixed cycle I (G70 to G73), the finished shape program has not been entered in the memory, the function cannot be used.

Command format

G70 A__ P__ Q__ ;
G71 U__ R__ ;
G71 A__ P__ Q__ _U__ W__ F__ S__ T__ ;
G72 W__ R__ ;
G72 A__ P__ Q__ _U__ W__ F__ S__ T__ ;
G73 U__ W__ R__ ;
G73 A__ P__ Q__ _U__ W__ F__ S__ T__ ;
G74 R__ ;
G74 X (U)__ Z (W)__ P__ Q__ R__ F__ ;
(Same for G75)
G76 P__ R__ ;
G76 X (U)__ Z (W)__ P__ Q__ R__ F__ ;

Detailed description

(1) The A, P and Q commands of the compound type fixed cycles I are described below.
 (a) When the A command is not present, P and Q in the program now being executed are called.
 When the A command is present and the P command is not present, the head block of the program designated by the A command is treated as the P command.
 (b) When the Q command is not present, operation continues until the M99 command is located.
 When both the Q and M99 commands are not present, operation continues until the final block in the finished shape program.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

13.3.1 Longitudinal Rough Cutting Cycle; G71

Function and purpose

This function calls the finished shape program and, while automatically calculating the tool path, performs rough cutting in the longitudinal direction.

Command format

Ud	Cut amount (modal) Reversible parameter ("G71 THICK")
Re	Retract amount (modal) Reversible parameter ("G71 PULL UP")
Hh	Pocket machining (modal) Reversible parameter ("G71 POCKET")

- **Ud**: Cut amount (modal) Reversible parameter ("G71 THICK")
 - Unit: µm/1/10000 inch radius value command

- **Re**: Retract amount (modal) Reversible parameter ("G71 PULL UP")
 - Unit: µm/1/10000 inch radius value command

- **Hh**: Pocket machining (modal) Reversible parameter ("G71 POCKET")
 - 0: Select this only for finished shapes that have no indent section (pocket).
 - The cutting section will retract 45° per cycle, and finally will trace the finished shape.
 - 1: This can be selected whether or not there is an indent (pocket) in the finished shape.
 - The cutting section will trace the finished shape each cycle.

Parameter cutting method

- **Control parameter**
 - "#8110 G71/G72 POCKET"
 - 0: Do not machine pocket
 - 1: Machine pocket

Pocket machining is selected with the parameter "#8110 G71/G72 POCKET" or with Hh. However, if the following parameters are ON, pocket machining will be automatically selected according to the number of axes in the finished shape start block.

- **<ext08/bit0=0>**
 - Follows parameter "#8110 G71/G72 POCKET" or Hh designation.
- **<ext08/bit0=1>**
 - When X and Z axes are commanded in finished shape start block:
 - Pocket machining (equivalent to H1)
 - When only X or Z axis is commanded in finished shape start block:
 - Equivalent to H0

Note: When ext08/bit0 = 1, the tool will retract in the X axis direction during cutting.

(Refer to section 13.3.1 "Cutting method and retract amount" for details.)
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>Finished shape program No. (Program being executed when omitted) If the A command is omitted, the P and Q commands in the program being executed will be used. If A is omitted, the program will be executed in the order of G71 and then the program following Qq (finished shape end sequence No.) A file name can be designated instead of address A by enclosing the file name in brackets <>. (The file name can have up to 32 characters, including the extension.)</td>
</tr>
<tr>
<td>Pp</td>
<td>Finished shape start sequence No. (Head of program when omitted)</td>
</tr>
<tr>
<td>Qq</td>
<td>Finished shape end sequence No. (To end of program when omitted) Even when Q is commanded, if M99 is commanded first the program will continue to M99.</td>
</tr>
<tr>
<td>Uu</td>
<td>X axis direction finishing allowance (When omitted, X axis direction finishing allowance is handled as 0.) Unit: µm/ Follows 1/10000 inch diameter/radius value command (#1019 dia).</td>
</tr>
<tr>
<td>Ww</td>
<td>Z axis direction finishing allowance (When omitted, Z axis direction finishing allowance is handled as 0.) Unit: µm/ Follows 1/10000 inch radius value command</td>
</tr>
<tr>
<td>Ff</td>
<td>Cutting speed (Follows cutting speed (modal) before G71 when omitted)</td>
</tr>
<tr>
<td>Ss,Tt</td>
<td>Spindle command, tool command</td>
</tr>
</tbody>
</table>

Validity of pocket machining

1. **Validity of pocket section**
 - It is judged that there is a pocket section when down cutting (finished shape block in which previous movement block has no X axis movement command, or the X axis moves in the reverse direction as the hole base and then moves toward the hole base) is issued between the block following the finished shape start block and the end block.
 - (Note) During tool nose radius compensation, the validity of the pocket section is judged in respect to the finished shape after tool nose radius compensation.

2. **Selection of pocket machining**
 - Execution of pocket machining is designated with Hh, but can also be set with the parameters. Pocket machining is executed when the two axes X and Z are designated in the first movement block of the finished shape program.
13. Program Support Functions
13.3 Compound Type Fixed Cycle for Turning Machining

Cutting shape

(1) Finished shape start block and finished shape end block

G71 A__ P__ Q__

The finished shape start block and finished shape end block are designated with the above command.

There may be up to 50 finished shape blocks, including the blocks inserted with corner chamfer, corner R command and nose R command. A program error (P202) will occur if the number of blocks is exceeded.

<When pocket machining is OFF> <When pocket machining is ON>

<When creating finished shape program in machining program other than that being currently executed>

G71 A__ P__ Q__
a: Finished shape program No.
p: Finished shape start sequence No.
(From head of finished shape program when omitted)
q: Finished shape end sequence No.
(To end of finished shape program or M99 when omitted)

Program currently being executed
G0 X80.0 Z75.0 T0101 ; ← (a)
G71 U10. R3. ; ← (b)
G71 A100 P10 Q20 U3. W1.5 F500 S1500 ; ← (c)
G70 A100 P10 Q20 ; ← (d)

: Shape program
O100
G28 XZ ;
N10 G0 X15.0 Z65.0 ;
G1 Z55. F450 ;
G1 X30.0 ;
G3 X40.0 Z50.0 R5.0 ;
: Finished shape program
G1 Z42.0 ;
G1 X50.0 Z35.0 ;
N20 G1 X60.0 ;
N30 G0 X13.0 Z68.0 ;
:
Program execution order (a) (b) (c) (d)

<When creating finished shape program in program currently being executed>

G71 P__ Q__
p: Finished shape start sequence No.
q: Finished shape end sequence No.

Program currently being executed
G0 X80.0 Z75.0 T0101 ; ← (a)
G71 U10. R3. ; ← (b)
G71 P10 Q20 U3. W1.5 F500 S1500 ; ← (c)
N10 G0 X15.0 Z65.0 ;
G1 Z55. F450 ;
G1 X30.0 ;
G3 X40.0 Z50.0 R5.0 ;
G1 Z42.0 ;
G1 X50.0 ;
G1 X55.0 Z35.0 ;
N20 G1 X60.0 ;
G70 A100 P10 Q20 ; ← (d)

Program execution order (a) (b) (c) (d)

* G70 command: Finishing cycle
The workpiece is finished following the finishing program, and then the axis returns to the G70 command position.
(2) Machining of open section and machining of mid-section

The rough cutting cycle machining includes that in which one end of the workpiece is open, and that in which machining starts at a mid-section of the workpiece.

- Machining of open section Possible when pocket machining is either OFF or ON
- Machining of mid-section Possible only when pocket machining is ON

(Entire rough cutting cycle is handled as one pocket.)

<table>
<thead>
<tr>
<th>Machining of open section</th>
<th>Machining of mid-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1271 ext07/bit5 = 0</td>
<td>#1271 ext07/bit5 = 1</td>
</tr>
<tr>
<td>A (G71 cycle command point)</td>
<td>A (G71 cycle command point)</td>
</tr>
<tr>
<td>C (finished shape end block)</td>
<td>C (finished shape end block)</td>
</tr>
<tr>
<td>B (finished shape start block)</td>
<td>B (finished shape start block)</td>
</tr>
<tr>
<td>Rough cutting start point</td>
<td>Rough cutting start point</td>
</tr>
</tbody>
</table>

310
(3) **Rough cutting direction**

<Rough cutting direction when pocket machining is OFF>

- Automatically determine according to finished shape (#1273 ext09/bit2=0)
 The rough cutting direction is determined in the following manner according to the finished shape. The finished shape program is A → B → C.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (finished shape end block) X axis > B (finished shape start block) X axis</td>
<td>(1) or (2)</td>
</tr>
<tr>
<td>C (finished shape end block) X axis < B (finished shape start block) X axis</td>
<td>(3) or (4)</td>
</tr>
<tr>
<td>C (finished shape end block) Z axis > B (finished shape start block) Z axis</td>
<td>(2) or (3)</td>
</tr>
<tr>
<td>C (finished shape end block) Z axis < B (finished shape start block) Z axis</td>
<td>(1) or (4)</td>
</tr>
</tbody>
</table>

A program error (P203) will occur if C (finished shape end block) X axis = B (finished shape start block) X axis, or C (finished shape end block) Z axis = B (finished shape start block) Z axis.

- Designate with program (#1273 ext09/bit2=1)
 The finishing allowance direction follows the sign of the finishing allowance designated in the program.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

<Rough cutting direction when pocket machining is ON>
Select one of the following.

- Automatically determine according to finished shape (#1273 ext09/bit2=0)
 The rough cutting direction is determined in the following manner according to the finished shape. The finished shape program is A → B → C.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (G71 cycle command point) X axis > B (finished shape start block) X axis, and B (finished shape start block) X axis ≤ C (finished shape end block) X axis</td>
<td>(1) or (2)</td>
<td></td>
</tr>
<tr>
<td>A (G71 cycle command point) X axis < B (finished shape start block) X axis, and B (finished shape start block) X axis ≥ C (finished shape end block) X axis</td>
<td>(3) or (4)</td>
<td></td>
</tr>
<tr>
<td>C (finished shape end block) Z axis > B (finished shape start block) Z axis</td>
<td>(2) or (3)</td>
<td></td>
</tr>
<tr>
<td>C (finished shape end block) Z axis < B (finished shape start block) Z axis</td>
<td>(1) or (4)</td>
<td></td>
</tr>
</tbody>
</table>

* A program error (P203) will occur if C (finished shape end block) Z axis = B (finished shape start block) Z axis.

* When setting the B point X axis at the base, the method is the same as the "<Rough cutting direction when pocket machining is OFF>".

- Designate with program (#1273 ext09/bit2=1)
 The finishing allowance direction follows the sign of the finishing allowance designated in the program.
(4) Finished shape

Selection of cut start position (#1271 ext07/bit5)
The cut start position is obtained from the final position of the finished shape program, but this can be changed to the cycle start point.

\[<\text{ext07/bit5}=0>\]

\[<\text{ext07/bit5}=1>\]
<Finished shape in Z axis direction when pocket machining is OFF>
The Z axis direction finishing allowance must always change monotonously (only increment, or only decrement).
A program error (P203) will occur if the shape is illegal.

<Finished shape in X axis direction when pocket machining is OFF>
As a principle, the X axis direction finishing allowance must change monotonously (increment or decrement).
At sections that do not change monotonously, the rough cutting cycle will not be executed at the indent section (pocket), but the finishing allowance will be traced as commanded. Thus, if the pocket's X axis depth is not less than the cut amount, the cutting load will increase at the pocket section. Take care when programming.

<Example of illegal Z axis direction when pocket machining is OFF>

<Example of illegal X axis direction when pocket machining is OFF>

There is a pocket when pocket machining is OFF.
(An error will not occur, but the pocket section will be rough cut with one cut.)
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

<Finished shape in Z axis direction when pocket machining is ON>
The finished shape in the Z axis direction will always change monotonously (only increment, or only decrement). Sections that do not change monotonously will have a cover.

<Finished shape in X axis direction when pocket machining is ON>
As a principle, the finished shape in the X axis direction must change monotonously (increment or decrement). The direction must reverse only at the indent shape (pocket). Make sure that the blocks in the finished shape do not exceed the C (finished shape end block) X axis position during pocket machining.
A program error (P203) if the interim blocks exceed the C (finished shape end block) X axis position.

<Example of section where Z axis direction does not change monotonously when pocket machining is ON>

<Example of illegal X axis direction when pocket machining is ON>
(5) Finished shape during nose R compensation

Selection of nose R compensation (#1271 ext07/bit6)

<ext07/bit6=0>
If there is a G71 command in nose R compensation, the G71 cycle command point will be at the position where nose R compensation is temporarily canceled. The finished shape will be created while nose R compensation is applied.

(Note) To machine a mid-section while pocket machining is ON, program so that the finished shape start block's X axis position and finished shape end block's X axis position are the same after nose R compensation is applied.

<table>
<thead>
<tr>
<th>Example of tool nose No. 3 (pocket machining OFF) ... Machining of open section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>G1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example of tool nose No. 8 (pocket machining) ... Machining of mid-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>q</td>
</tr>
<tr>
<td>G71 Ud Re H0 ;</td>
</tr>
<tr>
<td>G71 Pp Qq ;</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>G0</td>
</tr>
</tbody>
</table>

Precautions for machining mid-section

The mid-section will be machined when the finished shape start block's X axis position and finished shape end block's X axis position are the same after nose R compensation. Program so that the blocks enclosed with the square above move only the X axis (distance more than nose R diameter).

<ext07/bit6=1>
Rough cutting will be executed with the shape for which nose R compensation is not executed in the finished shape program.
Cut amount

(1) The cut amount is designated by Ud. However, it is possible to change the cut amount with each cutting pass by setting the cut change amount (Δd) using a parameter.

Cut amount designation (#1271 ext07/bit7)

<ext07/bit7=0>
If the amount of one cut commanded in the program is deeper than the cutting depth of the finished shape (d < Δd), a program error (P204) occurred.

<ext07/bit7=1>
A program error will not occur even if the amount designated for one cut is deeper than the cutting depth of the finished shape, and the command will be executed as one cut. Note that the amount of one cut must be commanded between 0 and 99.999mm. A program error will occur if a value exceeding this range is commanded.

(2) The end of the cutting is the cut amount, but if this value is smaller than the value set in the parameters, cutting will not be carried out, and instead finishing rough cutting will be executed.

Parameter | Cut amount (d) [Machining parameter] "#8051 G71 THICK" | 0 to 99.999mm
Cutting change amount (Δd) [Machining parameter] "#8017 G71 DELTA-D" | 0 to 99.999mm
Minimum cut amount for final cut [Machining parameter] "#8016 G71 MINIMUM" | 0 to 99.999mm

![Diagram of cut amount and margin](image-url)
Cutting method and retract amount

1. The cutting method differs according to whether pocket machining is ON or OFF.
 - Pocket machining OFF Retracts in 45° direction in respect to workpiece
 - Pocket machining ON Traces shape

2. The retract amount is designated with Re, but the retract amount can also be set by designating the amount in the parameters.
 - Pocket machining OFF Retracts in 45° direction in respect to workpiece
 - Parameter retract amount (e) [Machining parameter] "#8052 G71 PULL UP" 0 to 99.999mm

Cut-in amount designation [Base specification parameter] "#1272 ext08/bit0"
- 0: The pull up direction is Z axis direction when pocket machining is ON
- 1: The pull up direction is X axis direction when pocket machining is ON

<table>
<thead>
<tr>
<th>#1272 ext08</th>
<th><When pocket machining is OFF></th>
<th><When pocket machining is ON></th>
</tr>
</thead>
<tbody>
<tr>
<td>bit0 = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit0 = 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note) ext08/bit0 is also used to select whether to automatically determine pocket machining.
(Refer to the explanation of "Hh" in Command format.)
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Finishing margin

When the finishing allowance is designated, the Uu/Ww section will be left uncut from the finished shape.

X axis finishing allowance The finishing allowance is left uncut in the rough cutting start point direction.

Z axis finishing allowance The finishing allowance is left uncut in the rough cutting start point direction.

Note that if down cutting (block commanded in direction in which X axis faces hole base) is executed when pocket machining is ON and then cutting is started from the middle of the longitudinal direction, the Z axis finishing allowance direction will be reversed.

<Finishing allowance when pocket machining is OFF or finishing allowance of open section when pocket machining is ON (finished shape start block X axis is at base)>

G71 Ud Re H0 (or H1) ;
G71 Pp Qq ... ;
Finished shape end block

<Finishing allowance of mid-section when pocket machining is ON (Finished shape start block X axis = finished shape end block X axis)>

G71 Ud Re H1; (Valid when pocket machining is ON)
G71 Pp Qq ... ;
Finished shape end block

The block that starts cutting from the middle of the longitudinal direction will have a reversed Z axis finishing allowance direction.

(Note) During nose R compensation, program so that the p and q X axis positions after nose R compensation have the same value. (Refer to “Cutting shape” (5).)

The block that executes down cut has a reversed Z axis finishing allowance direction.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Example of program

Machining of open section (example with pocket machining OFF)

G0 X80.0 Z75.0 T0101 ; ← (1)
G71 U10. R3. H0 ; ← (2)
G71 P10 Q20 U3.W1.5 F500 S1500 ; ← (3)
N10 G0 X15.0 Z65.0 ;
G1 Z55. F450 ;
G1 X30.0 ;
G3 X40.0 Z50.0 R5.0 ;
G1 Z42.0 ;
G1 X50.0 ;
G1 X55.0 Z35.0 ;
N20 G1 X60.0 ;
G70 P10 Q20 ; ← (4)
Program execution order (1) (2) (3) (4)

Machining of open section (example with pocket machining ON)

G0 X80.0 Z75.0 T0101 ; ← (1)
G71 U10. R3. H1 ; ← (2)
G71 P10 Q20 U3.W1.5 F500 S1500 ; ← (3)
N10 G0 X15.0 Z65.0 ;
G1 Z55. F450 ;
G1 X30.0 ;
G3 X40.0 Z50.0 R5.0 ;
G1 Z42.0 ;
G1 X50.0 ;
G1 X55.0 Z35.0 ;
N20 G1 X60.0 ;
G70 P10 Q20 ; ← (4)
Program execution order (1) (2) (3) (4)

Machining of mid-section (example with pocket machining ON)

G0 X80.0 Z75.0 T0101 ; ← (1)
G71 U10. R3. H1 ; ← (2)
G71 P10 Q20 U3.W1.5 F500 S1500 ; ← (3)
N10 G0 X60.0 Z73.0 ;
G1 X15.0 Z65.0 ;
G1 Z55. F450 ;
G1 X30.0 ;
G3 X40.0 Z50.0 R5.0 ;
G1 Z42.0 ;
G1 X50.0 ;
G1 X55.0 Z35.0 ;
N20 G1 X60.0 ;
G70 P10 Q20 ; ← (4)
Program execution order (1) (2) (3) (4)
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Precautions for G71 and G72 commands

(1) Always command all necessary parameters, excluding the parameters preset from the setting and display panel, in the compound type fixed cycle for turning machining command block.

(2) Provided that the finished shape program has been entered in the memory, compound type fixed cycle for turning machining commands can be executed in the memory or MDI operation mode.

(3) Ensure that the sequence No. of the finished shape program which is specified with P and Q is not duplicated in that program.

(4) The finished shape program specified by P and Q should be prepared so that the maximum number of blocks is 50 for all the commands for corner chamfering, corner R and other commands including the automatic insertion blocks based on tool nose radius compensation. If this number is exceeded, program error (P202) will occur.

(5) Blocks without movement in the finished shape program are ignored.

(6) N, F, S, M, and T commands in the finished shape program are ignored.

(7) When any of the following commands are present in a finished shape program, program error (P201) will occur.

G27, G28, G29, G30, G33, G34, G31, G31. n, Fixed cycles

(8) If subprogram call or macro call commands are present in the finished shape program, these commands will also be executed. Note that if there is a subprogram call in the last block of the finished shape program, it will not be executed.

(9) Note that the next block after the compound type fixed cycle for turning machining command differs depending on whether a sequence No. or program No. is designated.

(a) When the sequence No. is designated

The next block is the next block designated by Q.

```
N100 G71 P200 Q500 • •;
N200
N300
N400
N500
N600
```

Finished shape program

Operation moves to the N600 block upon completion of the cycle.

(b) When the program No. is designated

The next block is the next block of the cycle command.

```
N100 G71 A100 • •;
N200
N300
N400
```

```
O100
N10 X100. Z50.;
N20
```

Operation moves to the N200 block upon completion of the cycle.
(10) Compound type fixed cycle for turning machining I commands are unmodal commands and so they must be issued every time they are required.

(11) If the finished shape program's finishing direction is reversed by tool nose radius compensation, a program error (P203) will occur.

(12) The common variable settings are ignored in the finished shape program. The setting values before compound type fixed cycle for turning machining I command will be valid.

(13) If there is an arc command in the first movement block for the finished shape when pocket machining is OFF, a program error (P203) will occur.

(14) If manual interruption is issued while executing the compound type fixed cycle for turning machining I, the position will be shifted by the manual interruption amount when the cycle is restarted. After the cycle ends, the movement will follow the manual absolute signal.

(15) Set the cycle start point in the final block of the compound type fixed cycle for turning machining I so that the tool retracts from the workpiece cutting face. This is necessary to prevent the cutter from interfering with the convex sections of the workpiece.

Poor example

Interface at final block since cycles start point is low

Cycle command point

Good example

Cycle command point

(16) Pocket machining is an option. If the option is not provided, H1 will operate as H0 even if designated.
13.3 Compound Type Fixed Cycle for Turning Machining

13.3.2 Face Rough Cutting Cycle; G72

Function and purpose

This function calls the finished shape program and, while automatically calculating the path, performs rough cutting in the face direction.

Command format

```
G72 Wd Re Hh ; (May be omitted when using value set in parameters)
G72 Ae Pp Qq Uu Ww Ff Ss Tt ;
```

- **Wd**: Cut amount (modal)

 Unit: \(\mu m / 1/10000 \) inch radius value command

- **Re**: Retract amount (modal)

 Unit: \(\mu m / 1/10000 \) inch radius value command

- **Hh**: Pocket machining (modal)

 Reversible parameter ("G71 POCKET")

 - 0: Select this only for finished shapes that have no indent section (pocket).
 The cutting section will retract 45° per cycle, and finally will trace the finished shape.

 - 1: This can be selected whether or not there is an indent (pocket) in the finished shape.
 The cutting section will trace the finished shape each cycle.

- **Aa**: Finished shape program No. (Program being executed when omitted)

 If the A command is omitted, the P and Q commands in the program being executed will be used.

 If A is omitted, the program will be executed in the order of G72 and then the program following Qq (finished shape end sequence No.)

 A file name can be designated instead of address A by enclosing the file name in brackets <>. (The file name can have up to 32 characters, including the extension.)

- **Pp**: Finished shape start sequence No. (Head of program when omitted)

- **Qq**: Finished shape end sequence No. (To end of program when omitted)

 Even when Q is commanded, if M99 is commanded first the program will continue to M99.
<table>
<thead>
<tr>
<th>Uu</th>
<th>X axis direction finishing allowance (When omitted, X axis direction finishing allowance is handled as 0.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit µm/ Follows 1/10000inch diameter/radius value command (#1019 dia).</td>
</tr>
<tr>
<td>Ww</td>
<td>Z axis direction finishing allowance (When omitted, Z axis direction finishing allowance is handled as 0.)</td>
</tr>
<tr>
<td></td>
<td>Unit µm/ Follows 1/10000inch radius value command</td>
</tr>
<tr>
<td>Ff</td>
<td>Cutting speed (Follows cutting speed (modal) before G72 when omitted)</td>
</tr>
<tr>
<td>Ss, Tt</td>
<td>Spindle command, tool command</td>
</tr>
</tbody>
</table>

* The other detailed functions are the same as "13.3.1 Longitudinal rough cutting cycle".
13.3.3 Formed Material Rough Cutting Cycle; G73

Function and purpose

This calls the finished shape program, automatically calculates the path and performs rough cutting while cutting the workpiece into the finished shape.

Command format

<table>
<thead>
<tr>
<th>G73 U i W k R d ;</th>
<th>G73 A a P p Q q U u W w F f S s T t ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ui X-axis direction cutting allowance i</td>
<td></td>
</tr>
<tr>
<td>Wk Z-axis direction cutting allowance k</td>
<td></td>
</tr>
<tr>
<td>Rd Number of divisions d</td>
<td></td>
</tr>
<tr>
<td>Aa Finished shape program No.</td>
<td></td>
</tr>
<tr>
<td>Pp Finished shape start sequence No.</td>
<td></td>
</tr>
<tr>
<td>Qq Finished shape end sequence No.</td>
<td></td>
</tr>
<tr>
<td>Uu X-axis direction finishing allowance u</td>
<td></td>
</tr>
<tr>
<td>Ww Z-axis direction finishing allowance w</td>
<td></td>
</tr>
<tr>
<td>Ff Cutting feed rate (F function)</td>
<td></td>
</tr>
<tr>
<td>Ss Spindle speed (S function)</td>
<td></td>
</tr>
<tr>
<td>Tt Tool command (T function)</td>
<td></td>
</tr>
</tbody>
</table>

- Cutting allowances when P, Q commands are not present
- Modal data
- Sign is ignored
- Radius designation applies to the cutting allowance.

A file name can be designated instead of address A by enclosing the file name in brackets <>. (The file name can have up to 32 characters, including the extension.)

Aa: (program being executed when omitted)

A file name can be designated instead of address A by enclosing the file name in brackets <>. (The file name can have up to 32 characters, including the extension.)

Pp: (program head when omitted)

Qq: (up to end of program or M99 when omitted)

Note that this is up to M99 when M99 comes first, even when there is a Qq command.

Uu: Cutting allowance when P, Q commands are present

- Sign is ignored.
- Diameter/Radius designation changes in accordance with the parameters (#1019 dia).
- The shift direction is determined by the shape. For details, refer to the "finishing allowance direction" for G71.

Ff, Ss, and Tt commands in the finished shape program are ignored and the value in the rough cutting cycle command or previous value is valid.
(Note) With a single block, operation stops at the end point of each block.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Finished shape

In the program, S → A → E in the previous page are commanded. The section between A and E must be a shape with monotonous changes in both the X axis and Z axis directions.

1 cycle configuration

A cycle is configured as shown below.

Operation 1:
Based on shape program
with shape profiling

Operation 2:
Rapid traverse on return

Cut amount

The cut amount is the value produced by dividing the cutting allowances (i, k) by the number of divisions (d−1).

X axis direction \(i/(d-1) \)
Z axis direction \(k/(d-1) \)

When divisions cannot be made, chamfering is performed and adjustment is made at the final pass.
13.3 Compound Type Fixed Cycle for Turning Machining

Tool nose radius compensation

<#1271 ext07/bit6 = 0>
When this cycle is commanded with the tool nose R compensation mode still in force, tool nose R compensation is applied to the finished shape program covered by this cycle and the cycle is executed for this shape.
However, when this cycle is commanded with the tool nose R compensation mode still in force, the compensation is temporarily canceled immediately before this cycle and started at the head block of the finished shape program.

<#1271 ext07/bit6 = 1>
Rough cutting is carried out with the shape of which tool nose radius compensation is not carried out in the same manner as the G71 and G72 cycle.

Others

(1) **Cutting direction**
- Determined according to finish shape (ext09/bit2=0)
The shift direction for the cutting is determined by the shape in the finishing program, as shown in the table below.

<table>
<thead>
<tr>
<th>Drawing</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial X axis</td>
<td>"-" direction</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Complete Z axis</td>
<td>"-" direction</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>X axis cutting</td>
<td>"+" direction</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z axis cutting</td>
<td>"+" direction</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- Determined according to commanded finish margin/cutting margin (ext09/bit2=1)
The shift direction for cutting follows the sign of the cutting allowance, etc., designated in the program.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

13.3.4 Finishing Cycle; G70

Function and purpose

After rough cutting have been carried out by the G71 to G73 commands, finishing cutting can be performed by the following command.

Command format

G70 A__ P__ Q__;
A Finished shape program No. (program being executed when omitted)
P Finished shape start sequence No. (program head when omitted)
Q Finished shape end sequence No. (up to end of program when omitted)

Note that this is up to M99 when M99 comes first, even when there is a Q command.

(1) The F, S and T commands in the finished shape program are valid during the finishing cycle.

(2) When the G70 cycle is completed, the tool returns to the start point by rapid traverse and the next block is read.

Example 1) When a sequence No. is designated

If the N100 cycle is executed in either Example 1 or Example 2, the N110 block is executed next.

Example 2) When a program No. is designated
13.3 Compound Type Fixed Cycle for Turning Machining

13.3.5 Face Cut-off Cycle; G74

Function and purpose

The G74 fixed cycle automatically enters a groove in the face direction of the workpiece by commanding the coordinates of the groove end point, cut amount, cutter shift amount and cutter escape at the bottom of the cut.

The machining program commands are as follows.

Command format

\[
\text{G74 Re ;}
\]

\[
\text{C74 X/(U)x Z/(w)z Pi Qk Rd Ff ;}
\]

Re Return amount (no X/U, P commands) (modal)
X/Ux B point X coordinate (absolute/incremental value)
Z/Wz B point Z coordinate (absolute/incremental value)
Pi Tool shift amount (radius designation, incremental value, sign not required)
Qk Cut amount (radius designation, incremental value, sign not required)
Rd Escape at the bottom of the cut
Ff Feed rate

When there is no sign, escapes even at the bottom of the first cut. When a - sign is attached, the tool escapes from the second cut without escaping the first cut.

Operations (2), (4), (6), (8), (10), (11) and (12) are executed at the rapid traverse rate.

Operation (9) as well as operation (12) immediately before the final cycle are executed with the remainder amount.

- Operation (9) as well as operation (12) immediately before the final cycle are executed with the remainder amount.
- Operations (2), (4), (6), (8), (10), (11) and (12) are executed at the rapid traverse rate.
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Single block stop

Operation stops at each block from (1) to (12).

Others

(1) When X/U and P are omitted or when the values of "x" and "i" are zero, operation will apply to the Z axis only. Note that when there is an Rd command and no sign, the tool will escape at the bottom of the cut.

(2) A case where the X/U or Z/W command is not present is treated as the assignment of a parameter setting command (G74 Re). Even when G74 Pi Qk Rd ; is commanded, Rd is regarded as Re, and the return amount is set.

(3) The escape direction does not change when a - sign is attached to the Rd command, or when there is no sign.

(4) A program error (P204) results in the following cases.
 (a) When " i " is zero or P has not been commanded even though X/U has been commanded.
 (b) When tool shift amount " i " is greater than the "x" movement amount.
 (c) When the escape amount "d" is greater than the shift amount " i ".
 (d) When the return amount "e" is greater than the cut amount "k".
 (e) When the cut in amount "k" is larger than the hole depth "w".
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

13.3.6 Longitudinal Cut-off Cycle; G75

Function and purpose

The G75 fixed cycle automatically enters a groove in the longitudinal direction of the workpiece by commanding the coordinates of the groove end point, cut amount, cutter shift amount and cutter escape at the bottom of the cut.

Command format

\[
\text{G75 } \text{Re ;}
\]

\[
\text{C75 } \text{X/(U)x } \text{Z/(w)z } \text{Pi Qk Rd Ff ;}
\]

- **Re**: Return amount (no X/U, P commands) (modal)
- **X/Ux**: B point X coordinate (absolute/incremental value)
- **Z/Wz**: B point Z coordinate (absolute/incremental value)
- **Pi**: Cut amount (radius designation, incremental value, sign not required)
- **Qk**: Tool shift amount (radius designation, incremental value, sign not required)
- **Rd**: Escape at the bottom of the cut
 - When there is no sign, escapes even at the bottom of the first cut. When a - sign is attached, the tool escapes from the second cut without escaping the first cut.
- **Ff**: Feed rate

\[
\text{• Operation (9) as well as operation (12) immediately before the final cycle are executed with the remainder amount.}
\]

\[
\text{• Operations (2), (4), (6), (8), (10), (11) and (12) are executed at the rapid traverse rate.}
\]
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Single block stop

Operation stops at each block from (1) to (12).

Others

(1) When Z/W and Q are omitted or when the values of "z" and "k" are zero, operation will apply to the X axis only (slitting). Note that when there is an Rd command and no sign, the tool will escape at the bottom of the cut.

(2) A case where both the X/U and Z/W commands are not present is treated as the assignment of a parameter setting command (G75 Re). Even when G75 Pi Qk Rd ; is commanded, Rd is regarded as Re, and the return amount is set.

(3) The escape direction does not change when a - sign is attached to the Rd command, or when there is no sign.

(4) A program error (P204) results in the following cases.

 (a) When "k" is zero or Q has not been commanded even though Z/W has been commanded.

 (b) When tool shift amount "k" is greater than the "z" movement amount.

 (c) When the escape amount "d" is greater than the shift amount "k".

 (d) When the return amount "e" is greater than the cut amount "i".

 (e) When the cut in amount "i" is larger than the hole depth "u/2".
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

13.3.7 Compound Thread Cutting Cycle; G76

Function and purpose

The G76 fixed cycle enables the workpiece to be cut at the desired angle by designating the thread cutting start point and end point, and it automatically cuts so that the cutting cross section (cutting torque) per cutting pass is constant. Various longitudinal direction threads can be cut by bearing in mind the command value for the thread end point coordinate and taper height component.

Command format

```
G76 P m r a Q Δdmin Rd ;
G76 X/U Z/W Ri P k Q Δd F l ;
```

- **m** Number of cutting passes for finishing: 00 to 99 (times) (modal)
- **r** Chamfering amount: 00 to 99 (0.1mm/rev) (modal)
 - The chamfering width based on thread lead "l" is designated by a 2-digit integer without decimal point from 0.0 to 9.9.
- **a** Tool nose angle (thread angle): 00 to 99 (°) (modal)
 - The angle from 0° to 99° is assigned in 1° units.
 - "m", "r" and "a" are commanded in succession in address P.
 - (Example) When m=5, r=1.5 and a=0° P is 051500 and the leading and trailing zeroes cannot be omitted.
- **Δdmin** Minimum cut amount
 - If the calculated cut amount is smaller than Δdmin, it is clamped by Δdmin.
- **Δd** Cut amount
 - The cut amount of the first cutting pass is commanded by a positive radius value.
- **l** Thread lead

(Note 1) The two above G76 commands cannot be placed in the same block.
- The data commanded by P, Q and R are automatically identified according to the presence or absence of the X/U and Z/W axis addresses.

(Note 2) Parameter settings can be used for the above "r" modal data but these parameter (#8014 chamfer amount) settings are rewritten by the program commands.

(Note 3) The chamfering amount designation is valid even for thread cutting fixed cycles.

(Note 4) Program error (P204) results in the following cases.
- (a) When "a" is outside the rating
- (b) When both the X and Z commands have not been issued or when the start and end point coordinates are the same for either the X or Z command.
- (c) When the thread is greater than the movement of the X axis at the thread bottom

(Note 5) The precautions for the thread cutting command (G33) and thread cutting cycle (G78) should be observed.
1. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

1 cycle configuration

The tool moves at rapid traverse for operations (1), (2), (5) and (6) in the cycle and at the cutting feed based on the F designation for operations (3) and (4).

When R_i is negative

When R_i is positive
13. Program Support Functions

13.3 Compound Type Fixed Cycle for Turning Machining

Example of program

```
G76 P011560 R0.2 ;
G76 U-28.0 W-46.0 R9.0 P6.0 Q3.5 F4.0 ;
```

The tool moves with rapid traverse over the solid line section, and at the cutting feed that is F-designated over the thread cutting sections.
(1) When the feed hold button is pressed while G76 is being executed, automatic operation will stop upon completion of a block without thread cutting if thread cutting is ongoing. (The automatic operation pause lamp lights immediately in the feed hold mode and it goes off when automatic operation stops.) If feed hold is applied when no thread is then being cut, or if applied in the interval from the execution of the thread cutting command to the axis movement, the automatic operation pause lamp will turn ON, and the automatic operation will pause.

(2) The tool stops upon completion of operations (1), (4) and (5) when the mode is switched to another automatic operation mode during the G76 command execution, when automatic operation is changed to manual operations or when single block operation is conducted.

(3) The dry run valid/invalid status during G76 execution does not change during thread cutting.
13.3.8 Precautions for Compound Type Fixed Cycle for Turning Machining; G70 to G76

Precautions

1. Command all required parameters in a compound type fixed cycle for turning machining command block.

2. Provided that the finished shape program has been entered in the memory, compound type fixed cycle for turning machining I commands can be executed in the memory, MDI or tape operation mode.

3. When executing a G70 to G73 command, ensure that the sequence No. of the finished shape program which is stop with P and Q is not duplicated in that program.

4. The finished shape program specified by P and Q in the G71 to G73 blocks should be prepared so that the maximum number of blocks is 200 for all the commands for corner chamfering, corner rounding and other commands including the automatic insertion blocks based on tool nose R compensation. If this number is exceeded, program error (P202) results. If the cutting start position is the cycle start position (#1271 ext07/bit5 =1), the finished shape program can have up to 199 blocks. (When the cycle start point is on the other side of the finished shape program's final position.)

5. The finished shape program which is designated by the G71 to G73 blocks should be a program with monotonous changes (increases or reductions only) for both the X and Z axes.

6. Blocks without movement in the finished shape program are ignored.

7. N, F, S, M, and T commands in the finished shape program are ignored.

8. When any of the following commands are present in a finished shape program, program error (P201) results.
 (a) Commands related to reference position return (G27, G28, G29, G30)
 (b) Thread cutting (G33)
 (c) Fixed cycles
 (d) Skip functions (G31, G37)

9. If subprogram call or macro call commands are present in the finished shape program, these commands will also be executed.

10. Except for thread cutting cycles, operation stops at the end (start) point of each block in the single block mode.
(11) Remember that, depending on whether the sequence or program No. is designated, the next block upon completion of the G71, G72 or G73 command will differ.

<table>
<thead>
<tr>
<th>(a) When the sequence No. is designated</th>
<th>(b) When the program No. is designated</th>
</tr>
</thead>
<tbody>
<tr>
<td>The next block is the next block designated by Q.</td>
<td>The next block is the next block of the cycle command.</td>
</tr>
</tbody>
</table>
| \[
| N100 \text{ G71P200 Q500 U}_W _ _ _ _ ; \\
| N200 \\
| N300 \\
| N400 \\
| N500 \\
| N600 |
| \] Finished shape program | \[
| N100 \text{ G71 A100 U}_W _ _ _ _ ; \\
| N200 \\
| N300 \\
| N400 |
| \] Operation moves to the N600 block upon completion of the cycle. |
| Operation moves to the N200 block upon completion of the cycle. |

(12) The next block applying upon completion of the G70 command is the next block of the command block.

\[
\begin{align*}
&\{ \\
&N100 _ _ _ _ ; \\
&N200 ; \\
&N300 ; \\
&N400 ; \\
&N500 ; \\
&\{ \\
&N1000 \text{ G70 P200 Q500 } ; (\text{or G70 A100 ;}) \\
&N1100 _ _ _ _ ; \\
&\}
\end{align*}
\]

Operation moves to the N1100 block upon completion of the G70 command.

(13) It is possible to apply a manual interruption while a compound type fixed cycle for turning machining command (G70 to G76) is being executed. However, upon completion of the interrupt, the tool must first be returned to the position where the interrupt was applied and then the compound type fixed cycle for turning machining must be restarted.

If it is restarted without the tool having been returned, all subsequent movements will deviate by an amount equivalent to the manual interruption amount.

(14) Compound type fixed cycle for turning machining commands are unmodal commands and so they must be issued every time they are required.

(15) Program error (P203) results with the G71 and G72 commands even when, because of tool nose R compensation, there is no further movement of the Z axis in the second block or the Z axis has moved in the opposite direction.

(16) A program error (P204) will occur if the finished shape program is issued in the same program with G70 to G73 and both P and Q are not designated.

Note that if A, P and Q are all not designated in G71 to G73, this will be interpreted as the first block for the compound type fixed cycle for turning machining I, and an error will not occur.
(17) Set the cycle start point in the final block of the compound type fixed cycle for turning machining 1 so that the tool retracts from the workpiece cutting face. This is necessary to prevent the cutter from interfering with the convex sections of the workpiece.

<table>
<thead>
<tr>
<th>Poor example</th>
<th>Good example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferes at final block since cycle start point is low</td>
<td>Cycle command point</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(18) Pocket machining is an option. If the option is not provided, H1 will operate as H0 even if designated.
13. Program Support Functions
13.4 Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

13.4 Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

Function and purpose

This function allows a prepared fixed cycle to be executed by commanding the program in one block.
When using the MITSUBISHI CNC special format (#1265 ext01/bit0 ON), some of the addresses differ from the normal format.
With the normal format, G71 to G76 are commanded in two blocks. However with the MITSUBISHI CNC special format, these are commanded with one block. The sections that differ from the normal format are explained in this section.
Refer to section "13.3 Compound type fixed cycle for turning machining" for details on the compound type fixed cycle for turning machining.

Command format

G71 P__ Q__ U__ W__ D__ F__ S__ T__;
(Same for G72)

P	Finished shape start sequence No.
Q	Finished shape end sequence No.
U	X axis direction finishing allowance
W	Z axis direction finishing allowance
D	Cut amount
F	Cutting speed
S	Spindle speed
T	Tool command

G73 P__ Q__ U__ W__ I__ K__ D__ F__ S__ T__;

P	Finished shape start sequence No.
Q	Finished shape end sequence No.
U	X axis direction finishing allowance
W	Z axis direction finishing allowance
I	X axis direction cutting allowance
K	Z axis direction cutting allowance
D	Number of divisions
F	Cutting speed
S	Spindle speed
T	Tool command

G74 X(U)__ Z(W)__ I__ K__ F__ D__;
(Same for G75)

X(U)	X axis slot insertion end point coordinate
Z(W)	Z axis slot insertion end point coordinate
I	Tool shift amount (X/U axis direction movement amount)
K	Cut amount (Z/W axis direction cut amount)
F	Cutting speed
D	Tool escape amount at cutting base
13. Program Support Functions
13.4 Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

<table>
<thead>
<tr>
<th>G76 X(U) Z(W) I K D F A Q P ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(U)</td>
</tr>
<tr>
<td>Z(W)</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

Detailed description

(1) Check of command format

A check is performed to check whether the normal command format is being used with the MITSUBISHI CNC special format.

[When normal format is selected (#1265 ext01/bit0 OFF)]

(a) Check of command format

If the format check selection parameter (#1222 aux06/bit5) is set to 0, a program error (P33) will occur in the following cases.

- There is no 1st block command.
- A MITSUBISHI CNC special format is commanded.

(b) Check of command address

A program error (P32) will occur in the following cases.

- When address I, K or D is commanded in the G71, G72, G73, G74 or G75 block.
- When address I, K, D or A is commanded in the G76 block.

[When MITSUBISHI CNC special format is selected (#1265 ext01/bit0 ON)]

(a) Check of command format

A program error (P33) will occur if a normal format is commanded.

(b) Check of command address

A program error (P32) will occur in the following cases.

- When address R or A is commanded in the G71, G72 or G73 block.
- When address P, Q or R is commanded in the G74 or G75 block.
- When address R is commanded in G76 the block.
(2) **Comparison of MITSUBISHI CNC special format and normal format**

While the normal format is commanded with two blocks, the MITSUBISHI CNC special format is commanded with one block. Some addresses differ, and some are designated with the parameters.

<table>
<thead>
<tr>
<th>Function</th>
<th>MITSUBISHI CNC special format</th>
<th>Normal format</th>
<th>Difference from normal format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal rough cutting cycle I</td>
<td>G71 P Q U W D F S T ; (1) G71 U R ; (2) G71 A P Q U W F S T ;</td>
<td>Cut amount Designate with U (1) → D Retract amount R (1) → Parameter (#8052 G71 PULL UP) No A command (finished shape program No.)</td>
<td></td>
</tr>
<tr>
<td>Face rough cutting cycle I</td>
<td>G72 P Q U W D F S T ; (1) G72 W R ; (2) G72 A P Q U W F S T ;</td>
<td>Cut amount Designate with W (1) → D Retract amount R (1) → Parameter (#8052 G71 PULL UP) No A command (finished shape program No.)</td>
<td></td>
</tr>
<tr>
<td>Formed material rough cutting cycle</td>
<td>G73 P Q U W I K D F S T ; (1) G73 U W R ; (2) G73 A P Q U W F S T ;</td>
<td>X axis cutting allowance U (1) → I Z axis cutting allowance W (1) → K Number of divisions R (1) → D No A command (finished shape program No.)</td>
<td></td>
</tr>
<tr>
<td>Face cut-off cycle</td>
<td>G74 X Z I K F D ; or G74 U W I K F D ; (1) G74 R ; (2) G74 X Z P Q R F ; or (1) G74 R ; (2) G74 U W P Q R F ;</td>
<td>X axis direction movement amount P (2) → I Z axis direction cut amount Q (2) → K Escape amount at cutting base R (2) → D Return amount R (1) → parameter (#8056 G74 RETRACT)</td>
<td></td>
</tr>
<tr>
<td>Outer diameter cut-off cycle</td>
<td>G75 X Z I K F D ; or G75 U W I K F D ; (1) G75 R ; (2) G75 X Z P Q R F ; or (1) G75 R ; (2) G75 U W P Q R F ;</td>
<td>X axis direction cut amount P (2) → I Z axis direction movement amount Q (2) → K Escape amount at cutting base R (2) → D Return amount R (1) → parameter (#8056 G74 RETRACT)</td>
<td></td>
</tr>
<tr>
<td>Compound thread cutting cycle</td>
<td>G76 X Z I K D F A Q_ ; (1) G76 Pmsa R_ ; (2) G76 X Z R P Q F_ ;</td>
<td>Radius at thread section R (2) → I Thread height P (2) → K 1st cut amount Q (2) → D (Q in the MITSUBISHI CNC special format is the thread cutting start shift angle) Thread angle P (1) a → A Thread cutting P (1) r → parameter (#8014 CDZ-VALE) Number of finish cuts P (1) m → parameter (#8058 TIMES) Finishing allowance R (1) → parameter (#8057 G76 LAST-D)</td>
<td></td>
</tr>
</tbody>
</table>
Zigzag thread cutting

By commanding P2 in the G76 block of the compound thread cutting cycle, zigzag thread cutting with a set cut amount can be carried out.

When \(l_i \) (taper height element at thread section) is negative

When \(l_i \) (taper height element at thread section) is positive
13. Program Support Functions

13.4 Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format)

Relational expression of cut amount

\[H_1 = H_2 \times \frac{1}{2} = \left(\sqrt{2} \times D \right) \times \frac{1}{2} \]
\[H_2 = \sqrt{2} \times D \]
\[H_3 = H_2 + (H_4 - H_2) \times \frac{1}{2} = \left(\sqrt{2} + \sqrt{4} \right) \times D \times \frac{1}{2} \]
\[H_4 = \sqrt{4} \times D \]
\[H_5 = H_4 + (H_6 - H_4) \times \frac{1}{2} = \left(\sqrt{4} + \sqrt{6} \right) \times D \times \frac{1}{2} \]
\[H_6 = \sqrt{6} \times D \]
\[H_n = \left(\sqrt{n-1} + \sqrt{n+1} \right) \times \frac{\Delta d}{2} \quad (n = 1, 3, 5, 7, \ldots) \]
\[H_n = \sqrt{n} \times \Delta d \quad (n = 2, 4, 6, 8, \ldots) \]

Precautions and restrictions

1. Always designate P and Q in G71 to G73. A program error (P204) will occur if either is not designated.

2. The thread cutting start shift angle is to a modal. If there is no Q command at G76, this will be handled as "Q0".

3. If a value exceeding 360.000 is commanded for Q in G76, a program error (P35) will occur.

4. G76 cuts one row with one cycle. To cut two rows, change the Q value, and issue the same command.
13.5 Fixed Cycle for Drilling; G80 to G89

Function and purpose

These fixed cycles are used for predetermined sequences of machining operations such as normal positioning, hole drilling, boring and tapping which are specified in a block. The various sequences available using these functions are listed in the table below.

Note The X axis is designated as the hole drilling axis by longitudinal hole drilling fixed cycle. The Y axis can be designated as the hole drilling axis by using the longitudinal hole drilling axis selection function. "Type II" in the table explains detail when using the longitudinal hole drilling axis selection function.

<table>
<thead>
<tr>
<th>G code</th>
<th>Hole drilling axis</th>
<th>Hole drilling start</th>
<th>Operation at hole bottom</th>
<th>Return operation</th>
<th>Application</th>
<th>Type II</th>
<th>Longitudinal hole drilling axis selection signal</th>
<th>Hole drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cancel</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G83</td>
<td>Z</td>
<td>Cutting feed, intermittent feed</td>
<td>In-position check Dwell</td>
<td>Rapid traverse</td>
<td>Deep hole drilling cycle 1</td>
<td>ON Z</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>G84</td>
<td>Z</td>
<td>Cutting feed</td>
<td>In-position check Dwell, spindle reverse rotation</td>
<td>Cutting feed</td>
<td>Tapping cycle (Note 1) (Reverse tap cycle)</td>
<td>ON Z</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>G85</td>
<td>Z</td>
<td>Cutting feed</td>
<td>In-position check Dwell</td>
<td>Cutting feed</td>
<td>Boring cycle</td>
<td>ON Z</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>G87</td>
<td>X</td>
<td>Cutting feed, intermittent feed</td>
<td>In-position check Dwell</td>
<td>Rapid traverse</td>
<td>Deep hole drilling cycle 1</td>
<td>ON Y</td>
<td>OFF X</td>
<td></td>
</tr>
<tr>
<td>G88</td>
<td>X</td>
<td>Cutting feed</td>
<td>In-position check Dwell, spindle reverse rotation</td>
<td>Cutting feed</td>
<td>Tapping cycle (Note 1) (Reverse tap cycle)</td>
<td>ON Y</td>
<td>OFF X</td>
<td></td>
</tr>
<tr>
<td>G89</td>
<td>X</td>
<td>Cutting feed</td>
<td>In-position check Dwell</td>
<td>Cutting feed</td>
<td>Boring cycle</td>
<td>ON Y</td>
<td>OFF X</td>
<td></td>
</tr>
<tr>
<td>G83.2</td>
<td>Z/X</td>
<td>Cutting feed, intermittent feed</td>
<td>In-position check Dwell</td>
<td>Rapid traverse</td>
<td>Deep hole drilling cycle 2</td>
<td>ON Z/X</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

A fixed cycle mode is canceled when the G80 or any G command in the 01 group is issued. The various data will also be cleared simultaneously to zero.

Note 1 Whether to set the reverse tap cycle G codes to G84.1/G88.1 or G84/G88 (address D value is minus) is determined according to the base specification parameter "#1309 Gtype".
13. Program Support Functions

13.5 Fixed Cycle for Drilling

Command format

(1) Face hole drilling

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8Δ X/U C/H Z/W R Q P F K D S S M ;</td>
<td>Hole machining mode (G83, G84, G85)</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Hole positioning data</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Hole machining data</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Number of repetitions</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Tool spindle No.</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Spindle rotation speed</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Spindle rotation speed at return</td>
</tr>
<tr>
<td>G8Δ X/U C/H R Q P F</td>
<td>Miscellaneous command</td>
</tr>
</tbody>
</table>

(2) Longitudinal hole drilling

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8* Z/W C/H X/U R Q P F K D S S M ;</td>
<td>Hole machining mode (G87, G88, G89)</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Hole positioning data</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Hole machining data</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Number of repetitions</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Tool spindle No.</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Spindle rotation speed</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Spindle rotation speed at return</td>
</tr>
<tr>
<td>G8* Z/W C/H R Q P F</td>
<td>Miscellaneous command</td>
</tr>
</tbody>
</table>

(3) Cancel

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80 ;</td>
<td></td>
</tr>
</tbody>
</table>

(4) Data outline and corresponding addresses

(a) Hole machining modes : These are the fixed cycle modes for drilling (G83, G87),
 tapping (G84, G88) and boring (G85, G89). These are modal commands and once they
 have been issued, they will remain valid until another hole machining mode
 command, the cancel command for the fixed cycle for drilling or a G command in the
 01 group is issued.

(b) Hole positioning data : These are for the positioning of the X (Z) and C axes.
 These are unmodal data, and they are commanded block by block when the same
 hole machining mode is to be executed continuously.

(c) Hole machining data : These are the actual machining mode.
 Except for Q, they are modal. Q in the G83 or G87 command
 is unmodal and is commanded block by block as required.

(d) Number of repetitions : This number is designated for machining holes at equal
 intervals when the same cycle is to be repeated.
 The setting range is from 0 to 9999; the decimal point is not
 valid. The number is unmodal and is valid only in the block in which
 it has been assigned.
 When this number is not designated, it is treated as K1. When
 K0 is designated, the hole machining data are stored in the
 memory but no holes will be machined.
13.5 Fixed Cycle for Drilling

<table>
<thead>
<tr>
<th>Address</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Selection of hole machining cycle sequence (G80, G83, G84, G85, G87, G88, G89)</td>
</tr>
<tr>
<td>* X/U (Z/W), C/H</td>
<td>Designation of hole position initial point (absolute/incremental value)</td>
</tr>
<tr>
<td>* Z/W (X/U)</td>
<td>Designation of hole bottom position (absolute/incremental value from R point)</td>
</tr>
<tr>
<td>R</td>
<td>Designation of R point (incremental value from initial point) (sign ignored)</td>
</tr>
<tr>
<td>Q</td>
<td>Designation of cut amount for each cutting pass with G83 (G87); always incremental value, radius value (sign ignored)</td>
</tr>
<tr>
<td>P</td>
<td>Designation of dwell time at hole bottom point; relationship between time and designated value is same as for G04 designation</td>
</tr>
<tr>
<td>F</td>
<td>Designation of feed rate for cutting feed</td>
</tr>
<tr>
<td>K</td>
<td>Designation of number of repetitions, 0 to 9999 (standard value = 1)</td>
</tr>
<tr>
<td>D</td>
<td>Designate of spindle used in tap cycle (modal)</td>
</tr>
<tr>
<td></td>
<td>(Note) Set a minus value when designating the reverse tap cycle with the G codes G84/G88 by setting "#1309 Gtype".</td>
</tr>
<tr>
<td>S</td>
<td>Designation of spindle rotation speed</td>
</tr>
<tr>
<td></td>
<td>(Note) During synchronous tap, the S command in the command format having a spindle No. (example: "S2 = 2000") is ignored.</td>
</tr>
<tr>
<td>,S</td>
<td>Designation of spindle rotation speed at return</td>
</tr>
<tr>
<td></td>
<td>(Note) Valid only during synchronous tap mode. This setting is ignored during other modes.</td>
</tr>
<tr>
<td>,R</td>
<td>Designation of synchronous tapping/asynchronous tapping</td>
</tr>
<tr>
<td></td>
<td>(Note) The spindle rotation direction can be reversed using the synchronous tap command polarity reversal signal.</td>
</tr>
<tr>
<td>M</td>
<td>Designation of miscellaneous command</td>
</tr>
<tr>
<td></td>
<td>(Note) During forward asynchronous tapping, basically command spindle forward run for the M address. A spindle reverse run command will result in illegal operation unless the value is the spindle forward run code +1.</td>
</tr>
</tbody>
</table>

* : Addresses in parentheses apply for commands G87, G88 and G89.
The hole drilling axes for the fixed cycle for drilling and the positioning are shown in the outline drawing below.

During the hole drilling cycle, the C axis (spindle) is clamped so that it does not move.

Commands M03, M04 and M05 (forward rotation, reverse rotation and stop) apply to the rotary tools.

(1) G83 Xx₁ Cc₁ Zz₁ Rr₁ Qq₁ Pp₁ Ff₁ Kk₁ ;
(2) G83 Xx₂ Cc₂ Zz₂ Rr₂ Qq₂ Pp₂ Ff₂ Kk₂ ;
(3) G87 Zz₃ Cc₃ Xx₃ Rr₃ Qq₃ Pp₃ Ff₃ Kk₃ ;
(4) G87 Zz₄ Cc₄ Xx₄ Rr₄ Qq₄ Pp₄ Ff₄ Kk₄ ;
There are 7 actual operations which are each described in turn below.

Operation 1: This denotes the positioning (by rapid traverse) of the tool to the X (Z) and C axis initial point. If ",I" (Positioning axis in-position width) is commanded, in-position check will be carried out after the block completes.

Operation 2: This is output provided that the M code for C-axis clamping is issued.

Operation 3: The tool is positioned as far as the R point by rapid traverse.

Operation 4: Hole machining is conducted by cutting feed.

If ",J" (Hole drilling axis in-position width) is commanded, in-position check will be carried out after the block completes. Note that in case of deep drilling cycle 1 or 2, in-position check will not be carried out halfway for the hole drilling. It will be carried out at designated hole bottom position (the last hole drilling).

Operation 5: This operation takes place at the hole bottom position and it differs according to the fixed cycle mode. Possible actions include rotary tool reverse rotation (M04), rotary tool forward rotation (M03) and dwell.

Operation 6: The tool is retracted as far as the R point.

Operation 7: The tool is returned as far as the initial point at the rapid traverse rate.

(Operations 6 and 7 may be a single operation depending on the fixed cycle mode.)

(Notes) As for the synchronous tapping command, in-position check will be carried out depending on the parameter #1223 (Synchronous tap improvement). (Only some models)

Whether the fixed cycle is to be completed at operation 6 or 7 can be selected by the following G commands.

G98 Initial level return
G99 R point level return

These G commands are modal. Once, for instance, G98 is designated, the G98 mode will remain valid until the G99 command is issued. The G98 mode is established in the initialized state when the NC unit is ready to operate.
1223 aux07

<table>
<thead>
<tr>
<th>bit3</th>
<th>bit4</th>
<th>bit5</th>
<th>bit2</th>
<th>P designation of G84/G88 command</th>
<th>In-position check during synchronous tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchro-nous tap in-position check</td>
<td>Hole bottom</td>
<td>R point</td>
<td>I point → R point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>——</td>
<td>Carry out in-position check at I point → R point/R point/ hole bottom.</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No "P" designation</td>
<td>Hole bottom/R point: Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Carry out in-position check by tap in-position width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carry out in-position check.</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Carry out in-position check by tap in-position width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Carry out in-position check by tap in-position width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Carry out in-position check by tap in-position width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Carry out in-position check by tap in-position width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>"P" designation</td>
<td>Hole bottom/R point: Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Example: G84 F1, Z-5, S1000 R-5.</td>
<td>Do not carry out in-position check.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I point → R point:</td>
<td>Do not carry out in-position check.</td>
</tr>
</tbody>
</table>

(Note 1) The I point refers to the initial point.
13. Program Support Functions

13.5 Fixed Cycle for Drilling

(2) In-position width and tap axis movement for a synchronous tap in-position check

![Diagram showing in-position width and tap axis movement](image)

- **R point**: In-position check by the G1inps value.
- **I point**: In-position check by the G0inps value.
- **Hole bottom**: In-position check by the Tapinps value.

(1) Section in which the in-position check is carried out by the SV024 value.
(2) Section in which the in-position check is carried out by the TapINP value.
(3) Section in which the in-position check is carried out by the G1inps value.
(4) Section in which the in-position check is carried out by the G0inps value.
13. Program Support Functions

13.5 Fixed Cycle for Drilling

(3) Relation between the parameter setting values and tap axis movement for a synchronous tap in-position check

<table>
<thead>
<tr>
<th>bit3</th>
<th>bit4</th>
<th>bit5</th>
<th>bit2</th>
<th>Hole bottom</th>
<th>R point</th>
<th>I point → R point</th>
<th>Operation at hole bottom</th>
<th>Operation at R point</th>
<th>Operation at I point → R point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Time designated by “P”. Processing time is several 10ms when no “P”.</td>
<td>Operation determined by setting of inpos (#1193) and aux 07 (#1223): bit 1 parameters.</td>
<td>Operation determined by setting of inpos (#1193) and aux 07 (#1223): bit 1 parameters.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. Processing time is several 10ms if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Larger value of “P” and TapDwl (#1313) is valid. Processing time is several 10ms if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) The I point refers to the initial point.

(Note 2) Keep in mind that vibration or deterioration in accuracy may occur when having the in-position check invalidated at R point.
13. Program Support Functions

13.5 Fixed Cycle for Drilling

13.5.1 Face Deep Hole Drilling Cycle 1; G83 (Longitudinal deep hole drilling cycle 1; G87)

When the Q command is present (deep hole drilling)

G83 (G87) X(z) C Z(x) R Q p P F K Mm ;

<table>
<thead>
<tr>
<th>G98 mode</th>
<th>G99 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td> Initial point (Mα)</td>
<td> Initial point (Mα)</td>
</tr>
<tr>
<td> -Z point</td>
<td> Z point</td>
</tr>
<tr>
<td> R point</td>
<td> R point</td>
</tr>
</tbody>
</table>

(1) Return amount "d" is set by the setup parameter (#8013 G83 n). The tool returns at rapid traverse.

(2) (Mα) : The M code (Mm) is output when there is a C-axis clamping M code command (Mm).

(3) (Mβ) : The C-axis unclamping M code (C-axis clamp M code + 1 = Mm + 1) is output when there is a C-axis clamping M code command (Mm).

(4) : Dwell is performed for the duration equivalent to the time designated by P.

(5) : After the C-axis unclamping M code (Mm+2) has been output, dwell is performed for the duration equivalent to the time set by the parameter (#1184 clmp_ D).

When the Q command is not present (drilling)

G83 (G87) X(z) C Z(x) R p F K Mm ;

<table>
<thead>
<tr>
<th>G98 mode</th>
<th>G99 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td> Initial point (Mα)</td>
<td> Initial point (Mα)</td>
</tr>
<tr>
<td> Z point</td>
<td> Z point</td>
</tr>
<tr>
<td> R point</td>
<td> R point</td>
</tr>
</tbody>
</table>

See "When the Q command is present (deep hole drilling)" for details on Mα, Mβ, and .
13.5.2 Face Tapping Cycle; G84 (Longitudinal tapping cycle; G88) / Face Reverse Tapping Cycle; G84.1 (Longitudinal reverse tapping cycle; G88.1)

Detailed description

G84 (G88) is explained below. With the reverse tapping cycle G84.1 (G88.1), the tap rotation direction is reversed.

G84 (G88) Xx1 Cc1 Zz1 Rr1 Pp1 Ff1 Kk1 Dd1 Ss1 ,Ss2 ,Rr2 Mm1;

<table>
<thead>
<tr>
<th>G98 mode</th>
<th>G99 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) See Section 13.5.1 "When the Q command is present (deep hole drilling)" for details on Mα, Mβ, P, and P'.

(2) When G84 (G88) is executed, the override will be canceled and the override will automatically be set to 100%.

(3) Dry run is valid when the control parameter "G00 DRY RUN" is ON and is valid for the positioning command. If the feed hold button is pressed during G84 (G88) execution, block stop occurs after returning completes.

(4) During single block operation, the axis will not stop at the turning point of tap cycle.

(5) During the G84 (G88) modal, the "Tapping" NC output signal will be output.

(6) During the G84 (G88) synchronous tapping modal, the M3, M4, S code, etc. will not be output.

(7) The tool stops at the R point and the rotary tool forward rotation signal is output.

(8) The rotation of the rotary tool is reversed at the hole bottom and tapping is performed.

(9) Before the rotary tool reverse (M04) or forward rotation (M03) signal is output, the fixed cycle subprograms should be edited if the rotary tool stop (M05) command is required.

(10) Whether to set the reverse tap cycle G codes to G84.1/G88.1 or G84/G88 (address D value is minus) is determined according to the base specification parameter "#1309 Gtype".
13. Program Support Functions

13.5 Fixed Cycle for Drilling

Synchronous/asynchronous tap selection

(1) Selecting with a program command
Tap cycle "R0/1" command
G84 (G88) Xx1 Cc1 Zz1 Rr1 Pp1 Ff1 Kk1 Dd1 Ss1 Ss2 Rr2 Mm1 ;
When r2 = 1, the synchronous tap mode is entered, and when r2 = 0, the asynchronous tap mode is entered.

(2) Selecting with parameters

[Base specifications parameters]

<table>
<thead>
<tr>
<th>#</th>
<th>Items</th>
<th>Details</th>
<th>Setting range (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1229</td>
<td>set01</td>
<td>bit4 0: Handles the tap cycles as the tap cycles with a floating tap chuck. 1: Handles the tap cycles as the tap cycles without a floating tap chuck.</td>
<td>0/1</td>
</tr>
</tbody>
</table>

The tap command will be the synchronous tapping cycle when this parameter is turned ON.

(3) Selecting with M function

[Base specifications parameters]

<table>
<thead>
<tr>
<th>#</th>
<th>Items</th>
<th>Details</th>
<th>Setting range (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1272</td>
<td>ext08</td>
<td>bit1 M function synchronous tapping cycle valid</td>
<td>0: Invalid 1: Valid</td>
</tr>
</tbody>
</table>

Synchronous tap cannot be selected with the M function when this parameter is OFF.

[Base specifications parameters]

<table>
<thead>
<tr>
<th>#</th>
<th>Items</th>
<th>Details</th>
<th>Setting range (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1513</td>
<td>stapM</td>
<td>M code for synchronous tap selection</td>
<td>0 to 99999999</td>
</tr>
</tbody>
</table>

The synchronous tap mode is selected with the M function code set with this parameter. The M function can be commanded in the same block before the tap command.

(Note) Do not use M00, 01, 02, 30, 96, 97, 98 or 99.

(Example)
M29 ; (M command synchronous tap)

The synchronous and asynchronous tap will follow the combination shown below.

<table>
<thead>
<tr>
<th>Combination</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program command (,R0/1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No command</td>
<td></td>
</tr>
<tr>
<td>#1229 (bit4)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M function code (M**)</td>
<td>×</td>
<td>O</td>
<td>×</td>
<td>O</td>
<td>×</td>
<td>O</td>
<td>×</td>
<td>O</td>
<td>×</td>
</tr>
<tr>
<td>Synchronous/ asynchronous selection</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

× : Does not command A : Asynchronous tap O : Commands S : Synchronous tap
Canceling synchronous tap selection

The synchronous tap selection is canceled when the reset, G80 (fixed cycle for drilling cancel), 01 group G code or other fixed cycle G code is commanded.

Spindle acceleration/deceleration pattern during synchronous tap

This function allows spindle acceleration/deceleration pattern to be approached to the speed loop acceleration/deceleration pattern by dividing the spindle and drilling axis acceleration/deceleration pattern into up to three stages during synchronous tapping.

The acceleration/deceleration pattern can be set up to three stages for each gear.

When returning from the hole bottom, rapid return is possible depending on the spindle rotation speed during return. The spindle rotation speed during return is held as modal information.

1. When tap rotation speed $< \text{spindle rotation speed during return} \leq \text{synchronous tap changeover speed 2}$

![Diagram showing the acceleration/deceleration pattern during synchronous tap with annotations for S, S', S1, S2, Smax, T1, T2, and their descriptions.]

- **S**: Command spindle rotation speed
- **S'**: Spindle rotation speed during return
- **S1**: Tap rotation speed (spindle base specification parameters #3013 to #3016)
- **S2**: Synchronous tap changeover spindle rotation speed 2 (spindle base specification parameters #3037 to #3040)
- **Smax**: Maximum rotation speed (spindle base specification parameters #3005 to #3008)
- **T1**: Tap time constant (spindle base specification parameters #3017 to #3020)
- **T2**: Synchronous tap changeover time constant 2 (spindle base specification parameters #3041 to #3044)
(2) When synchronous tap changeover spindle rotation speed 2 \(< \) spindle rotation speed during return

\[
\begin{align*}
S & : \text{Command spindle rotation speed} \\
S' & : \text{Spindle rotation speed during return} \\
S_1 & : \text{Tap rotation speed (spindle base specification parameters #3013 to #3016)} \\
S_2 & : \text{Synchronous tap changeover spindle rotation speed 2} \\
& \quad \text{(spindle base specification parameters #3037 to #3040)} \\
S_{\text{max}} & : \text{Maximum rotation speed (spindle base specification parameters #3005 to #3008)} \\
T_1 & : \text{Tap time constant (spindle base specification parameters #3017 to #3020)} \\
T_2 & : \text{Synchronous tap changeover time constant 2} \\
& \quad \text{(spindle base specification parameters #3041 to #3044)} \\
T_3 & : \text{Synchronous tap changeover time constant 3} \\
& \quad \text{(spindle base specification parameters #3045 to #3048)}
\end{align*}
\]

Precautions for commanding tool spindle No. (Dd1)

(1) The command value range is "1 to the number of spindles". A program error (P35) will occur if a value exceeding the range is set.

(2) When multiple-spindle control II is valid, the spindle is selected from the PLC so do not command Dd1. A program error (P32) will occur if commanded.

(3) When Dd1 is omitted, the spindle designated with the spindle selection command will be selected.
13.5 Fixed Cycle for Drilling

13.5.3 Face Boring Cycle; G85 (Longitudinal boring cycle; G89)

Detailed description

G85 (G89) X (z) C Z (x) R P F K M ;

<table>
<thead>
<tr>
<th>G98 mode</th>
<th>G99 mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) See Section 13.5.1 "When the Q command is present (deep hole drilling)" for details on Mα, Mβ, P and P'.

(2) The tool returns to the R point at a cutting feed rate which is double the designated feed rate command. However, it does not exceed the maximum cutting feed rate.

13.5.4 Deep Hole Drilling Cycle 2; G83.2

Function and purpose

The deep hole drilling cycle 2 drills deep holes in the X-axis or Z-axis direction by commanding the X or Z coordinate of the end point and the cut amount with cutting feed.

Command format

G83.2 W/Z/U/X R I K A Q J F ;

- **W/Z/U/X**: Incremental value from hole drilling start point/coordinates of hole bottom (with sign)
- **R**: Incremental value (sign ignored) from present position up to hole drilling start point, always radius value with incremental value.
- **I**: Cut amount of first cutting pass (sign ignored), always radius value with incremental value.
- **K**: Cut amount of second and subsequent cutting passes (sign ignored), always radial value with incremental value.
- **A**: Drill stop safety distance for second and subsequent cutting passes (sign ignored), always radial value with incremental value.
- **Q**: Dwell time at cut point (sign ignored, decimal point invalid)
- **J**: Dwell time at return point (sign ignored, decimal point invalid)
- **F**: Cutting feed rate
Example of program (when deep hole drilling cycle 2 is used as a modal command)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 XZ ;</td>
<td>G0 X0. Z0. ;</td>
</tr>
</tbody>
</table>

(1) Hole drilling
(2) Hole drilling
(3) Hole drilling
(4) Hole drilling
13. Program Support Functions

13.5 Fixed Cycle for Drilling

Detailed description

1. When the drill stop safety distance (address "A") command is not given, the parameter
 "#8013 G83 n" setting value is used.

2. The deep hole drilling cycle 2 is a modal command and so it will remain valid until a command
 in the same modal group or the cancel command (G80) is issued.

3. If the command either for the cut amount (address "I") for the first cutting pass or the cut
 amount (address "K") for the second and subsequent passes is not present (including a
 command value of zero), the command value which is present will be used and the operation
 will be executed with both I and K equal to the command value.
 If both commands are not present, hole drilling is conducted once as far as the hole bottom.

4. When the axis address of the hole drilling axes has been commanded a multiple number of
 times in a block, the address commanded last is valid.

5. The deep hole drilling fixed cycle 2 is also canceled by any G code in the 01 group except G80.
 If it is commanded in the same block as the fixed cycle, the fixed cycle will be ignored.
 m = 01 group code, n = fixed cycle for drilling code

 \[
 \begin{align*}
 &m = G_01, n = G_83 \text{ or } G_84, X \text{ or } Z, C, R, I, K, A, Q, J, F, ; \\
 &\text{Executed} \quad \text{Ignored} \quad \text{Executed} \quad \text{Ignored} \quad \text{Memorized}
 \end{align*}
 \]

 \[
 \begin{align*}
 &n = G_83.2, G_01, Z, X \text{ or } U, C, R, I, K, A, Q, J, F, ; \\
 &\text{Ignored} \quad \text{Executed} \quad \text{Ignored} \quad \text{Memorized}
 \end{align*}
 \]

 (Examples)
 In both cases, G01 Z50. F100. is executed.

6. When a miscellaneous command is issued in the same block as the deep hole drilling cycle 2
 command, it is output at the same time as the initial positioning.

7. When a tool length offset command (T function) is issued in the deep hole drilling cycle 2 mode,
 execution will follow the tool length offset function.

8. If the basic axis, additional axis or R data are in the block during the deep hole drilling cycle 2
 mode, hole drilling is performed; if the data are not present, no holes are machined.
 Even if the X-axis data are present, no holes will be machined if the dwell (G04) time command
 is present in the block.

9. Command the hole machining data (A, I, K, Q, J) in the block (including the basic axis,
 additional axis or R data) in which the hole drilling operation is conducted.
 Even if they are commanded in a block with no hole drilling operation, the modal data will not
 be updated.

10. A program error (P33) results with the following commands.
 (a) When both the X hole drilling axis (command address X or U) and the Z hole drilling axis
 (command address Z or W) have been commanded.
 (b) When any axis except X or Z (any command address except X, U, Z and W) has been
 commanded.
(11) When the feed hold button is pressed while the deep hole drilling cycle 2 is being executed, feed hold results at that point, and when automatic operation is restarted, the remainder is executed.

(12) When an interrupt based on manual operation is performed during the feed hold (manual absolute switch ON), the operation in the deep hole drilling cycle 2 modal is shifted from the automatic operation restart by an amount equivalent to the movement caused by the interrupt.

(13) With single block operation, block stop results upon completion of the deep hole drilling cycle 2 command.

13.5.5 Fixed Cycle for Drilling Cancel; G80

Detailed description

This cancels the fixed cycle for drilling (G83, G84, G85, G87, G88, G89). The hole machining mode and hole machining data are both canceled.

13.5.6 Precautions When Using a Fixed Cycle for Drilling

Precautions

(1) When a G84 or G88 fixed cycle is commanded, the rotary tool must be rotated in the specified direction beforehand by the previous miscellaneous functions (M3, M4).

(2) If there is data for the basic axis, additional axis or R in the same block during fixed cycle mode, hole drilling is carried out. If there is no data, the hole drilling is not carried out. Note that even with X axis data, if that block is a dwell (G04) time command, the hole drilling is not carried out.

(3) Command hole machining data (Q, P) in the block in which hole drilling is carried out (block containing data for the basic axis, additional axis or R). The modal data is not updated in blocks without hole drilling, even if these data are commanded.

(4) The F modal may change when a reset is applied during execution of G85 (G89).
(5) The fixed cycle for drilling is also canceled by 01 group G codes other than G80. If these are commanded in the same block as the fixed cycle, the fixed cycle will be ignored.

\[m = 01 \text{ group code} \quad n = \text{fixed cycle for drilling code} \]

(a) \[G_m \; G_n \; X(z) \; C \; Z(x) \; R \; Q \; P \; K \; F \; ; \]

Executed \quad Ignored \quad Executed \quad Ignored \quad Memorized

(b) \[G_n \; G_m \; X(z) \; C \; Z(x) \; R \; Q \; K \; F \; ; \]

Ignored \quad Executed \quad Ignored \quad Memorized

(Examples)

In both cases, G01X100. C30. Z50. F100 is executed.

(6) When miscellaneous functions are commanded in the same block as fixed cycle commands, they are output simultaneously with the initial positioning.

Note that when the M code of the C axis clamp set in the parameters (#1183 clmp_M) is commanded in the same block, the M code is output after positioning (Operation 2). Once the axis has returned to the return point (G98 mode: initial point/G99 mode: R point) after hole drilling, the M code of the C axis unclamp (clamp M + 1) is output, and the axis dwells for the time set in the parameters (#1184 clmp_D).

When the number of rotations is designated, M codes other than that of the C axis clamp carry out the control above for the first rotation only.

C axis clamp/unclamp M commands work in modal, and are output every rotation until canceled by the fixed cycle cancel command.

(7) When tool length offset commands (T functions) are commanded in the fixed cycle for drilling, they are executed according to the tool length offset function.

(8) A program error (P155) will result when a fixed cycle for drilling is commanded during nose R compensation.

(9) For the G code list 1, the initial point level return is fixed. The return level cannot be changed with a G98/G99 command. Note that a separate function will be executed if G98/G99 is commanded.

(10) In a block where the movement direction of any axis reverses as shown below, the servo system load will greatly increase so do not command the in-position width in the machining program.

\[\begin{align*}
G0 & \; X100. \; I10.0 ; \\
& \; X-200. ; \\
\end{align*} \]
13.6 Fixed Cycle for Drilling; G80 to G89 (MITSUBISHI CNC special format)

Function and purpose

These fixed cycles are used for predetermined sequences of machining operations such as normal positioning, hole drilling, boring and tapping which are specified in a block. The various sequences available using these functions are listed in the table below. This function is valid when the MITSUBISHI CNC special format is added (#1265 ext01/bit2 is ON).

<table>
<thead>
<tr>
<th>G code</th>
<th>Hole machining start (-Z direction)</th>
<th>Operation at hole bottom</th>
<th>Return operation (+Z direction)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Cancel</td>
</tr>
<tr>
<td>G81</td>
<td>Cutting feed</td>
<td>—</td>
<td>Rapid traverse</td>
<td>Drill, spot drilling cycle</td>
</tr>
<tr>
<td>G82</td>
<td>Cutting feed</td>
<td>Yes</td>
<td>Rapid traverse</td>
<td>Drill, counter boring cycle</td>
</tr>
<tr>
<td>G83</td>
<td>Intermittent feed</td>
<td>Yes</td>
<td>Rapid traverse</td>
<td>Deep hole drilling cycle</td>
</tr>
<tr>
<td>G83.1</td>
<td>Intermittent feed</td>
<td>Yes</td>
<td>Rapid traverse</td>
<td>Stepping cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Cutting feed</td>
<td>Yes</td>
<td>Reverse rotation</td>
<td>Cutting feed Tapping cycle</td>
</tr>
<tr>
<td>G84.2</td>
<td>Cutting feed</td>
<td>Yes</td>
<td>Reverse rotation</td>
<td>Cutting feed Synchronous tapping cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Cutting feed</td>
<td>—</td>
<td>Rapid traverse</td>
<td>Cutting feed Boring cycle</td>
</tr>
<tr>
<td>G89</td>
<td>Cutting feed</td>
<td>Yes</td>
<td>—</td>
<td>Cutting feed Boring cycle</td>
</tr>
</tbody>
</table>

A fixed cycle mode is canceled when the G80 or any G command in (G00, G01, G02, G03) is issued. The various data will also be cleared simultaneously to zero.

Command format

```
G8\Delta X__ Y__ Z__ R__ Q__ P__ F__ L__ S__ ,S__ ,I__ ,J__ ;
```

- **G8\Delta** Hole machining mode
- **X Y Z** Hole positioning data
- **R Q P F** Hole machining data
- **L** Number of repetitions
- **S** Spindle rotation speed
- **,S** Spindle rotation speed during return
- **,I** Positioning axis in-position width
- **,J** Drilling axis in-position width

As shown above, the format is divided into the hole machining mode, hole positioning data, hole machining data, number of repetitions, spindle rotation speed, spindle rotation speed during return, positioning axis in-position width and drilling axis in-position width.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

Detailed description

(1) The hole machining mode refers to the fixed cycle modes such as drilling, counter boring, tapping and boring. The hole positioning data is the data used to position the X and Y axes. The hole machining data is the machining data actually used for machining. The hole positioning data and number of repetitions are unmodals and the hole machining data and spindle rotation speed during return are modals.

(2) If M00 or M01 is commanded in the same block as the fixed cycle or during the fixed cycle mode, the fixed cycle will be ignored. Instead, M00 and M01 will be output after positioning. The fixed cycle will be executed if X, Y, Z or R is commanded.

(3) There are 7 actual operations which are each described in turn below.

- **Operation 1**: This indicates the X and Y axes positioning, and executes positioning with G00.
- **Operation 2**: This is an operation done after positioning is completed (at the initial point), and when G87 is commanded, the M19 command is output from the control unit to the machine. When this M command is executed and the finish signal (FIN) is received by the control unit, the next operation will start. If the single block stop switch is ON, the block will stop after positioning.
- **Operation 3**: The tool is positioned to the R point by rapid traverse.
- **Operation 4**: Hole machining is conducted by cutting feed.
- **Operation 5**: This operation takes place at the hole bottom position and it differs according to the fixed cycle mode. Possible actions include spindle stop (M05) spindle reverse rotation (M04), spindle forward rotation (M03), dwell and tool shift.
- **Operation 6**: Escaping to the R point may take place with either cutting feed or rapid traverse depending on the fixed cycle mode.
- **Operation 7**: The tool is returned to the initial pint at the rapid traverse rate.

Whether the fixed cycle is to be completed at operation 6 or 7 can be selected by the following G commands.

- G98 Initial level return
- G99 R point level return

These are modal commands, and for example, if G98 is commanded once, the G98 mode will be entered until G99 is designated. The initial state when the NC is ready is the G98 mode. The hole machining data will be ignored if X, Y, Z or R is not commanded. This function is mainly used with the special fixed cycle.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(4) Fixed cycle addresses and meanings

<table>
<thead>
<tr>
<th>Address</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Selection of fixed cycle for drilling sequence (G80 to G89)</td>
</tr>
<tr>
<td>X</td>
<td>Designation of hole drilling position (absolute value or incremental value)</td>
</tr>
<tr>
<td>Y</td>
<td>Designation of hole drilling position (absolute value or incremental value)</td>
</tr>
<tr>
<td>Z</td>
<td>Designation of hole bottom position (absolute value or incremental value)</td>
</tr>
<tr>
<td>P</td>
<td>Designation of dwell time at hole bottom position (decimal points will be ignored)</td>
</tr>
<tr>
<td>Q</td>
<td>Designation of cut amount for each cutting pass with G83, or designation of the shift amount at G87 (incremental value)</td>
</tr>
<tr>
<td>R</td>
<td>Designation of R point (absolute value)</td>
</tr>
<tr>
<td>F</td>
<td>Designation of feed rate for cutting feed</td>
</tr>
<tr>
<td>L</td>
<td>Designation of number of repetitions. 0 to 9999</td>
</tr>
<tr>
<td>S</td>
<td>Designation of spindle rotation speed</td>
</tr>
<tr>
<td>,S</td>
<td>Designation of spindle rotation speed at return</td>
</tr>
<tr>
<td>,I</td>
<td>In-position width (position error amount)</td>
</tr>
<tr>
<td>,J</td>
<td>In-position width for hole drilling axis in fixed cycle (position error amount)</td>
</tr>
</tbody>
</table>

(5) Difference between absolute value command and incremental value command

For absolute value

\[R \text{ point} +r -z \]

For incremental value

\[R \text{ point} +r -z \]

(6) Feed rate for tapping cycle and tapping retract

The feed rate for the tapping cycle and tapping retract are as shown below.

(a) Selection of asynchronous tapping cycle feed rate

<table>
<thead>
<tr>
<th>G94/G95</th>
<th>Control parameter</th>
<th>F command value</th>
<th>Feed designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G94</td>
<td>OFF</td>
<td>F designation</td>
<td>Feed per minute</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Other than F0 to F8</td>
<td>Feed per revolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0 to F8 (no decimal point)</td>
<td>F1-digit feed</td>
</tr>
<tr>
<td>G95</td>
<td></td>
<td>F designation</td>
<td>Feed per revolution</td>
</tr>
</tbody>
</table>

- is irrelevant to the setting
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(b) Spindle rotation speed during return of synchronous tapping cycle

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>,S</td>
<td>Spindle rotation speed during return</td>
<td>0 to 99999 (r/min)</td>
<td>The data is held as modal information. If the value is smaller than the spindle rotation speed, the spindle rotation speed value will be valid even during return. If the spindle rotation speed is not 0 during return, the tapping retract override value will be invalid.</td>
</tr>
</tbody>
</table>

Positioning plane and hole drilling axis

The fixed cycle has basic control elements for the positioning plane and hole drilling axis. The positioning plane is determined by the G17, G18 and G19 plane selection command, and the hole drilling axis is the axis perpendicular (X, Y, Z or parallel axis) to the above plane.

<table>
<thead>
<tr>
<th>Plane selection</th>
<th>Positioning plane</th>
<th>Hole drilling axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17 (X − Y)</td>
<td>Xp − Yp</td>
<td>Zp</td>
</tr>
<tr>
<td>G18 (Z − X)</td>
<td>Zp − Xp</td>
<td>Yp</td>
</tr>
<tr>
<td>G19 (Y − Z)</td>
<td>Yp − Zp</td>
<td>Xp</td>
</tr>
</tbody>
</table>

Xp, Yp and Zp indicate the basic axes X, Y and Z or an axis parallel to the basic axis.

An arbitrary axis other than the hole drilling axis can be commanded for positioning. The hole drilling axis is determined by the axis address of the hole drilling axis commanded in the same block as G81 to G89. The basic axis will be the hole drilling axis if there is no designation.

(Example 1) When G17 (XY plane) is selected, and the axis parallel to the Z axis is set as the W axis.

G81 ... Z__ ; The Z axis is used as the hole drilling axis.
G81 ... W__ ; The W axis is used as the hole drilling axis.
G81 ... ; (No Z or W) The Z axis is used as the hole drilling axis.

(Note 1) The hole drilling axis can be fixed to the Z axis with parameter #1080 Dril_Z.
(Note 2) Change over the hole drilling axis in the fixed cycle canceled state.
(Note 3) A program error will occur if the hole drilling axis does not exist.

In the following explanations on the movement in each fixed cycle mode, the XY plane is used for the positioning plane and the Z axis for the hole drilling axis. Note that all command values will be incremental values, the positioning plane will be the XY plane and the hole drilling axis will be the Z axis.
Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

Programmable in-position width command in fixed cycle

This command commands the in-position width for the fixed cycle from the machining program. The commanded in-position width is valid only in the G81 (drill, spot drill), G82 (drill, counter boring), G83 (deep drill cycle), G84 (tap cycle), G85 (boring), G89 (boring), G83.1 (step cycle) and G84.2 (synchronous tap cycle) fixed cycles. The ",I" address is commanded in respect to the positioning axis, and the ",J" address is commanded in respect to the hole drilling axis.

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning of address</th>
<th>Command range (unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>,I</td>
<td>In-position width (position error amount)</td>
<td>1 to 999.999 (mm)</td>
<td>When a value exceeding the command range is issued, a program error will occur. Program error (P35)</td>
</tr>
<tr>
<td>,J</td>
<td>In-position width for hole drilling axis in fixed cycle (position error amount)</td>
<td>1μm unit</td>
<td></td>
</tr>
</tbody>
</table>

In-position check in fixed cycle

When the number of repetitions L is designated as two or more times in the fixed cycle, the commanded in-position width will be valid in the repetition block (operation 5 to operation 8).

![Diagram](image-url)

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>,I</th>
<th>,J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation 1</td>
<td>Valid</td>
<td>–</td>
</tr>
<tr>
<td>Operation 2</td>
<td>–</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 3</td>
<td>–</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 4</td>
<td>–</td>
<td>Valid</td>
</tr>
<tr>
<td>Operation 5</td>
<td>Valid</td>
<td>–</td>
</tr>
<tr>
<td>Operation 6</td>
<td>–</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 7</td>
<td>–</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 8</td>
<td>–</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Operation when number of repetitions L is designated
In the following machining program, the commanded in-position width is valid for the following Fig. block.
In the (B) block, the in-position width (, I) commanded for positioning in the previous block (A) is invalid (operation 5). However, when returning from the hole bottom, the in-position width (, J) commanded in the previous block (A) is valid (operation 8).
To validate the in-position width for positioning, command again as shown in block (C) (Operation 9).

```
G81 X-50. Z-50. R-50. F2000 ,I0.2 ,J0.3 ; ............. (A)
X-10. ; ................................................................. (B)
X-10. ,I0.2 ; ....................................................... (C)
```

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>,I</th>
<th>,J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation 1</td>
<td>Valid</td>
<td>−</td>
</tr>
<tr>
<td>Operation 2</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 3</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 4</td>
<td>−</td>
<td>Valid</td>
</tr>
<tr>
<td>Operation 5</td>
<td>Invalid</td>
<td>−</td>
</tr>
<tr>
<td>Operation 6</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 7</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 8</td>
<td>−</td>
<td>Valid</td>
</tr>
<tr>
<td>Operation 9</td>
<td>Valid</td>
<td>−</td>
</tr>
<tr>
<td>Operation 10</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 11</td>
<td>−</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation 12</td>
<td>−</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Operation in fixed cycle modal
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

Setting values of synchronous tap in-position check parameters and tap axis movement

(1) Synchronous tap in-position check settings

<table>
<thead>
<tr>
<th>#1223 aux07</th>
<th>Synchronous tap in-position check</th>
<th>"P" designation of G84/G74 command</th>
<th>In-position check during synchronous tap</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit3 bit4 bit5 bit2</td>
<td>Hole bottom R point I point R point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 — — — —</td>
<td>—</td>
<td>Carry out in-position check at I point → R point/R point/ hole bottom.</td>
<td></td>
</tr>
<tr>
<td>1 — — — —</td>
<td>No "P" designation</td>
<td>Hole bottom: Do not carry out in-position check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carry out in-position check by tap in-position width.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>"P" designation</td>
<td>Hole bottom: Carry out in-position check by tap in-position width.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>"P" designation</td>
<td>Hole bottom: Carry out in-position check by tap in-position width.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>"P" designation</td>
<td>Hole bottom: Do not carry out in-position check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>"P" designation</td>
<td>Hole bottom: Do not carry out in-position check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>"P" designation</td>
<td>Hole bottom: Carry out in-position check by tap in-position width.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>"P" designation</td>
<td>Hole bottom: Carry out in-position check by tap in-position width.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>"P" designation</td>
<td>Hole bottom: Do not carry out in-position check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Do not carry out in-position check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>"P" designation</td>
<td>Hole bottom: Do not carry out in-position check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I point → R point: Do not carry out in-position check.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note 1) The I point refers to the initial point.

(2) Relation between the in-position width and tap axis movement for a synchronous tap in-position check

![Diagram showing the relation between in-position width and tap axis movement](image-url)

- (1) Section in which the in-position check is carried out by the SV024 value.
- (2) Section in which the in-position check is carried out by the TapInp value.
- (3) Section in which the in-position check is carried out by the G1inps value.
- (4) Section in which the in-position check is carried out by the G0inps value.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(3) Relation between the parameter setting values and tap axis movement for a synchronous tap in-position check

<table>
<thead>
<tr>
<th>#1223 aux07</th>
<th>Hole bottom wait time</th>
<th>Operation at hole bottom</th>
<th>Operation at R point</th>
<th>Operation at I point → R point</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit3 bit4 bit5 bit2</td>
<td>Time designated by "P". Processing time is several 10ms when no "P".</td>
<td>Operation determined by setting of inpos (#1193) and aux 07 (#1223): bit 1 parameters.</td>
<td>Operation determined by setting of inpos (#1193) and aux 07 (#1223): bit 1 parameters.</td>
<td>Operation determined by setting of inpos (#1193) and aux 07 (#1223): bit 1 parameters.</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 — — —</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until time in left column has elapsed.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. No dwell executed if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>Larger value of "P" and TapDwl (#1313) is valid. Processing time is several 10ms if both values are 0.</td>
<td>Wait until dwell time in left column has elapsed after completion of in-position check.</td>
<td>Wait until completion of in-position check by G1inps value.</td>
<td>Wait until completion of in-position check by G0inps value.</td>
</tr>
</tbody>
</table>

(Note 1) The I point refers to the initial point.

(Note 2) Keep in mind that vibration or deterioration in accuracy may occur when having the in-position check invalidated at R point.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

Operations when each fixed cycle is executed

(a) G81 (Drilling, spot drilling)

Program
G81 Xx₁ Yy₁ Zz₁ Rr₁ Ff₁ ,Ii₁ ,Jj₁ ;

1. G0 Xx₁ Yy₁
2. G0 Zr₁
3. G1 Zz₁ Ff₁
4. G98 mode G0Z-(z₁+r₁)
 G99 mode G0Z-z₁

The operation stops at after the (1), (2) and (4) commands during single block operation.

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>i₁</th>
<th>j₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (1)</td>
<td>Valid</td>
<td>-</td>
</tr>
<tr>
<td>Operation (2)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (3)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (4)</td>
<td>-</td>
<td>Valid</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(b) G82 (Drilling, counter boring)

Program

G82 Xx₁ Yy₁ Zz₁ Rr₁ Ff₁ P₁ I₁ J₁;

P : Dwell designation

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>i₁</th>
<th>j₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (1)</td>
<td>Valid</td>
<td>-</td>
</tr>
<tr>
<td>Operation (2)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (3)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation (5)</td>
<td>-</td>
<td>Valid</td>
</tr>
</tbody>
</table>

The operation stops at after the (1), (2) and (5) commands during single block operation.
Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(c) G83 (Deep hole drilling cycle)

Program

G83 Xx1 Yy1 Zz1 Rr1 Qq1 Pp1 Ff1 ,i1 ,Jj1 ;

Q : This designates the cutting amount per pass, and is always designated with an incremental value.
P : Dwell time at hole bottom

(1) G0 Xx1 Yy1
(2) G0 Zr1
(3) G1 Zq1 Ff1
(4) G0 Z - q1
(5) G0 Z (q1 - m)
(6) G1 Z (q1 + m) Ff1
(7) G0 Z - 2 • q1
(8) G0 Z (2 • q1 - m)
(9) G1 Z (q1 + m) Ff1
(10) G0 Z - 3 • q1

:

(n) - 1 G4 Pp1 (Dwell)
(n) G98 mode G0Z (z1+r1)
G99 mode G0Z z1

(1) (n)
(2) (n-2)
(3) (n-1)
(4) (n)
(5) (n)
(6)

When executing a second and following cutting in the G83 as shown above, the movement will change from rapid traverse to cutting feed several m mm before the position machined last. When the hole bottom is reached, the axis will return according to the G98 or G99 mode. m will differ according to the parameter "#8013 G83 n". Program so that q1 > m.
The operation stops at after the (1), (2) and (n) commands during single block operation.

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>i1</th>
<th>j1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (1)</td>
<td>Valid</td>
<td>-</td>
</tr>
<tr>
<td>Operation (2)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (3)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (4)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (5)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (6)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (7)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (8)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (9)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (10)</td>
<td>-</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

When executing a second and following cutting in the G83 as shown above, the movement will change from rapid traverse to cutting feed several m mm before the position machined last. When the hole bottom is reached, the axis will return according to the G98 or G99 mode. m will differ according to the parameter "#8013 G83 n". Program so that q1 > m.
The operation stops at after the (1), (2) and (n) commands during single block operation.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(d) G83.1 (Step cycle) Program

G83.1 Xx₁ Yy₁ Zz₁ Qq₁ Rr₁ Ff₁ Pp₁ ,Ii₁ ,Jj₁ ;

P : Dwell designation

(1) G0 Xx₁ Yy₁
(2) G0 Zr₁
(3) G1 Zq₁ Ff₁
(4) G4 Pp₁
(5) G0 Z - m
(6) G1 Z (q₁ + m) Ff₁

(1) G0 Xx₁ Yy₁
(2) G0 Zr₁
(3) G1 Zq₁ Ff₁
(4) G4 Pp₁
(5) G0 Z - m
(6) G1 Z (q₁ + m) Ff₁

(n) G98 mode G0Z (z₁ + r₁)
G99 mode G0Z - z₁

When executing a second and following cutting in the G83.1 as shown above, the movement will return several m mm with rapid traverse and then will change to cutting feed. The return amount m will differ according to the parameter “#8012 G73 n”. The operation stops at after the (1), (2) and (n) commands during single block operation.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(e) G84 (Tapping cycle)
Program
G84 Xx₁ Yy₁ Zz₁ Rr₁ Ff₁ Pp₁ Rr₂ ,Ii₁ ,Jj₁ ;
P : Dwell designation

(1) G0 Xx₁ Y y₁
(2) G0 Zr₁
(3) G1 Zz₁ F f₁
(4) G4 Pp₁
(5) M4 (Spindle reverse rotation)
(6) G1 Z – z₁ Ff₁
(7) G4 Pp₁
(8) M3 (Spindle forward rotation)
(9) G98 mode G0Z – r₁
 G99 mode No movement

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>i₁</th>
<th>j₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (1)</td>
<td>Valid</td>
<td>-</td>
</tr>
<tr>
<td>Operation (2)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (3)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation (5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation (6)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (7)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation (8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation (9)</td>
<td>-</td>
<td>Valid</td>
</tr>
</tbody>
</table>

When G84 is executed, the override will be canceled and the override will automatically be set to 100%. Dry run is valid when the control parameter "G00 DRY RUN" is ON and is valid for the positioning command. If the feed hold button is pressed during G84 execution, and the sequence is at (3) to (6), the movement will not stop immediately, and instead will stop after (6). During the rapid traverse in sequence (1), (2) and (9), the movement will stop immediately. The operation stops at after the (1), (2) and (9) commands during single block operation. During the G84 modal, the "Tapping" NC output signal will be output. During the G84 synchronous tapping modal, the M3, M4, M5 and S code will not be output.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(f) G84.2 (Synchronous tapping cycle)

Program
G84.2 Xx₁ Y₁₁ Z₁₁ R₁₁ F₁₁ P₁₁ S₁₁ S₂₁ I₁₁ J₁₁ ;
P : Dwell designation

(1) G0 Xx₁ Y₁₁
(2) G0 Z₁₁
(3) G1 Z₁₁ F₁₁
(4) G4 P₁₁
(5) M4 (Spindle reverse rotation)
(6) G1 Z₁₁ F₁₁
(7) G4 P₁₁
(8) M3 (Spindle forward rotation)
(9) G98 mode G0 Z₁₁
G99 mode No movement

When G84.2 is executed, the override will be canceled and the override will automatically be set to 100%. Dry run is valid when the control parameter "G00 DRY RUN" is ON and is valid for the positioning command. If the feed hold button is pressed during G84.2 execution, and the sequence is at (3) to (6), the movement will not stop immediately, and instead will stop after (6). During the rapid traverse in sequence (1), (2) and (9), the movement will stop immediately. The operation stops at after the (1), (2) and (9) commands during single block operation. During the G84.2 modal, the "Tapping" NC output signal will be output. During the G84.2 synchronous tapping modal, the M3, M4, M5 and S code will not be output.
This function allows spindle acceleration/deceleration pattern to be approached to the speed loop acceleration/deceleration pattern by dividing the spindle and hole drilling axis acceleration/deceleration pattern into up to three stages during synchronous tapping. The acceleration/deceleration pattern can be set up to three stages for each gear. When returning from the hole bottom, rapid return is possible depending on the spindle rotation speed during return. The spindle rotation speed during return is held as modal information.

When tap rotation speed < spindle rotation speed during return ≤ synchronous tap changeover spindle rotation speed 2

![Diagram](image)

- S: Command spindle rotation speed
- S': Spindle rotation speed during return
- S_1: Tap rotation speed (spindle base specification parameters #3013 to #3016)
- S_2: Synchronous tap changeover spindle rotation speed 2 (spindle base specification parameters #3037 to #3040)
- S_{max}: Maximum rotation speed (spindle base specification parameters #3005 to #3008)
- T_1: Tap time constant (spindle base specification parameters #3017 to #3020)
- T_2: Synchronous tap changeover time constant 2 (spindle base specification parameters #3041 to #3044)
When synchronous tap changeover spindle rotation speed $2 < \text{spindle rotation speed during return}$

\[S \]: Command spindle rotation speed
\[S' \]: Spindle rotation speed during return
\[S1 \]: Tap rotation speed (spindle base specification parameters #3013 to #3016)
\[S2 \]: Synchronous tap changeover spindle rotation speed 2
\[S_{\text{max}} \]: Maximum rotation speed (spindle base specification parameters #3005 to #3008)
\[T1 \]: Tap time constant (spindle base specification parameters #3017 to #3020)
\[T2 \]: Synchronous tap changeover time constant 2
\[T3 \]: Synchronous tap changeover time constant 3

(g) G85 (Boring)
Program
G85 Xx$_1$ Yy$_1$ Zz$_1$ Rr$_1$ Ff$_1$,Ii$_1$,Jj$_1$;

379
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>i1</th>
<th>j1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (1)</td>
<td>Valid</td>
<td>-</td>
</tr>
<tr>
<td>Operation (2)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (3)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (4)</td>
<td>-</td>
<td>Invalid</td>
</tr>
<tr>
<td>Operation (5)</td>
<td>-</td>
<td>Valid</td>
</tr>
</tbody>
</table>

The operation stops at after the (1), (2), (4) or (5) commands during single block operation.

(h) G89 (Boring)

Program

G89 Xx1 Yy1 Zz1 Rr1 Ff1 Pp1, Ii1, Jj1 ;

1. G0 Xx 1 Y y 1
2. G0 Zr 1
3. G1 Zz 1 Ff 1
4. G4 Pp 1
5. G1 Z – z1 Ff 1
6. G98 mode G0Z – r1

(h) G89 (Boring)

Program

G89 Xx1 Yy1 Zz1 Rr1 Ff1 Pp1, Ii1, Jj1 ;

1. G0 Xx 1 Y y 1
2. G0 Zr 1
3. G1 Zz 1 Ff 1
4. G4 Pp 1
5. G1 Z – z1 Ff 1
6. G99 mode No movement

These operations stop at after the (1), (2), (5) or (6) commands during single block operation.
Precautions for using fixed cycle

1. Before the fixed cycle is commanded, the spindle must be rotating in a specific direction with an M command (M3 or M4).

2. If there is a basic axis, additional axis or R data in the block during the fixed cycle mode, the hole drilling operation will be executed. If there is no data, the hole will not be drilled. Note that in the X axis data, if the data is a dwell (G04) time command, the hole will not be drilled.

3. Command the hole machining data (Q, P, I, J, K) in a block where hole drilling is executed. (Block containing a basic axis, additional axis or R data.)

4. The fixed cycle can be canceled by the G00 to G03 or G33 command besides the G80 command. If these are designated in the same block as the fixed cycle, the following will occur. (Where, 00 to 03 and 33 are m, and the fixed cycle code is n)

 \[
 \begin{align*}
 Gm & \quad Gn & \quad X & \quad Y & \quad Z & \quad R & \quad Q & \quad P & \quad L & \quad F & \quad ; \\
 \text{Execute} & \quad \text{Ignore} & \quad \text{Execute} & \quad \text{Ignore} & \quad \text{Ignore} & \quad \text{Record} & \\
 Gm & \quad Gn & \quad X & \quad Y & \quad Z & \quad R & \quad Q & \quad P & \quad L & \quad F & \quad ; \\
 \text{Ignore} & \quad \text{Ignore} & \quad \text{Execute} & \quad \text{Ignore} & \quad \text{Ignore} & \quad \text{Record}
 \end{align*}
 \]

 Note that for the G02 and G03 commands, R will be handled as the arc radius.

5. If an M function is commanded in the same block as the fixed cycle command, the M code and MF will be output during the initial positioning. The next operation will be moved to with FIN (finish signal). If there is a number of times designated, the above control will be executed only on the first time.

6. If another control axis (ex., rotation axis, additional axis) is commanded in the same block as the fixed cycle control axis, the fixed cycle will be executed after the other control axis is moved first.

7. If the number of repetitions L is not designated, L1 will be set. If L0 is designated in the same block as the fixed cycle G code command, the hole machining data will be recorded, but the hole machining will not be executed.

 (Example) \ G83.1 \ X & \ Y & \ Z & \ R & \ Q & \ P & \ F & \ L0 ; \\
 \text{Execute} & \text{Record} & \text{only code having an address}

8. When the fixed cycle is executed, only the modal command commanded in the fixed cycle program will be valid in the fixed cycle subprogram. The modal of the program that called out the fixed cycle will not be affected.

9. Other subprograms cannot be called from the fixed cycle subprogram.

10. Decimal points in the movement command will be ignored during the fixed cycle subprogram.

11. If the number of repetitions L is 2 or more during the incremental value mode, the positioning will also be incremented each time.

 (Example) \ G91 G81 X10. Z-50. R-20. F100. L3 ;
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

(12) If the spindle rotation speed value during return is smaller than the spindle rotation speed, the spindle rotation speed value is valid even during return.

(13) If the 2nd and 3rd acceleration/deceleration stage inclinations following the spindle rotation speed and time constants set in the parameters are each steeper than the previous stage's inclination, the previous stage's inclination will be valid.

(14) If the values set in the spindle base specification parameter "stap1-4" (tap rotation speed) and "taps21-24" (synchronous tap changeover spindle rotation speed 2) exceed the maximum rotation speed, the spindle rotation speed will be clamped at the maximum rotation speed.

(15) If the spindle rotation speed during return is not 0, the tapping retract override value will be invalid.

(16) In a block where the movement direction of any axis reverses as shown below, the servo system load will greatly increase so do not command the in-position width in the machining program.

G0 X100., I10.0;
X–200. ;

(17) If the in-position width commanded with the programmable in-position width command is increased, the positioning time and linear interpolation time can be reduced. However, the position error amount of the previous block will also increase before the next block starts, so the actual machining could be obstructed.

(18) The in-position width and the position error amount are compared at a set time, so the position error amount at the point to be judged as in-position will be smaller than the commanded in-position width.

(19) If the in-position width commanded with the programmable in-position command is small, the commanded deceleration check or in-position check following the parameters may be carried out first.

(20) Synchronous and asynchronous tap can be selected with the M function.

[Base specifications parameters]

<table>
<thead>
<tr>
<th>#</th>
<th>Items</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1513</td>
<td>stapM</td>
<td>M code for synchronous tap selection</td>
<td>0 to 99999999</td>
</tr>
</tbody>
</table>

The synchronous tap mode is selected with the miscellaneous function code set with this parameter.
The M function can be commanded in the same block before the tap command.

The synchronous and asynchronous tap will follow the combination shown below.

```
<table>
<thead>
<tr>
<th>Program command (G84/G84.2))</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 0 1 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#1229 (bit4)</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M function code (M**)</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>× O × O × O × O × O × O × O</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synchronous/ asynchronous selection</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A A A S S S S S A S S S</td>
<td></td>
</tr>
</tbody>
</table>

0: G84 × : Does not command A : Asynchronous tap
1: G84.2 O : Commands S : Synchronous tap
```

(Note1) Do not use M00, 01, 02, 30, 98 or 99.

(Note2) Depending on the model, selection with the M function may not be possible.
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

13.6.1 Initial Point and R Point Level Return; G98, G99

Function and purpose

Whether to use R point or initial level for the return level in the final sequence of the fixed cycle can be selected.

Command format

<table>
<thead>
<tr>
<th>G98</th>
<th>Initial level return</th>
</tr>
</thead>
<tbody>
<tr>
<td>G99</td>
<td>R point level return</td>
</tr>
</tbody>
</table>

Detailed description

The relation of the G98/G99 mode and number of repetition designation is as shown below.

<table>
<thead>
<tr>
<th>Number of hole drilling times</th>
<th>Program example</th>
<th>G98 (At power ON, at cancel with M02, M30, and reset button)</th>
<th>G99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only one execution</td>
<td>G81 X100. Y100. Z-50. R25. F1000 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G82 Zz₁ Rr₁ Pp₁ Qq₁ Ff₁ L0 ; Record only the hole machining data (Do not execute) Xx₁ Yy₁ ; Execute hole drilling operation with G82 mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G81 X100. Y100. Z-50. R25. L5 F1000 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second and following executions</td>
<td>G81 X100. Y100. Z-50. R25. L5 F1000 ;</td>
<td> </td>
<td></td>
</tr>
</tbody>
</table>

Example of program

(Example 1)

G82 Zz₁ Rr₁ Pp₁ Ff₁ L0 ; Record only the hole machining data (Do not execute) Xx₁ Yy₁ ; Execute hole drilling operation with G82 mode

The number of fixed cycle repetitions is designated with L. If L1 is designated or L not designated, the fixed cycle will be executed once. The setting range is 1 to 9999. If L0 is commanded, only the hole machining data will be recorded.

G8Δ Xx₁ Yy₁ Zz₁ Rr₁ Pp₁ Qq₁ Ff₁ L1 ;
13. Program Support Functions

13.6 Fixed Cycle for Drilling (MITSUBISHI CNC special format)

The ideology of the data differs between the absolute value mode (G90) and incremental value mode (G91) as shown below.

<table>
<thead>
<tr>
<th>R point</th>
<th>Z axis zero point</th>
</tr>
</thead>
<tbody>
<tr>
<td>R point</td>
<td>Z axis zero point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute value mode (G90)</th>
<th>Incremental value mode (G91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designate a command value with a symbol for X, Y and Z. R indicates the coordinate value from the zero point, so a symbol must always be added. The hole machining data is held as shown below in the fixed cycle. The hole machining data is canceled when the G80 command or G commands (G00, G01, G02, G03, G04, G30, G31, G33) in the 01 group are reached.</td>
<td></td>
</tr>
</tbody>
</table>

(Example 2)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N001</td>
<td>G81</td>
<td>Xx1 Yy1 Zz1 Rr1 Ff1 ;</td>
</tr>
<tr>
<td>N002</td>
<td>G81</td>
<td>Only selection of fixed cycle sequence</td>
</tr>
<tr>
<td>N003</td>
<td>Xx2</td>
<td>Yy2 ; Change of positioning point, and execution of fixed cycle</td>
</tr>
<tr>
<td>N004</td>
<td>M22</td>
<td>Execution of only M22</td>
</tr>
<tr>
<td>N005</td>
<td>G04</td>
<td>Xx3 ; Execution of only dwell</td>
</tr>
<tr>
<td>N006</td>
<td>G92</td>
<td>Xx4 Yy4 ; Execution of only coordinate system setting</td>
</tr>
<tr>
<td>N007</td>
<td>G28</td>
<td>(G30) Z0 ; Execution of only reference position return</td>
</tr>
<tr>
<td>N008</td>
<td></td>
<td>No work</td>
</tr>
<tr>
<td>N009</td>
<td>G99</td>
<td>Zz2 Rr2 Ff2 L0 ; Execution of only hole machining data recording</td>
</tr>
<tr>
<td>N010</td>
<td>Xx5</td>
<td>Yy5 Ll5 ; Change of positioning point, and execution of R point return fixed cycle for 15 times</td>
</tr>
<tr>
<td>N011</td>
<td>G98</td>
<td>Xx6 Yy6 Zz6 Rr6 ; Change of positioning point, and execution of fixed cycle</td>
</tr>
<tr>
<td>N012</td>
<td>Ww1</td>
<td>Execute W axis according to 01 group modal before N001, and then execute fixed cycle</td>
</tr>
</tbody>
</table>

13.6.2 Setting of Workpiece Coordinates in Fixed Cycle Mode

Function and purpose

The designated axis moves with the workpiece coordinate system set for the axis. The Z axis is valid after the R point positioning after positioning or from Z axis movement.

(Note) When the workpiece coordinates are changed over for address Z and R, re-program even if the values are the same.

(Example)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G54</td>
<td>Xx1</td>
<td>Yy1 Zz1 ;</td>
</tr>
<tr>
<td>G81</td>
<td>Xx2</td>
<td>Yy2 Zz2 Rr2 ;</td>
</tr>
<tr>
<td>G55</td>
<td>Xx3</td>
<td>Yy3 Zz2 Rr2 ; Re-command even if Z and R are the same as the previous value.</td>
</tr>
<tr>
<td>Xx4</td>
<td>Yy4</td>
<td></td>
</tr>
<tr>
<td>Xx5</td>
<td>Yy5</td>
<td></td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.7 Subprogram Control; M98, M99, M198

13.7.1 Calling Subprogram with M98 and M99 Commands

Function and purpose

Fixed sequences or repeatedly used parameters can be stored in the memory as subprograms which can then be called from the main program when required. M98 serves to call subprograms and M99 serves to return operation from the subprogram to the main program. Furthermore, it is possible to call other subprograms from particular subprograms and the nesting depth can include as many as 8 levels.

Main program

```plaintext
O0010;
M98 P1000;
M02;
```

Subprogram

```plaintext
O1000;
M98 P1200;
H20;
M99;
```

(Level 1)

Subprogram

```plaintext
O1200;
N20;
M98 P2000;
N60;
M99;
```

(Level 2)

Subprogram

```plaintext
O2000;
M98 P2500;
M99 P60;
```

(Level 3)

Subprogram

```plaintext
O3000;
```

(Nesting depth)

The table below shows the functions which can be executed by adding and combining the tape storing and editing functions, subprogram control functions and fixed cycle functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tape storing and editing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Subprogram control</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3. Fixed cycles</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Memory mode</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>2. Tape editing (main memory)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3. Subprogram call</td>
<td>×</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4. Subprogram variable designation (Note 2)</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>5. Subprogram nesting level call (Note 3)</td>
<td>×</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>6. Fixed cycles</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>7. Subprogram editing for fixed cycle</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

(Note 1) "○" denotes a function which can be used and "×" a function which cannot be used.

(Note 2) Variables cannot be transferred with the M98 command but variable commands in subprograms can be used provided that the variable command option is available.

(Note 3) A maximum of 8 nesting levels form the nesting depth.
13. Program Support Functions

13.7 Subprogram Control

Command format

Subprogram call

\[
\text{M98 P__ H__ L__,D__ ;}
\]
or
\[
\text{M98 <File name> H__ L__,D__ ;}
\]

- **M98**: Subprogram call command
- **P**: Program No. of subprogram to be called (own program if omitted)
 - P can be omitted only during memory mode and MDI mode.
 - (Max. 8 digits)
- **<File name>**: File name
 - A file name can be specified instead of a program No.
 - In this case, enclose the file name with brackets `< >`.
 - (The file name can have up to 32 characters including the extension.)
 - (Example) M98 <BUHIN-12.RAF>
- **H**: Sequence No. in subprogram to be called (head block if omitted)
 - (Max. 5 digits)
- **L**: Number of subprogram repetitions
 - (When omitted, this is interpreted at L1, and is not executed when L0.)
 - (Between 1 and 9999 times according to 4-digit value.)
 - For instance, M98 P1 L3 ; is equivalent to the following:
 - M98 P1 ;
 - M98 P1 ;
 - M98 P1 ;
- **,D**: Subprogram device No. (0 to 4).
 - The subprogram in the memory can be used when ,D is omitted.
 - The device No. is set with the machining parameters.

Return to main program from subprogram

\[
\text{M99 P__ ;}
\]

- **M99**: Subprogram return command
- **P**: Sequence No. of return destination (returned to block that follows the calling block)

Creating and entering subprograms

Subprograms have the same format as machining programs for normal memory mode except that the subprogram completion instruction M99 (P__ L__) ; is entered as an independent block at the last block.

\[
\text{△△△△△△△△ ;} \quad \text{Program No. as subprogram No.}
\]
\[
\text{------------- ;} \quad \text{Main body of subprogram}
\]
\[
\text{------------- ;}
\]
\[
\text{------------- ;}
\]
\[
\text{M99 ;} \quad \text{Subprogram return command}
\]
\[
\% \text{(EOR)} \quad \text{Entry completion code}
\]

(1) The above program is entered by editing operations at the setting and display unit. For further details, refer to the section on program editing in the Instruction Manual.
13. Program Support Functions

13.7 Subprogram Control

(2) Only those subprograms Nos. ranging from 1 to 99999999 designated by the optional specifications can be used. When there are no program Nos. on the tape, they are entered as the setting No. for "program input."

(3) Up to 8 nesting levels can be used for calling programs from subprograms, and program error (P230) results if this number is exceeded.

(4) No distinction between main programs and subprograms is made since they are entered in the sequence in which they were read. This means that main programs and subprograms should not be given the same Nos. (If they are, error "E11" appears during entry.)

(5) Main programs can be executed during memory, tape or MDI operation but subprograms must be entered in the memory.

(6) Besides the M98 command, subprogram nesting is subject to the following commands:

- G65 : Macro call
- G66 : Modal call
- G66.1 : Modal call
- G code call
- Miscellaneous function call
- MDI interruption
- Automatic tool length measurement
- Macro interruption
- Multiple-step skip function

(7) Subprogram nesting is not subject to the following commands which can be called even beyond the 8th nesting level.

- Fixed cycles
- Pattern cycles

(8) To repeatedly use the subprogram, it can be repeated \(l1 \) times by programming M98 \(Pp1 Ll1; \).

(9) When using the multi-part system, if the subprogram attributed to the part system with the call command is empty, the subprogram call operation will change according to the parameters.

<table>
<thead>
<tr>
<th>#1050 MemPrg</th>
<th>#1285 ext21/bit1</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 2, 4, 6</td>
<td>-</td>
<td>The subprogram registered in the memory common for the part systems is called out.</td>
</tr>
<tr>
<td>1, 3, 5, 7</td>
<td>OFF</td>
<td>The subprogram registered in the memory for the selected part system is called out.</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>The subprogram registered in the memory for the selected part system is called out.</td>
</tr>
</tbody>
</table>

If the subprogram in the selected part system is empty, the subprogram with the same No. in the 1st part system is called out.
Example of program 1

When there are 3 subprogram calls (known as 3 nesting levels)

<table>
<thead>
<tr>
<th>Main program</th>
<th>Subprogram 1</th>
<th>Subprogram 2</th>
<th>Subprogram 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O 1;</td>
<td>O1;</td>
<td>O10;</td>
<td>O20;</td>
</tr>
<tr>
<td>M98P1;</td>
<td>M98P10;</td>
<td>M98P20;</td>
<td></td>
</tr>
<tr>
<td>M02;</td>
<td>M99;</td>
<td>M99;</td>
<td>M99;</td>
</tr>
</tbody>
</table>

Sequence of execution: (1) → (2) → (3) → (3)’ → (2)’ → (1)’

1. For nesting, the M98 and M99 commands should always be paired off on a 1:1 basis (1)’ for (1), (2)’ for (2), etc.

2. Modal information can be rewritten according to the execution sequence without distinction between main programs and subprograms. This means that after calling a subprogram, attention must be paid to the modal data status when programming.
Example of program 2

The M98 H__; M99 P__; commands designate the sequence Nos. in a program with a call instruction.

M98H__;
M98H3;
M99;
N3___;
M99;
M98P__;
N100___;
M98P123;
N200_;
N300___;
N400___;
O123;
M99P200;

Precautions

1. Program error (P232) results when the designated P (program No.) is not located.
2. Single block stop does not occur with the M98 P__; M99 ; block. If any address except O, N, P, L or H is used, single block stop can be executed. (With X100. M98 P100 ;, operation branches to O100 after X100. is executed.)
3. When M99 is commanded by the main program, operation returns to the head. (This is same for MDI.)
4. Branching from tape and BTR operation to the subprogram with M98 P__ is possible, but the return destination sequence No. cannot be designated with M99 P__; (P__ is ignored).
5. Bear in mind that the search operation will take time when the sequence No. is designated by M99 P__;.
6. When using a file name for the subprogram, specify the file name with 32 characters or less, including the extension. If a file name exceeding 32 characters is specified, a program error (P232) will occur.
7. All the programs are registered as files. For example, when calling the file "0100" as a subprogram, "0100" cannot be searched with M98P100 or M98P0100. When a value is specified following P, reading 0 is omitted; therefore, it is assumed that the program No. (file) "100" was specified in this case. When wishing the program like "0100" to be called, specify the file name using the M98<0100> format.
13. Program Support Functions

13.7 Subprogram Control

13.7.2 Calling Subprogram with M198 Commands

Function and purpose

Programs saved in the data server can be called as subprograms. To call a program in the data server as a subprogram, command in the main program as shown below.

Command format

<table>
<thead>
<tr>
<th>Command format</th>
</tr>
</thead>
<tbody>
<tr>
<td>M198 P__ L__ ;</td>
</tr>
<tr>
<td>or M198 <File name> L__ ;</td>
</tr>
<tr>
<td>M198 Subprogram call command</td>
</tr>
<tr>
<td>P Program No. in data server to be called as subprogram. (Max. 8 digits)</td>
</tr>
<tr>
<td><File name> File name</td>
</tr>
<tr>
<td>A file name can be specified instead of a program No.</td>
</tr>
<tr>
<td>In this case, enclose the file name with brackets < >.</td>
</tr>
<tr>
<td>(The file name can have up to 32 characters including the extension.)</td>
</tr>
<tr>
<td>L Number of subprogram repetitions. (Max. 4 digits)</td>
</tr>
<tr>
<td>• This can be omitted. (In this case, the subprogram will be called once.)</td>
</tr>
<tr>
<td>When "L0" is designated, the subprogram call will not be executed.</td>
</tr>
</tbody>
</table>

(Note) Sequence No. call (M198 H***) cannot be commanded.

Detailed description

(1) The subprogram can be called with the M198 command once in the subprogram nest. The subprogram can be called only from the memory or MDI program.

(2) The section from the head of the program to the first LF (carriage return code, 0x0A hexadecimal) is invalid, and is not run or displayed. Note that if the head starts with a 0 No., the program will be valid from the head.

(3) A program registered in an IC card can be executed from only one part system. A program error will occur if it is attempted to execute the programs in the IC card simultaneously by two or more part systems. When reset is applied on all the part systems in this time, the programs of the part systems will be displayed as only "%" other than that of the part system that was called first.

(4) Refer to "13.7.1 Calling subprogram with M98 and M99 commands" for <file name>.
13.8 Variable Commands

Function and purpose

Programming can be endowed with flexibility and general-purpose capabilities by designating variables, instead of giving direct numerical values to particular addresses in a program, and by assigning the values or those variables as required when executing a program.

Command format

#ΔΔΔ = 0 0 0 0 0 0 or #ΔΔΔ = [formula]

Detailed description

(1) Variable expressions

(a) #m m = value consisting of 0 to 9

(b) # [f] f = one of the following in the formula

- Numerical value m
- Variable
- Formula Operator Formula
- (minus) formula
- [Formula]
- Function [formula]

Example

- #100
- # [- #120]
- 123
- #543
- #110 + #119
- - #120
- [#119]
- SIN [#110]

(Note 1) The 4 standard operators are +, -, *, and /.

(Note 2) Functions cannot be used unless the user macro specifications are available.

(Note 3) Error (P241) results when a variable No. is negative.

(Note 4) Examples of incorrect variable expressions are given below.

<table>
<thead>
<tr>
<th>Incorrect</th>
<th>Correct</th>
<th>Example</th>
</tr>
</thead>
</table>
| #6/2 | # [6/2] (Note that expression such as "#6/2" is regarded as
| | | |
| # - - 5 | # [- [-5]] | |
| # - [# 1] | # [- #1] | |
13. Program Support Functions

13.8 Variable Commands

(2) Types of variables

<table>
<thead>
<tr>
<th>Type of variable</th>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common variables</td>
<td>Common variables 1</td>
<td>Common variables 2</td>
</tr>
<tr>
<td>1st part system</td>
<td>100 sets 500 to 549</td>
<td>100 to 149</td>
</tr>
<tr>
<td></td>
<td>200 sets 500 to 599</td>
<td>100 to 199</td>
</tr>
<tr>
<td></td>
<td>300 sets 500 to 699</td>
<td>100 to 199</td>
</tr>
<tr>
<td></td>
<td>600 sets 500 to 999</td>
<td>100 to 199</td>
</tr>
<tr>
<td></td>
<td>700 sets 400 to 999</td>
<td>100 to 199</td>
</tr>
<tr>
<td>Multi-part system</td>
<td>50 + 50 * n sets 500 to 549</td>
<td>100 to 149 * n</td>
</tr>
<tr>
<td>(n = number of part systems)</td>
<td>100 + 100 * n sets 500 to 599</td>
<td>100 to 199 * n</td>
</tr>
<tr>
<td></td>
<td>200 + 100 * n sets 500 to 699</td>
<td>100 to 199 * n</td>
</tr>
<tr>
<td></td>
<td>500 + 100 * n sets 500 to 999</td>
<td>100 to 199 * n</td>
</tr>
<tr>
<td></td>
<td>600 + 100 * n sets 400 to 999</td>
<td>100 to 199 * n</td>
</tr>
<tr>
<td>Local variables</td>
<td>1 to 33</td>
<td>Can be used for local variables in macro programs.</td>
</tr>
<tr>
<td>System variables</td>
<td>From 1000</td>
<td>Application is fixed by system.</td>
</tr>
<tr>
<td>Fixed cycle variables</td>
<td>1 to 32</td>
<td>Local variables in fixed cycle programs.</td>
</tr>
</tbody>
</table>

(Note 1) All common variables are retained even when the power is turned OFF.

(Note 2) When the power is turned OFF or reset, the common variables can be set to <null> by setting the parameter (#1128 RstVC1, #1129 PwrVC1).

(Note 3) The common variables are divided into the following two types.
Common variables 1 : Used in common through all part systems
Common variables 2 : Used in common in the programs of the part system

(Note 4) Address #400s common variable can be used only when the sets of common variable is "700 sets" and the parameter "#1336 #400_Valtype" is "1". If address #400s common variable is used when the set of common variable is other than 700 sets or the parameter "#1336 #400_Valtype" is "0", a program error (P241) will occur.
When common variable address #400s can be used, these can be displayed and set on the common variable screen.
It is possible to input/output data of common variable address #400s.
13. Program Support Functions

13.8 Variable Commands

(Note 5) When the parameter "#1052 MemVal" is set to "1" in multi-part system, a part or all of common variable "#100 to #199" and "#500 to #999" can be shared and used between part systems. The number of the shared common variable is set by the parameter "#1303 V1comN" (#100 to set value) and "#1304 V0comN" (#500 to set value).

(Example) "10" is set to "#1303 V1comN" "5" is set to "#1304 V0comN"
#100 to #109 : Common for the part systems
#110 to #199 : Each part system
#500 to #504 : Common for the part systems
#505 to #999 : Each part system

When the parameter "#1052 MemVal" is set to "0", the common variables "#100 to #199" are used for each part system, and variables "#500 to #999" are common for the part systems. Address #400s, which can be used as common variable with 700 sets of variable, is common for the part systems regardless of the setting of parameter "#1052 MemVal".

(Note 6) In the common variable data input, when the following illegal variable No. data exist in input file, the illegal variable No. data is ignored and only the correct common variable data is input.
• Variable data which is not common variables of local variable (#1 to #33) and system variable (#1000 to), etc.
• Variable data to which conditions of number of common variable sets are not corresponding

(Example) If the #100 to #199, #500 to #599 exist in the input file when the common variable 100 sets (#100 to #149, #500 to #549), the #150 to #199, #550 to #599 are ignored, and #100 to #149, #500 to #549 are input.

(Note 7) When the parameter "#1316 CrossCom" is set to "1", the common variables #100100 to #800199 can be used for common variable shared between the part systems. The common variable shared between part systems which can be used is shown in the table below.

<table>
<thead>
<tr>
<th>Variable sets specification</th>
<th>Common variables 1 (When "#1316 CrossCom" = "1")</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 sets (500 + 100)</td>
<td>#100100 to #100199 (Equivalent to #100 to #199 in 1st part system)</td>
</tr>
<tr>
<td>700 sets (600 + 100)</td>
<td>#200100 to #200199 (Equivalent to #100 to #199 in 2nd part system)</td>
</tr>
<tr>
<td></td>
<td>#300100 to #300199 (Equivalent to #100 to #199 in 3rd part system)</td>
</tr>
<tr>
<td></td>
<td>#400100 to #400199 (Equivalent to #100 to #199 in 4th part system)</td>
</tr>
<tr>
<td></td>
<td>#500100 to #500199</td>
</tr>
<tr>
<td></td>
<td>#600100 to #600199</td>
</tr>
<tr>
<td></td>
<td>#700100 to #700199</td>
</tr>
<tr>
<td></td>
<td>#800100 to #800199</td>
</tr>
</tbody>
</table>

<Example>
When 1-part system

#100100=200 ; Equivalent to #100 = 200 ;
#200100=200 ; "200" is set to #200100
#300100=200 ; "200" is set to #300110
#800199=#500120 ; The variable value of #500120 is set to #800199
When multi-part system
"Common variable for each part system #100 to #199" in other part system can be used.

$1

#200100=-100 ;
"-100" is set to #100 of 2nd part system.
#101=#200102 ;
The variable value of #102 of 2nd part system is set to #101
#300105=#200103 ;
The variable value of #103 of 3rd part system is set to #105
#110=#500107 ;
The variable value of #500107 is set to #110

- The PLC data reading function cannot be used by using system variable #100100 to #100110, and variable #100100 to #100110 are used as common variable.
- The setting of number of common variable shared between the part systems (The parameter #1052 MemVal" is set to "1") is invalid, thus the movement is the same as "0" setting.
- When the parameters (#1128 RstVC1, #1129 PwrVC1) are set to "1", the operation is as follows according to expression.

"#1128 RstVC1" (Clear variables by resetting)
Common variables shared between the part systems equivalent to #100 to #199 of reset part system are cleared.
(Example) When resetting in 1st part system, #100100 to #100199 are cleared.
When resetting in 2nd part system, #200100 to #200199 are cleared.

"#1129 PwrVC1" (Clear variables by power-ON)
Common variables shared between the part systems equivalent to #100 to #199 of valid part system are cleared.
(Example) In 1st part system, #100100 to #100199 are cleared.
In 2nd part system, #100100 to #100199 and #200100 to #200199 are cleared.

- Common variables shared between the part systems #100100 to #800199 can be displayed and set on the common variable screen.
- If common variable #100100 to #800199 are used when the set of common variable is other than 600/700 sets or the parameter "#1316 CrossCom" is "0", a program error (P241) will occur.
13. Program Support Functions

13.8 Variable Commands

(3) Variable quotations

Variables can be used for all addresses accept O, N and / (slash).

(a) When the variable value is used directly:
X#1................................. Value of #1 is used as the X value.

(b) When the complement of the variable value is used:
X−#2............................... Value with the #2 sign changed is used as the X value.

(c) When defining variables:
#3 = #5 Variable #3 uses the equivalent value of variable #5.
#1 = 1000 Variable #1 uses the equivalent value 1000 (which is treated as 1000.).

(d) When defining the variable arithmetic formula:
#1 = #3 + #2 − 100........... The value of the operation result of #3 + #2 − 100 is used as the #1 value.
X [#1 + #3 + 1000] The value of the operation result of #1 + #3 + 1000 is used as the X value.

(Note 1) A variable cannot be defined in the same block as an address. It must be defined in a separate block.

Incorrect Correct
X #1= #3 + 100 ; → #1= #3 + 100 ;
X#1 ;

(Note 2) Up to five sets of square parentheses [] may be used.

#543 = − [[[[[#120]/2 + 15.]*3 − #100]/#520 + #125 + #128]*#130 + #132] ;

(Note 3) There are no restrictions on the number of characters and number of variables for variable definition.

(Note 4) The variable values should be within a range from 0 to ±99999999. If this range is exceeded, the operations may not be conducted properly.

(Note 5) The variable definitions are valid from the moment that the variables are actually defined.

#1 = 100 ;#1 = 100
#1 = 200 #2 = #1 + 200 ;#1 = 200, #2 = 400
#3 = #1 + 300 ;#3 = 500

(Note 6) Variable quotations are always regarded as having a decimal point at the end.
When #100 = 10,
then X#100 ; is treated as X10.

(Note 1)
13.9 User Macro

13.9.1 User Macro Commands; G65, G66, G66.1, G67

Function and purpose

By combining the user macros with variable commands, it is possible to use macro program call, operation, data input/output with PLC, control, decision, branch and many other instructions for measurement and other such applications.

Macro programs use variables, operation instructions and control instructions to create subprograms which function to provide dedicated control. These dedicated control functions (macro programs) are called by the macro call instructions exactly when required from the main program.

<table>
<thead>
<tr>
<th>G code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>G65</td>
<td>User macro Simple call</td>
</tr>
<tr>
<td>G66</td>
<td>User macro Modal call A (Movement command call)</td>
</tr>
<tr>
<td>G66.1</td>
<td>User macro Modal call B (Per-block call)</td>
</tr>
<tr>
<td>G67</td>
<td>User macro Modal call (G66, G66.1) cancel</td>
</tr>
</tbody>
</table>

Detailed description

(1) When the G66 or G66.1 command is entered, the specified user macro program will be called after each block has been executed or after the movement command in the block with the movement commands has been executed until the G67 (cancel) command is entered.

(2) The G66 (G66.1) and G67 commands must be paired in the same program.
13.9.2 Macro Call Instruction

Function and purpose

Included among the macro call commands are the simple calls which apply only to the instructed block and also modal calls (types A and B) which apply to each block in the call modal.

Simple macro calls

```
Main program

{ 
G65 P__ L__ argument ; 
}

To subprogram

Subprogram (O__)

O__

{ 
}

To main program

M99

M99 is used to conclude the user macro subprogram.
```

Format

```
G65 P__ L__ argument ;
or G65 <File name> L__ argument ;

P          Program No.
<File name>  File name
A file name can be specified instead of a program No.
In this case, enclose the file name with brackets <>.
(The file name can have up to 32 characters including the extension.)
L   Number of repetitions

When the argument must be transferred as a local variable to a user macro subprogram, the actual value should be designated after the address.
Regardless of the address, a sign and decimal point can be used in the argument. There are 2 ways in which arguments are designated.

(1) Argument designation I

Format : A__ B__ C__ ... X__ Y__ Z__

Detailed description

(a) Arguments can be designated using any address except G, L, N, O and P.
(b) Except for I, J and K, there is no need for designation in alphabetical order.
(c) I, J and K must be designated in alphabetical order.
   I__ J__ K__ ...... Correct
   J__ I__ K__ ...... Incorrect
(d) Addresses which do not need to be designated can be omitted.
(e) The following table shows the correspondence between the addresses which can be designated by argument designation I and the variable Nos. in the user macro main body.
```
<table>
<thead>
<tr>
<th>Argument designation I address</th>
<th>Variable in macro</th>
<th>Call instructions and usable address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
<td>○</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
<td>○</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
<td>○</td>
</tr>
<tr>
<td>D</td>
<td>#7</td>
<td>○</td>
</tr>
<tr>
<td>E</td>
<td>#8</td>
<td>○</td>
</tr>
<tr>
<td>F</td>
<td>#9</td>
<td>○</td>
</tr>
<tr>
<td>G</td>
<td>#10</td>
<td>×</td>
</tr>
<tr>
<td>H</td>
<td>#11</td>
<td>○</td>
</tr>
<tr>
<td>I</td>
<td>#4</td>
<td>○</td>
</tr>
<tr>
<td>J</td>
<td>#5</td>
<td>○</td>
</tr>
<tr>
<td>K</td>
<td>#6</td>
<td>○</td>
</tr>
<tr>
<td>L</td>
<td>#12</td>
<td>×</td>
</tr>
<tr>
<td>M</td>
<td>#13</td>
<td>○</td>
</tr>
<tr>
<td>N</td>
<td>#14</td>
<td>×</td>
</tr>
<tr>
<td>O</td>
<td>#15</td>
<td>×</td>
</tr>
<tr>
<td>P</td>
<td>#16</td>
<td>×</td>
</tr>
<tr>
<td>Q</td>
<td>#17</td>
<td>○</td>
</tr>
<tr>
<td>R</td>
<td>#18</td>
<td>○</td>
</tr>
<tr>
<td>S</td>
<td>#19</td>
<td>○</td>
</tr>
<tr>
<td>T</td>
<td>#20</td>
<td>○</td>
</tr>
<tr>
<td>U</td>
<td>#21</td>
<td>○</td>
</tr>
<tr>
<td>V</td>
<td>#22</td>
<td>○</td>
</tr>
<tr>
<td>W</td>
<td>#23</td>
<td>○</td>
</tr>
<tr>
<td>X</td>
<td>#24</td>
<td>○</td>
</tr>
<tr>
<td>Y</td>
<td>#25</td>
<td>○</td>
</tr>
<tr>
<td>Z</td>
<td>#26</td>
<td>○</td>
</tr>
</tbody>
</table>

○ : Can be used.
× : Cannot be used.
∗ : Can be used while G66.1 command is modal.
(2) Argument designation II

Format: A_B_C_I_J_K_I_J_K ...

Detailed description

(a) In addition to addresses A, B and C, up to 10 groups of arguments with I, J, K serving as 1 group can be designated.

(b) When the same address is duplicated, designate the addresses in the specified order.

(c) Addresses which do not need to be designated can be omitted.

(d) The following table shows the correspondence between the addresses which can be designated by argument designation II and the variable Nos. in the user macro main body.

<table>
<thead>
<tr>
<th>Argument designation II address</th>
<th>Variable within macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>#1</td>
</tr>
<tr>
<td>B</td>
<td>#2</td>
</tr>
<tr>
<td>C</td>
<td>#3</td>
</tr>
<tr>
<td>I1</td>
<td>#4</td>
</tr>
<tr>
<td>J1</td>
<td>#5</td>
</tr>
<tr>
<td>K1</td>
<td>#6</td>
</tr>
<tr>
<td>I2</td>
<td>#7</td>
</tr>
<tr>
<td>J2</td>
<td>#8</td>
</tr>
<tr>
<td>K2</td>
<td>#9</td>
</tr>
<tr>
<td>I3</td>
<td>#10</td>
</tr>
<tr>
<td>J3</td>
<td>#11</td>
</tr>
<tr>
<td>K3</td>
<td>#12</td>
</tr>
<tr>
<td>I4</td>
<td>#13</td>
</tr>
<tr>
<td>J4</td>
<td>#14</td>
</tr>
<tr>
<td>K4</td>
<td>#15</td>
</tr>
<tr>
<td>I5</td>
<td>#16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument designation II address</th>
<th>Variable within macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>J5</td>
<td>#17</td>
</tr>
<tr>
<td>K5</td>
<td>#18</td>
</tr>
<tr>
<td>I6</td>
<td>#19</td>
</tr>
<tr>
<td>J6</td>
<td>#20</td>
</tr>
<tr>
<td>K6</td>
<td>#21</td>
</tr>
<tr>
<td>I7</td>
<td>#22</td>
</tr>
<tr>
<td>J7</td>
<td>#23</td>
</tr>
<tr>
<td>K7</td>
<td>#24</td>
</tr>
<tr>
<td>I8</td>
<td>#25</td>
</tr>
<tr>
<td>J8</td>
<td>#26</td>
</tr>
<tr>
<td>K8</td>
<td>#27</td>
</tr>
<tr>
<td>I9</td>
<td>#28</td>
</tr>
<tr>
<td>J9</td>
<td>#29</td>
</tr>
<tr>
<td>K9</td>
<td>#30</td>
</tr>
<tr>
<td>I10</td>
<td>#31</td>
</tr>
<tr>
<td>J10</td>
<td>#32</td>
</tr>
<tr>
<td>K10</td>
<td>#33</td>
</tr>
</tbody>
</table>

(Note 1) The numbers 1 to 10 accompanying I, J and K denote the sequence of the commanded groups and they are not required for the actual instructions.

(3) Using arguments designations I and II together

If addresses corresponding to the same variable are commanded when both types I and II are used to designate arguments, the latter address is valid.

(Example 1)

<table>
<thead>
<tr>
<th>Call instruction</th>
<th>65</th>
<th>A1.1</th>
<th>B-2.2</th>
<th>D3.3</th>
<th>I4.4</th>
<th>I7.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td>-2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
</tbody>
</table>

In the above example the last I7.7 argument is valid when both arguments D3.3 and I7.7 are commanded for the #7 variable.
13. Program Support Functions

13.9 User Macro

Modal call A (movement command call)

When the block with a movement command is commanded between G66 and G67, the movement command is first executed and then the designated user macro subprogram is executed. The number of times the subprogram is executed is l_1 times with each call. The argument is the same as for a simple call.

Format

```plaintext
G66  P__  L__  argument  ;
```

or

```plaintext
G66 <File name>  L__  argument  ;
```

- **P** Program No.
- **<File name>** File name
 - A file name can be specified instead of a program No.
 - In this case, enclose the file name with brackets < >.
 - (The file name can have up to 32 characters including the extension.)
- **L** Number of repetitions

Detailed description

1. When the G66 command is entered, the designated user macro subprogram will be called after the movement command in the block with the movement commands has been executed until the G67 (cancel) command is entered.

2. The G66 and G67 commands must be paired in the same program.
 - A program error will result when G67 is issued without the G66 command.
The designated user macro subprogram is unconditionally called at each command block commanded between G66.1 and G67, and is executed the number of times designated with L. The argument is the same as for a simple call.

Format

| G66.1 P__ L__ argument ;
| or G66.1 <File name> L__ argument ;
|
| P | Program No.
| <File name> | File name
| | A file name can be specified instead of a program No.
| | In this case, enclose the file name with brackets <>.
| | (The file name can have up to 32 characters including the extension.)
| L | Number of repetitions

Detailed description

1. In the G66.1 mode, everything except the O, N and G codes in the various command blocks which are read are handled as the argument without being executed. Note that the G code designated last, or the N code commanded after other than O and N is the argument.

2. The same applies as when G65 P_ is assigned at the head of a block for all significant blocks in the G66.1 mode.

 (Example 1)

 N100 G01 G90 X100. Z200. F400 R1000 ;
 in the G66.1 P1000 ; mode is the same as:
 N100 G65 P1000 G01 G90 X100. Z200. F400 R1000 ;

 (Note 1) The call is performed even in the G66.1 command block in the G66.1 mode and the correspondence between the argument address and the variable No. is the same as for G65 (simple call).

3. The range of the G and N command values which can be used new as variables in the G66.1 mode is subject to the restrictions applying to value as normal NC command values.

4. Program No. O, sequence Nos. N and modal G code are updated as modal information.
User macro subprograms with prescribed program Nos. can be called merely by issuing the G code command.

Format

| **G** argument ; | **G** code for macro call |

Detailed description

1. The above instruction functions in the same way as the instructions below, and parameters are set for each G code to determine the correspondence with the instructions.
 a: M98 PΔΔΔΔ ;
 b: G65 PΔΔΔΔΔ argument ;
 c: G66 PΔΔΔΔΔ argument ;
 d: G66.1 PΔΔΔΔΔ argument ;

 When the parameters corresponding to c and d above are set, issue the cancel command (G67) either in the user macro or after the call code has been commanded so as to cancel the modal call.

2. The correspondence between the "**" which conducts the macro call and the macro program No. PΔΔΔΔΔ to be called is set by parameter.

3. Up to 10 G codes from G00 to G255 can be used with this command. (G codes used in the system can be commanded with parameter "#1081 Gmac_P").

4. The commands cannot be issued during a user macro subprogram which has been called by a G code.

Example of program

```
G16 X100. Z100. F500 ;
}
```

O 9016

```
)
```

M99 ;
13. Program Support Functions

13.9 User Macro

Miscellaneous command macro call (for M, S, T, B code macro call)

The user macro subprograms of the specified program No. can be called merely by issuing an M (or S, T, B) code. (Only entered codes apply for M but all S, T and B codes apply.)

Format

\[
\text{M}\text{**} ; \ (\text{or S}\text{**} ;, \text{T}\text{**} ;, \text{B}\text{**} ;)
\]

\[
\text{M}\text{**} \quad \text{M code for macro call (or S, T, B code)}
\]

Detailed description

1. The above instruction functions in the same way as the instructions below, and parameters are set for each M code to determine the correspondence with the instructions. (Same for S, T and B codes)
 - a: M98 PΔΔΔΔ ;
 - b: G65 PΔΔΔΔ M** ;
 - c: G66 PΔΔΔΔ M** ;
 - d: G66.1 PΔΔΔΔ M** ;

\{ M98, M** are not output \}

When the parameters corresponding to c and d above are set, issue the cancel command (G67) either in the user macro or after the call code has been commanded so as to cancel the modal call.

2. The correspondence between the "M**" which conducts the macro call and the macro program No. PΔΔΔΔ to be called is set by parameter. Up to 10 M codes from M00 to M95 can be entered.

 Any code except the codes basically required by the machine and the M0, M1, M2, M30 and M96 to M99 codes can be entered.

3. As with M98, the display appears on the CRT screen of the setting and display unit but the M codes and MF are not output.

4. Even if the miscellaneous command entered above is issued during a user macro subprogram called by the M code, macro call will not result and it will be handled as an ordinary miscellaneous command. (This also applies for the S, T and B codes.)

5. All S, T and B codes call the subprograms in the prescribed program Nos. of the corresponding S, T and B functions.

6. Up to 10 M codes can be set, but set the parameter in the following manner when they will not all be used.

[MACRO FILE (1)]

\[
\begin{array}{ccc}
\text{<CODE>} & \text{<TYPE>} & \text{<PROGRAM-No.>} \\
M[01] & 20 & 0 & 8000 \\
M[02] & 21 & 0 & 8001 \\
M[03] & 9999 & 0 & 199999999 \\
M[04] & 9999 & 0 & 199999999 \\
M[05] & 9999 & 0 & 199999999 \\
M[06] & & & \\
M[07] & & & \\
M[08] & & & \\
M[09] & & & \\
M[10] & 9999 & 0 & 199999999 \\
\end{array}
\]

For M20 commands, set to call O8000 in type 0 (M98 type)

For M21 commands, set to call O8001 in type 0 (M98 type)

Set parameters that will not be used as shown at the left.
Differences between M98 and G65 commands

1. The argument can be designated for G65 but not for M98.
2. The sequence No. can be designated for M98 but not for G65, G66 and G66.1.
3. M98 executes a subprogram after all the commands except M, P, H and L in the M98 block have been executed, but G65 branches to the subprogram without any further operation.
4. When any address except O, N, P, H or L is included in the M98 block, single block stop results. This is not the case with G65.
5. The level of the M98 local variables is fixed but it can be varied in accordance with the nesting depth for G65. (#1, for instance, has the same significance either before or after M98, but has a different significance in each level with G65.)
6. The M98 nesting depth extends up to 8 levels in combination with G65, G66 and G66.1. The G65 nesting depth extends up to only 4 levels in combination with G66 and G66.1.

Macro call command nesting depth

Up to 4 nesting levels are available for macro subprogram calls based on simple call or modal call. The argument with a macro call instruction is valid only on the called macro level. Since the nesting depth for macro calls extends up to 4 levels, the argument can be used as a local variable for the program with each respective macro call.

(Note 1) When a G65, G66, G66.1 G code macro call or miscellaneous command macro call is conducted, this is regarded as nesting level 1 and the level of the local variables is also incremented by one.

(Note 2) The designated user macro subprogram is called every time the movement command is executed with modal call A. However, when the G66 command has been duplicated, the next user macro subprogram is called every time an axis is moved even with movement commands in the macro.

User macro subprograms are called in sequence from the subprogram commanded last.

(Example 1)
13.9.3 ASCII Code Macro

Function and purpose

A macro program can be called out by setting the correspondence of a subprogram (macro program) preregistered with the parameters to codes, and then commanding the ASCII code in the machining program.

This function can be used in addition to the G, M, S, T and B miscellaneous command macro call function.

(Execution example 1) M98 type

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7401 (ASCII [01] Valid/Invalid)</td>
<td>1 (Valid)</td>
</tr>
<tr>
<td>#7402 (ASCII [01] Code)</td>
<td>D</td>
</tr>
<tr>
<td>#7403 (ASCII [01] Type)</td>
<td>0 (M98 type)</td>
</tr>
<tr>
<td>#7404 (ASCII [01] Program No.)</td>
<td>200</td>
</tr>
<tr>
<td>#7405 (ASCII [01] Variable)</td>
<td>146</td>
</tr>
</tbody>
</table>

Main program

```
O0002 ;
D2000 ;
M30 ;
```

Subprogram

```
O200 ;
M99 ;
```

After outputting 2000 to common variable #146, the program No. 200 subprogram is called with the M98 subprogram call type.

(Execution example 2) G65 type

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7411 (ASCII [02] Valid/Invalid)</td>
<td>1 (Valid)</td>
</tr>
<tr>
<td>#7412 (ASCII [02] Code)</td>
<td>A</td>
</tr>
<tr>
<td>#7413 (ASCII [02] Type)</td>
<td>0 (G65 type)</td>
</tr>
<tr>
<td>#7414 (ASCII [02] Program No.)</td>
<td>3000</td>
</tr>
<tr>
<td>#7415 (ASCII [02] Variable)</td>
<td>100 (Not used)</td>
</tr>
</tbody>
</table>

Main program

```
O0003 ;
A500 ;
M30 ;
```

Subprogram

```
O3000 ;
M99 ;
```

After outputting 500 to local variable #1, the program No. 3000 subprogram is called out with the G65 macro call type.
13.9 User Macro

Command format

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐****;</td>
<td>Designates the address and code</td>
</tr>
<tr>
<td>☑</td>
<td>ASCII code for calling out macro (one character)</td>
</tr>
<tr>
<td>****</td>
<td>Value or expression output to variable (Setting range: ±999999.9999)</td>
</tr>
</tbody>
</table>

Detailed description

(1) The command above functions in the same way as that below. The correspondence of commands is set for each ASCII code with the parameters.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: M98 PAAAA ;</td>
<td></td>
</tr>
<tr>
<td>1: G65 PAAAA <Argument> ;</td>
<td></td>
</tr>
<tr>
<td>2: G66 PAAAA <Argument> ;</td>
<td></td>
</tr>
<tr>
<td>3: G66.1 PAAAA <Argument> ;</td>
<td></td>
</tr>
</tbody>
</table>

When parameters are set for 2 and 3 above, the modal call will be canceled. Thus, command the cancel command (G67) after commanding the call code or the during the user macro.

(2) The ASCII code for calling the macro with the ASCII codes and the program No. PAAAA to be called are set with the parameters.

Up to two ASCII codes can be registered.

(3) The code section is output to the variables, but the output destination differs according to the call type and address.

(a) For M98 type

The code section is output to the common variable, and the variable No. is set with the parameters.

When corresponding to the first address (parameter #7401), the section is output to the common variable that indicates the first variable No. (parameter #7404).

(b) For G65/G66/G66.1 type

The code section is output to the local variable. The variable No. differs according to the address, and corresponds to the following table.

<table>
<thead>
<tr>
<th>Address</th>
<th>#</th>
<th>Address</th>
<th>#</th>
<th>Address</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>K</td>
<td>6</td>
<td>U</td>
<td>21</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>L</td>
<td>12</td>
<td>V</td>
<td>22</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>M</td>
<td>13</td>
<td>W</td>
<td>23</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>N</td>
<td>14</td>
<td>X</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>O</td>
<td>15</td>
<td>Y</td>
<td>25</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>P</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>Q</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>R</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>S</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>5</td>
<td>T</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note) The following addresses can be used.

| A, B, D, F, H, I, J, K, M, Q, R, S, T |
A program that controls the tailstock with address A and machines a long thin workpiece is shown below.

Parameter

- #7411 (ASCII [02] Valid/Invalid): 1 (Valid)
- #7412 (ASCII [02] Code): A
- #7413 (ASCII [02] Type): 1 (G65 type)
- #7414 (ASCII [02] Program No.): 500
- #7415 (ASCII [02] Variable): 100 (Not used)

Main program

G28 XZ ;
A1 ;
G00 X20. Z0. ;
G01 X15. F100 ;
G01 Z100. F200 ;
X50 Z120. ;
A0 ;
M30 ;

Subprogram

O500 :
IF [#1 EQ 0] GOTO 10 ;
G53 G00 A–205. ;
G53 G01 A–200. F100 ;
GOTO N20 ;
N10 M26 ;
G53 G0 A–400. ;
N20 M99 ;

Address A is converted into G65 P500.

(Unit: mm)
Restrictions

(1) Calling a macro with an ASCII code from a program macro-called with an ASCII code

A macro cannot be called with an ASCII code from a program macro-called with an ASCII code.
The other patterns are shown below.
If it is determined that the macro cannot be called, the command will be handled as a normal command.

<table>
<thead>
<tr>
<th>Calling side</th>
<th>ASCII</th>
<th>GMSTB macro</th>
<th>G65/66/66.1</th>
<th>M98</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>x</td>
<td>x</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>GMSTB macro</td>
<td>x</td>
<td>x</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>G65/66/66.1</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>M98</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

(2) Nest level of macro call command

The macro subprogram can be called in up to four levels using simple call (G65) and modal call (G66/G66.1).
The macro call command’s argument is valid only in the called macro level.
Since the macro call nest level is four levels, the argument for each macro call can be used in the program as a local variable.

(3) Nest level of subprogram call

Counting the main program as 0, up to eight levels of subprograms can be called (M98) from a subprogram.
The following commands are used for subprogram nesting.

(a) M98
(b) G65 G66 G66.1
(c) G code call Miscellaneous function call (M/S/T/B)
(d) MDI interruption
(e) Automatic tool length measurement
(f) Multiple-step skip function

The following commands can be commanded regardless of nesting.

(g) Fixed cycle
(h) Macro interruption
13. Program Support Functions

13.9 User Macro

(4) Order of command priority

If "M" is designated for the ASCII code address, the codes basically necessary for that machine will be overlapped. In this case, commands will be identified with the following priority using code values.

(a) M98, M99 (subprogram call command)
 M00 (program stop command), M01 (optional stop command)
 M02, M30, M198, M199 (end command)
 M96, M97 (macro interruption command)

(b) When corresponding to ASCII code macro command

(c) Used as normal command

"S", "T" and "B" will also overlap with the miscellaneous command macro call. However, if these commands do not correspond to the identification, the ASCII code macro will be executed.

If the other addresses do not correspond to the ASCII code macro command, they will be identified as normal commands. If the command to be used overlaps with an ASCII code macro command, it must be commanded in the program macro-called with the ASCII code. Note that there are cases when the command will be unconditionally handled as a normal command, as explained in (5) below.

(5) Conditions for handling address set in ASCII code macro command as normal command

(a) When there is a data setting command (G10) in the same block.

(b) When ASCII code macro call is executed after the G code macro call command in the same block (also applies for M, S, T, B and ASCII)
 Example When address "D" (G65 type) is set in the ASCII code macro, and M50 is set in the macro call (G65 type).

 M50 D200 ; Execute M code macro with argument (200 set in #7)

(c) When inputting parameters

(d) When there is a comma (,) before the address. **Example** D ,R, etc.

(e) When commanded in fixed cycle

(f) When commanded in macro subprogram called with G code macro call
 (Also applies when macro is called with M, S, T, B or ASCII)
13. Program Support Functions

13.9 User Macro

13.9.4 Variables

Function and purpose

Both the variable specifications and user macro specifications are required for the variables which are used with the user macros. The offset amounts of the local, common and system variables among the variables for this NC unit are retained even when the unit’s power is turned OFF. (Common variables can also be set to <Blank> in parameter "#1129PwrVC")

Use of multiple variable

When the user macro specifications apply, variable Nos. can be turned into variables (multiple use of variables) or replaced by <formula>. Only one of the arithmetical (+, -, x, ÷) operations can be conducted with <formula>.

(Example 1) Multiple use of variables

\[
\begin{align*}
\text{#1} &= 10 \\
\text{#10} &= 20 \\
\text{#20} &= 30 \\
\text{#5} &= \text{[# [#1]]} \\
\text{#5} &= \text{#20} & \text{from #10} = 20 \\
\text{Therefore, #5} &= \text{#20} \text{ or #5} = 30.
\end{align*}
\]

\[
\begin{align*}
\text{#1} &= 10 \\
\text{#10} &= 20 \\
\text{#20} &= 30 \\
\text{#5} &= 1000 \\
\text{[# [#1]]} &= \text{#5} & \text{from #1} = 10 \\
\text{Therefore, #20} &= \text{#5} \text{ or #20} = 1000.
\end{align*}
\]

(Example 2) Replacing variable Nos. with <formula>

\[
\begin{align*}
\text{#10} &= 5 \\
\text{[#10 + 1]} &= 1000 & \text{In which case, #6} &= 1000. \\
\text{[#10 - 1]} &= -1000 & \text{In which case, #4} &= -1000. \\
\text{[#10*3]} &= 100 & \text{In which case, #15} &= 100. \\
\text{[#10/2]} &= -100 & \text{In which case, #3} &= -100. \text{ (fraction rounded up)}
\end{align*}
\]
13. Program Support Functions

13.9 User Macro

Undefined variables

Variables applying with the user macro specifications such as variables which have not been used even once after the power was turned ON or local variables not quoted by the G65, G66 or G66.1 commands can be used as `<Blank>`. Also, variables can forcibly be set to `<Blank>`. Variable #0 is always used as the `<Blank>` variable and nothing can be defined in the left-side member.

<table>
<thead>
<tr>
<th>Arithmetic expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>#1 = #0 ;</code><code>#1 = <Blank></code></td>
</tr>
<tr>
<td><code>#2 = #0 + 1 ;</code><code>#2 = 1</code></td>
</tr>
<tr>
<td><code>#3 = 1 + #0 ;</code><code>#3 = 1</code></td>
</tr>
<tr>
<td><code>#4 = #0*10 ;</code><code>#4 = 0</code></td>
</tr>
<tr>
<td><code>#5 = #0 + #0 ;</code><code>#5 = 0</code></td>
</tr>
</tbody>
</table>

It should be borne in mind that `<Blank>` in an arithmetic expression is handled in the same way as 0.

- `<Blank> + <Blank> = 0`
- `<Blank> + <Constant> = Constant`
- `<Constant> + <Blank> = Constant`

<table>
<thead>
<tr>
<th>Variable quotations</th>
</tr>
</thead>
<tbody>
<tr>
<td>When undefined variable only are quoted, they are ignored up to the address.</td>
</tr>
<tr>
<td>When <code>#1 = <Blank></code></td>
</tr>
<tr>
<td><code>G0 X#1 Z1000 ;</code>Equivalent to <code>G0 Z1000 ;</code></td>
</tr>
<tr>
<td><code>G0 X#1 + 10 Z1000 ;</code>Equivalent to <code>G0 X10 Z1000 ;</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><Blank></code> differs from "0" only for EQ and NE. (#0 is <code><Blank></code>.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When #101 = <code><Blank></code></th>
<th>When #101 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>#101 EQ #0</td>
<td>#101 EQ #0</td>
</tr>
<tr>
<td><code><Blank></code> = <code><Blank></code> established</td>
<td>0 = <code><Blank></code> not established</td>
</tr>
<tr>
<td>#101 NE 0</td>
<td>#101 NE 0</td>
</tr>
<tr>
<td><code><Blank></code> ≠ 0 established</td>
<td>0 ≠ 0 not established</td>
</tr>
<tr>
<td>#101 GE #0</td>
<td>#101 GE #0</td>
</tr>
<tr>
<td><code><Blank></code> ≥ 0 established</td>
<td>0 ≥ <code><Blank></code> established</td>
</tr>
<tr>
<td>#101 GT 0</td>
<td>#101 GT 0</td>
</tr>
<tr>
<td><code><Blank></code> > 0 not established</td>
<td>0 > 0 not established</td>
</tr>
<tr>
<td>#101 LE #0</td>
<td>#101 LE #0</td>
</tr>
<tr>
<td><code><Blank></code> ≤ <code><Blank></code> established</td>
<td>0 ≤ <code><Blank></code> established</td>
</tr>
<tr>
<td>#101 GT0</td>
<td>#101 LT0</td>
</tr>
<tr>
<td><code><Blank></code> < 0 not established</td>
<td>0 < 0 not established</td>
</tr>
</tbody>
</table>

Note 1 Only compare EQ and NE by integers. Use GE, GT, LE and LT for comparison when there are numbers below the decimal point.
13. Program Support Functions

13.9 User Macro

13.9.5 Types of Variables

Common variables

These are the variables used commonly from an arbitrary position. The number of the common variables sets depends on the specifications. Refer to the explanation about Variable Commands for details.

Local variables (#1 to #33)

These can be defined as an <argument> when a macro subprogram is called or used locally within main programs and subprograms. They can be duplicated regardless of the relationship existing between macros (up to 4 levels).

G65 P__ L__ <argument> ;

P Program No.

L Number of repetitions

The <argument> is assumed to be Aa1 Bb1 Cc1...... Zz1. The following table shows the correspondences between the addresses designated by <argument> and the local variable Nos. used in the user macro main body.

[Argument designation I]

<table>
<thead>
<tr>
<th>Call command</th>
<th>Argument address</th>
<th>Local variable No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ ○</td>
<td>A</td>
<td>#1</td>
</tr>
<tr>
<td>○ ○</td>
<td>B</td>
<td>#2</td>
</tr>
<tr>
<td>○ ○</td>
<td>C</td>
<td>#3</td>
</tr>
<tr>
<td>○ ○</td>
<td>D</td>
<td>#7</td>
</tr>
<tr>
<td>○ ○</td>
<td>E</td>
<td>#8</td>
</tr>
<tr>
<td>○ ○</td>
<td>F</td>
<td>#9</td>
</tr>
<tr>
<td>× ×</td>
<td>G</td>
<td>#10</td>
</tr>
<tr>
<td>○ ○</td>
<td>H</td>
<td>#11</td>
</tr>
<tr>
<td>○ ○</td>
<td>I</td>
<td>#4</td>
</tr>
<tr>
<td>○ ○</td>
<td>J</td>
<td>#5</td>
</tr>
<tr>
<td>○ ○</td>
<td>K</td>
<td>#6</td>
</tr>
<tr>
<td>× ×</td>
<td>L</td>
<td>#12</td>
</tr>
<tr>
<td>○ ○</td>
<td>M</td>
<td>#13</td>
</tr>
<tr>
<td>× ×</td>
<td>N</td>
<td>#14</td>
</tr>
<tr>
<td>× ×</td>
<td>O</td>
<td>#15</td>
</tr>
<tr>
<td>× ×</td>
<td>P</td>
<td>#16</td>
</tr>
</tbody>
</table>

[Call command]

<table>
<thead>
<tr>
<th>G65, G66</th>
<th>G66.1</th>
<th>Argument address</th>
<th>Local variable No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ ○</td>
<td>Q</td>
<td>#17</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>R</td>
<td>#18</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>S</td>
<td>#19</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>T</td>
<td>#20</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>U</td>
<td>#21</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>V</td>
<td>#22</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>W</td>
<td>#23</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>X</td>
<td>#24</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>Y</td>
<td>#25</td>
<td></td>
</tr>
<tr>
<td>○ ○</td>
<td>Z</td>
<td>#26</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#27</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#28</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#29</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#30</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#31</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#32</td>
<td></td>
</tr>
<tr>
<td>- -</td>
<td></td>
<td>#33</td>
<td></td>
</tr>
</tbody>
</table>

"×" in the above table denotes an argument address which cannot be used. However, provided that the G66.1 mode has been established, an argument address denoted by the asterisk can be added for use.

The hyphen (-) mark indicates that there is no corresponding address.
13. Program Support Functions

13.9 User Macro

[Argument designation II]

<table>
<thead>
<tr>
<th>Argument designation II address</th>
<th>Variable in macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td># 1</td>
</tr>
<tr>
<td>B</td>
<td># 2</td>
</tr>
<tr>
<td>C</td>
<td># 3</td>
</tr>
<tr>
<td>I1</td>
<td># 4</td>
</tr>
<tr>
<td>J1</td>
<td># 5</td>
</tr>
<tr>
<td>K1</td>
<td># 6</td>
</tr>
<tr>
<td>I2</td>
<td># 7</td>
</tr>
<tr>
<td>J2</td>
<td># 8</td>
</tr>
<tr>
<td>K2</td>
<td># 9</td>
</tr>
<tr>
<td>I3</td>
<td>#10</td>
</tr>
<tr>
<td>J3</td>
<td>#11</td>
</tr>
<tr>
<td>K3</td>
<td>#12</td>
</tr>
<tr>
<td>I4</td>
<td>#13</td>
</tr>
<tr>
<td>J4</td>
<td>#14</td>
</tr>
<tr>
<td>K4</td>
<td>#15</td>
</tr>
<tr>
<td>I5</td>
<td>#16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument designation II address</th>
<th>Variable in macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>J5</td>
<td>#17</td>
</tr>
<tr>
<td>K5</td>
<td>#18</td>
</tr>
<tr>
<td>I6</td>
<td>#19</td>
</tr>
<tr>
<td>J6</td>
<td>#20</td>
</tr>
<tr>
<td>K6</td>
<td>#21</td>
</tr>
<tr>
<td>I7</td>
<td>#22</td>
</tr>
<tr>
<td>J7</td>
<td>#23</td>
</tr>
<tr>
<td>K7</td>
<td>#24</td>
</tr>
<tr>
<td>I8</td>
<td>#25</td>
</tr>
<tr>
<td>J8</td>
<td>#26</td>
</tr>
<tr>
<td>K8</td>
<td>#27</td>
</tr>
<tr>
<td>I9</td>
<td>#28</td>
</tr>
<tr>
<td>J9</td>
<td>#29</td>
</tr>
<tr>
<td>K9</td>
<td>#30</td>
</tr>
<tr>
<td>I10</td>
<td>#31</td>
</tr>
<tr>
<td>J10</td>
<td>#32</td>
</tr>
<tr>
<td>K10</td>
<td>#33</td>
</tr>
</tbody>
</table>

Note 1 The numbers 1 to 10 added to I, J and K indicate the sequence of the commanded sets, and are not required in the actual command.
13. Program Support Functions

13.9 User Macro

(1) Local variables in subprograms can be defined by means of the \(<argument>\) designation during macro call. (Local variables can be used freely in those subprograms.)

Main program

```
G65 P9900 A60. S100. F800 ;
M02 ;
```

To subprogram

Subprogram (9900)

```
G91 G01 X[#1] \ast COS[#1]
Y[#1] \ast SIN[#1] F#9 ;
M99 ;
```

(2) Local variables can be used independently on each of the macro calls levels (4 levels). Local variables are also provided independently for the main program (macro level 0). Arguments cannot be used for the level 0 local variables.

Main (level 0)

```
#1=0.1 #2=0.2 #3=0.3 ;
M02 ;
```

O1 (macro level 1)

```
M99 ;
```

O10 (macro level 2)

```
G65 P100 A100. B200. ;
M99 ;
```

O100 (macro level 3)

```
M99 ;
```

Local variables (0)

- #1 0.100
- #2 0.200
- #3 0.300

Local variables (1)

- A (#1) 0.100
- B (#2) 0.200
- C (#3) 0.300
- D (#7)
- Z (#26)

Local variables (2)

- A (#1) 10.000
- B (#2) 20.000
- C (#3) 30.000
- D (#7)
- Z (#26)

Local variables (3)

- A (#1) 100.000
- B (#2) 200.000
- C (#3)
- Z (#26)

The statuses of the local variables appear on the setting and display unit.
For details, refer to the Instruction Manual.
The status of the interface input signals can be ascertained by reading out the values of variable Nos. #1000 to #1035, #1200 to #1295. Available value which has been read out can be only one of 2 values: 1 or 0 (1: contact closed, 0: contact open). All the input signals from #1000 to #1031 can be read at once by reading out the value of variable No. #1032. In the same manner, by reading the values for variable Nos. #1033 to #1035, the input signals for #1200 to #1231, #1232 to #1263 and #1264 to #1295 can be read.

Variable Nos. #1000 to #1035, #1200 to #1295 are for readout only, and nothing can be placed in the left side member of their operation formula.

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1000</td>
<td>1</td>
<td>Register R6436 bit 0</td>
<td>#1016</td>
<td>1</td>
<td>Register R6437 bit 0</td>
</tr>
<tr>
<td>#1001</td>
<td>1</td>
<td>Register R6436 bit 1</td>
<td>#1017</td>
<td>1</td>
<td>Register R6437 bit 1</td>
</tr>
<tr>
<td>#1002</td>
<td>1</td>
<td>Register R6436 bit 2</td>
<td>#1018</td>
<td>1</td>
<td>Register R6437 bit 2</td>
</tr>
<tr>
<td>#1003</td>
<td>1</td>
<td>Register R6436 bit 3</td>
<td>#1019</td>
<td>1</td>
<td>Register R6437 bit 3</td>
</tr>
<tr>
<td>#1004</td>
<td>1</td>
<td>Register R6436 bit 4</td>
<td>#1020</td>
<td>1</td>
<td>Register R6437 bit 4</td>
</tr>
<tr>
<td>#1005</td>
<td>1</td>
<td>Register R6436 bit 5</td>
<td>#1021</td>
<td>1</td>
<td>Register R6437 bit 5</td>
</tr>
<tr>
<td>#1006</td>
<td>1</td>
<td>Register R6436 bit 6</td>
<td>#1022</td>
<td>1</td>
<td>Register R6437 bit 6</td>
</tr>
<tr>
<td>#1007</td>
<td>1</td>
<td>Register R6436 bit 7</td>
<td>#1023</td>
<td>1</td>
<td>Register R6437 bit 7</td>
</tr>
<tr>
<td>#1008</td>
<td>1</td>
<td>Register R6436 bit 8</td>
<td>#1024</td>
<td>1</td>
<td>Register R6437 bit 8</td>
</tr>
<tr>
<td>#1009</td>
<td>1</td>
<td>Register R6436 bit 9</td>
<td>#1025</td>
<td>1</td>
<td>Register R6437 bit 9</td>
</tr>
<tr>
<td>#1010</td>
<td>1</td>
<td>Register R6436 bit 10</td>
<td>#1026</td>
<td>1</td>
<td>Register R6437 bit 10</td>
</tr>
<tr>
<td>#1011</td>
<td>1</td>
<td>Register R6436 bit 11</td>
<td>#1027</td>
<td>1</td>
<td>Register R6437 bit 11</td>
</tr>
<tr>
<td>#1012</td>
<td>1</td>
<td>Register R6436 bit 12</td>
<td>#1028</td>
<td>1</td>
<td>Register R6437 bit 12</td>
</tr>
<tr>
<td>#1013</td>
<td>1</td>
<td>Register R6436 bit 13</td>
<td>#1029</td>
<td>1</td>
<td>Register R6437 bit 13</td>
</tr>
<tr>
<td>#1014</td>
<td>1</td>
<td>Register R6436 bit 14</td>
<td>#1030</td>
<td>1</td>
<td>Register R6437 bit 14</td>
</tr>
<tr>
<td>#1015</td>
<td>1</td>
<td>Register R6436 bit 15</td>
<td>#1031</td>
<td>1</td>
<td>Register R6437 bit 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1032</td>
<td>32</td>
<td>Register R6436, R6437</td>
</tr>
<tr>
<td>#1033</td>
<td>32</td>
<td>Register R6438, R6439</td>
</tr>
<tr>
<td>#1034</td>
<td>32</td>
<td>Register R6440, R6441</td>
</tr>
<tr>
<td>#1035</td>
<td>32</td>
<td>Register R6442, R6443</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1200</td>
<td>1</td>
<td>Register R6438 bit 0</td>
<td>#1216</td>
<td>1</td>
<td>Register R6439 bit 0</td>
</tr>
<tr>
<td>#1201</td>
<td>1</td>
<td>Register R6438 bit 1</td>
<td>#1217</td>
<td>1</td>
<td>Register R6439 bit 1</td>
</tr>
<tr>
<td>#1202</td>
<td>1</td>
<td>Register R6438 bit 2</td>
<td>#1218</td>
<td>1</td>
<td>Register R6439 bit 2</td>
</tr>
<tr>
<td>#1203</td>
<td>1</td>
<td>Register R6438 bit 3</td>
<td>#1219</td>
<td>1</td>
<td>Register R6439 bit 3</td>
</tr>
<tr>
<td>#1204</td>
<td>1</td>
<td>Register R6438 bit 4</td>
<td>#1220</td>
<td>1</td>
<td>Register R6439 bit 4</td>
</tr>
<tr>
<td>#1205</td>
<td>1</td>
<td>Register R6438 bit 5</td>
<td>#1221</td>
<td>1</td>
<td>Register R6439 bit 5</td>
</tr>
<tr>
<td>#1206</td>
<td>1</td>
<td>Register R6438 bit 6</td>
<td>#1222</td>
<td>1</td>
<td>Register R6439 bit 6</td>
</tr>
<tr>
<td>#1207</td>
<td>1</td>
<td>Register R6438 bit 7</td>
<td>#1223</td>
<td>1</td>
<td>Register R6439 bit 7</td>
</tr>
<tr>
<td>#1208</td>
<td>1</td>
<td>Register R6438 bit 8</td>
<td>#1224</td>
<td>1</td>
<td>Register R6439 bit 8</td>
</tr>
<tr>
<td>#1209</td>
<td>1</td>
<td>Register R6438 bit 9</td>
<td>#1225</td>
<td>1</td>
<td>Register R6439 bit 9</td>
</tr>
<tr>
<td>#1210</td>
<td>1</td>
<td>Register R6438 bit 10</td>
<td>#1226</td>
<td>1</td>
<td>Register R6439 bit 10</td>
</tr>
<tr>
<td>#1211</td>
<td>1</td>
<td>Register R6438 bit 11</td>
<td>#1227</td>
<td>1</td>
<td>Register R6439 bit 11</td>
</tr>
<tr>
<td>#1212</td>
<td>1</td>
<td>Register R6438 bit 12</td>
<td>#1228</td>
<td>1</td>
<td>Register R6439 bit 12</td>
</tr>
<tr>
<td>#1213</td>
<td>1</td>
<td>Register R6438 bit 13</td>
<td>#1229</td>
<td>1</td>
<td>Register R6439 bit 13</td>
</tr>
<tr>
<td>#1214</td>
<td>1</td>
<td>Register R6438 bit 14</td>
<td>#1230</td>
<td>1</td>
<td>Register R6439 bit 14</td>
</tr>
<tr>
<td>#1215</td>
<td>1</td>
<td>Register R6438 bit 15</td>
<td>#1231</td>
<td>1</td>
<td>Register R6439 bit 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1232</td>
<td>1</td>
<td>Register R6440 bit 0</td>
<td>#1248</td>
<td>1</td>
<td>Register R6441 bit 0</td>
</tr>
<tr>
<td>#1233</td>
<td>1</td>
<td>Register R6440 bit 1</td>
<td>#1249</td>
<td>1</td>
<td>Register R6441 bit 1</td>
</tr>
<tr>
<td>#1234</td>
<td>1</td>
<td>Register R6440 bit 2</td>
<td>#1250</td>
<td>1</td>
<td>Register R6441 bit 2</td>
</tr>
<tr>
<td>#1235</td>
<td>1</td>
<td>Register R6440 bit 3</td>
<td>#1251</td>
<td>1</td>
<td>Register R6441 bit 3</td>
</tr>
<tr>
<td>#1236</td>
<td>1</td>
<td>Register R6440 bit 4</td>
<td>#1252</td>
<td>1</td>
<td>Register R6441 bit 4</td>
</tr>
<tr>
<td>#1237</td>
<td>1</td>
<td>Register R6440 bit 5</td>
<td>#1253</td>
<td>1</td>
<td>Register R6441 bit 5</td>
</tr>
<tr>
<td>#1238</td>
<td>1</td>
<td>Register R6440 bit 6</td>
<td>#1254</td>
<td>1</td>
<td>Register R6441 bit 6</td>
</tr>
<tr>
<td>#1239</td>
<td>1</td>
<td>Register R6440 bit 7</td>
<td>#1255</td>
<td>1</td>
<td>Register R6441 bit 7</td>
</tr>
<tr>
<td>#1240</td>
<td>1</td>
<td>Register R6440 bit 8</td>
<td>#1256</td>
<td>1</td>
<td>Register R6441 bit 8</td>
</tr>
<tr>
<td>#1241</td>
<td>1</td>
<td>Register R6440 bit 9</td>
<td>#1257</td>
<td>1</td>
<td>Register R6441 bit 9</td>
</tr>
<tr>
<td>#1242</td>
<td>1</td>
<td>Register R6440 bit 10</td>
<td>#1258</td>
<td>1</td>
<td>Register R6441 bit 10</td>
</tr>
<tr>
<td>#1243</td>
<td>1</td>
<td>Register R6440 bit 11</td>
<td>#1259</td>
<td>1</td>
<td>Register R6441 bit 11</td>
</tr>
<tr>
<td>#1244</td>
<td>1</td>
<td>Register R6440 bit 12</td>
<td>#1260</td>
<td>1</td>
<td>Register R6441 bit 12</td>
</tr>
<tr>
<td>#1245</td>
<td>1</td>
<td>Register R6440 bit 13</td>
<td>#1261</td>
<td>1</td>
<td>Register R6441 bit 13</td>
</tr>
<tr>
<td>#1246</td>
<td>1</td>
<td>Register R6440 bit 14</td>
<td>#1262</td>
<td>1</td>
<td>Register R6441 bit 14</td>
</tr>
<tr>
<td>#1247</td>
<td>1</td>
<td>Register R6440 bit 15</td>
<td>#1263</td>
<td>1</td>
<td>Register R6441 bit 15</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1264</td>
<td>1</td>
<td>Register R6442 bit 0</td>
<td>#1280</td>
<td>1</td>
<td>Register R6443 bit 0</td>
</tr>
<tr>
<td>#1265</td>
<td>1</td>
<td>Register R6442 bit 1</td>
<td>#1281</td>
<td>1</td>
<td>Register R6443 bit 1</td>
</tr>
<tr>
<td>#1266</td>
<td>1</td>
<td>Register R6442 bit 2</td>
<td>#1282</td>
<td>1</td>
<td>Register R6443 bit 2</td>
</tr>
<tr>
<td>#1267</td>
<td>1</td>
<td>Register R6442 bit 3</td>
<td>#1283</td>
<td>1</td>
<td>Register R6443 bit 3</td>
</tr>
<tr>
<td>#1268</td>
<td>1</td>
<td>Register R6442 bit 4</td>
<td>#1284</td>
<td>1</td>
<td>Register R6443 bit 4</td>
</tr>
<tr>
<td>#1269</td>
<td>1</td>
<td>Register R6442 bit 5</td>
<td>#1285</td>
<td>1</td>
<td>Register R6443 bit 5</td>
</tr>
<tr>
<td>#1270</td>
<td>1</td>
<td>Register R6442 bit 6</td>
<td>#1286</td>
<td>1</td>
<td>Register R6443 bit 6</td>
</tr>
<tr>
<td>#1271</td>
<td>1</td>
<td>Register R6442 bit 7</td>
<td>#1287</td>
<td>1</td>
<td>Register R6443 bit 7</td>
</tr>
<tr>
<td>#1272</td>
<td>1</td>
<td>Register R6442 bit 8</td>
<td>#1288</td>
<td>1</td>
<td>Register R6443 bit 8</td>
</tr>
<tr>
<td>#1273</td>
<td>1</td>
<td>Register R6442 bit 9</td>
<td>#1289</td>
<td>1</td>
<td>Register R6443 bit 9</td>
</tr>
<tr>
<td>#1274</td>
<td>1</td>
<td>Register R6442 bit 10</td>
<td>#1290</td>
<td>1</td>
<td>Register R6443 bit 10</td>
</tr>
<tr>
<td>#1275</td>
<td>1</td>
<td>Register R6442 bit 11</td>
<td>#1291</td>
<td>1</td>
<td>Register R6443 bit 11</td>
</tr>
<tr>
<td>#1276</td>
<td>1</td>
<td>Register R6442 bit 12</td>
<td>#1292</td>
<td>1</td>
<td>Register R6443 bit 12</td>
</tr>
<tr>
<td>#1277</td>
<td>1</td>
<td>Register R6442 bit 13</td>
<td>#1293</td>
<td>1</td>
<td>Register R6443 bit 13</td>
</tr>
<tr>
<td>#1278</td>
<td>1</td>
<td>Register R6442 bit 14</td>
<td>#1294</td>
<td>1</td>
<td>Register R6443 bit 14</td>
</tr>
<tr>
<td>#1279</td>
<td>1</td>
<td>Register R6442 bit 15</td>
<td>#1295</td>
<td>1</td>
<td>Register R6443 bit 15</td>
</tr>
</tbody>
</table>
The interface output signals can be sent by substituting values in variable Nos. #1100 to #1135, #1300 to #1395. An output signal can be only 0 or 1.

All the output signals from #1100 to #1131 can be sent at once by substituting a value in variable No. #1132. In the same manner, by reading the values for variable Nos. #1133 to #1135, the output signals for #1300 to #1331, #1332 to #1363 and #1364 to #1395 can be read. \((2^3 \text{ to } 2^{31})\)

The status of the writing and output signals can be read in order to offset the #1100 to #1135, #1300 to #1395 output signals. Output here refers to the output from the NC side.

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1100</td>
<td>1</td>
<td>Register R6372 bit 0</td>
<td>#1116</td>
<td>1</td>
<td>Register R6373 bit 0</td>
</tr>
<tr>
<td>#1101</td>
<td>1</td>
<td>Register R6372 bit 1</td>
<td>#1117</td>
<td>1</td>
<td>Register R6373 bit 1</td>
</tr>
<tr>
<td>#1102</td>
<td>1</td>
<td>Register R6372 bit 2</td>
<td>#1118</td>
<td>1</td>
<td>Register R6373 bit 2</td>
</tr>
<tr>
<td>#1103</td>
<td>1</td>
<td>Register R6372 bit 3</td>
<td>#1119</td>
<td>1</td>
<td>Register R6373 bit 3</td>
</tr>
<tr>
<td>#1104</td>
<td>1</td>
<td>Register R6372 bit 4</td>
<td>#1120</td>
<td>1</td>
<td>Register R6373 bit 4</td>
</tr>
<tr>
<td>#1105</td>
<td>1</td>
<td>Register R6372 bit 5</td>
<td>#1121</td>
<td>1</td>
<td>Register R6373 bit 5</td>
</tr>
<tr>
<td>#1106</td>
<td>1</td>
<td>Register R6372 bit 6</td>
<td>#1122</td>
<td>1</td>
<td>Register R6373 bit 6</td>
</tr>
<tr>
<td>#1107</td>
<td>1</td>
<td>Register R6372 bit 7</td>
<td>#1123</td>
<td>1</td>
<td>Register R6373 bit 7</td>
</tr>
<tr>
<td>#1108</td>
<td>1</td>
<td>Register R6372 bit 8</td>
<td>#1124</td>
<td>1</td>
<td>Register R6373 bit 8</td>
</tr>
<tr>
<td>#1109</td>
<td>1</td>
<td>Register R6372 bit 9</td>
<td>#1125</td>
<td>1</td>
<td>Register R6373 bit 9</td>
</tr>
<tr>
<td>#1110</td>
<td>1</td>
<td>Register R6372 bit 10</td>
<td>#1126</td>
<td>1</td>
<td>Register R6373 bit 10</td>
</tr>
<tr>
<td>#1111</td>
<td>1</td>
<td>Register R6372 bit 11</td>
<td>#1127</td>
<td>1</td>
<td>Register R6373 bit 11</td>
</tr>
<tr>
<td>#1112</td>
<td>1</td>
<td>Register R6372 bit 12</td>
<td>#1128</td>
<td>1</td>
<td>Register R6373 bit 12</td>
</tr>
<tr>
<td>#1113</td>
<td>1</td>
<td>Register R6372 bit 13</td>
<td>#1129</td>
<td>1</td>
<td>Register R6373 bit 13</td>
</tr>
<tr>
<td>#1114</td>
<td>1</td>
<td>Register R6372 bit 14</td>
<td>#1130</td>
<td>1</td>
<td>Register R6373 bit 14</td>
</tr>
<tr>
<td>#1115</td>
<td>1</td>
<td>Register R6372 bit 15</td>
<td>#1131</td>
<td>1</td>
<td>Register R6373 bit 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1132</td>
<td>32</td>
<td>Register R6372, R6373</td>
</tr>
<tr>
<td>#1133</td>
<td>32</td>
<td>Register R6374, R6375</td>
</tr>
<tr>
<td>#1134</td>
<td>32</td>
<td>Register R6376, R6377</td>
</tr>
<tr>
<td>#1135</td>
<td>32</td>
<td>Register R6378, R6379</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1300</td>
<td>1</td>
<td>Register R6374 bit 0</td>
<td>#1316</td>
<td>1</td>
<td>Register R6375 bit 0</td>
</tr>
<tr>
<td>#1301</td>
<td>1</td>
<td>Register R6374 bit 1</td>
<td>#1317</td>
<td>1</td>
<td>Register R6375 bit 1</td>
</tr>
<tr>
<td>#1302</td>
<td>1</td>
<td>Register R6374 bit 2</td>
<td>#1318</td>
<td>1</td>
<td>Register R6375 bit 2</td>
</tr>
<tr>
<td>#1303</td>
<td>1</td>
<td>Register R6374 bit 3</td>
<td>#1319</td>
<td>1</td>
<td>Register R6375 bit 3</td>
</tr>
<tr>
<td>#1304</td>
<td>1</td>
<td>Register R6374 bit 4</td>
<td>#1320</td>
<td>1</td>
<td>Register R6375 bit 4</td>
</tr>
<tr>
<td>#1305</td>
<td>1</td>
<td>Register R6374 bit 5</td>
<td>#1321</td>
<td>1</td>
<td>Register R6375 bit 5</td>
</tr>
<tr>
<td>#1306</td>
<td>1</td>
<td>Register R6374 bit 6</td>
<td>#1322</td>
<td>1</td>
<td>Register R6375 bit 6</td>
</tr>
<tr>
<td>#1307</td>
<td>1</td>
<td>Register R6374 bit 7</td>
<td>#1323</td>
<td>1</td>
<td>Register R6375 bit 7</td>
</tr>
<tr>
<td>#1308</td>
<td>1</td>
<td>Register R6374 bit 8</td>
<td>#1324</td>
<td>1</td>
<td>Register R6375 bit 8</td>
</tr>
<tr>
<td>#1309</td>
<td>1</td>
<td>Register R6374 bit 9</td>
<td>#1325</td>
<td>1</td>
<td>Register R6375 bit 9</td>
</tr>
<tr>
<td>#1310</td>
<td>1</td>
<td>Register R6374 bit 10</td>
<td>#1326</td>
<td>1</td>
<td>Register R6375 bit 10</td>
</tr>
<tr>
<td>#1311</td>
<td>1</td>
<td>Register R6374 bit 11</td>
<td>#1327</td>
<td>1</td>
<td>Register R6375 bit 11</td>
</tr>
<tr>
<td>#1312</td>
<td>1</td>
<td>Register R6374 bit 12</td>
<td>#1328</td>
<td>1</td>
<td>Register R6375 bit 12</td>
</tr>
<tr>
<td>#1313</td>
<td>1</td>
<td>Register R6374 bit 13</td>
<td>#1329</td>
<td>1</td>
<td>Register R6375 bit 13</td>
</tr>
<tr>
<td>#1314</td>
<td>1</td>
<td>Register R6374 bit 14</td>
<td>#1330</td>
<td>1</td>
<td>Register R6375 bit 14</td>
</tr>
<tr>
<td>#1315</td>
<td>1</td>
<td>Register R6374 bit 15</td>
<td>#1331</td>
<td>1</td>
<td>Register R6375 bit 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1332</td>
<td>1</td>
<td>Register R6376 bit 0</td>
<td>#1348</td>
<td>1</td>
<td>Register R6377 bit 0</td>
</tr>
<tr>
<td>#1333</td>
<td>1</td>
<td>Register R6376 bit 1</td>
<td>#1349</td>
<td>1</td>
<td>Register R6377 bit 1</td>
</tr>
<tr>
<td>#1334</td>
<td>1</td>
<td>Register R6376 bit 2</td>
<td>#1350</td>
<td>1</td>
<td>Register R6377 bit 2</td>
</tr>
<tr>
<td>#1335</td>
<td>1</td>
<td>Register R6376 bit 3</td>
<td>#1351</td>
<td>1</td>
<td>Register R6377 bit 3</td>
</tr>
<tr>
<td>#1336</td>
<td>1</td>
<td>Register R6376 bit 4</td>
<td>#1352</td>
<td>1</td>
<td>Register R6377 bit 4</td>
</tr>
<tr>
<td>#1337</td>
<td>1</td>
<td>Register R6376 bit 5</td>
<td>#1353</td>
<td>1</td>
<td>Register R6377 bit 5</td>
</tr>
<tr>
<td>#1338</td>
<td>1</td>
<td>Register R6376 bit 6</td>
<td>#1354</td>
<td>1</td>
<td>Register R6377 bit 6</td>
</tr>
<tr>
<td>#1339</td>
<td>1</td>
<td>Register R6376 bit 7</td>
<td>#1355</td>
<td>1</td>
<td>Register R6377 bit 7</td>
</tr>
<tr>
<td>#1340</td>
<td>1</td>
<td>Register R6376 bit 8</td>
<td>#1356</td>
<td>1</td>
<td>Register R6377 bit 8</td>
</tr>
<tr>
<td>#1341</td>
<td>1</td>
<td>Register R6376 bit 9</td>
<td>#1357</td>
<td>1</td>
<td>Register R6377 bit 9</td>
</tr>
<tr>
<td>#1342</td>
<td>1</td>
<td>Register R6376 bit 10</td>
<td>#1358</td>
<td>1</td>
<td>Register R6377 bit 10</td>
</tr>
<tr>
<td>#1343</td>
<td>1</td>
<td>Register R6376 bit 11</td>
<td>#1359</td>
<td>1</td>
<td>Register R6377 bit 11</td>
</tr>
<tr>
<td>#1344</td>
<td>1</td>
<td>Register R6376 bit 12</td>
<td>#1360</td>
<td>1</td>
<td>Register R6377 bit 12</td>
</tr>
<tr>
<td>#1345</td>
<td>1</td>
<td>Register R6376 bit 13</td>
<td>#1361</td>
<td>1</td>
<td>Register R6377 bit 13</td>
</tr>
<tr>
<td>#1346</td>
<td>1</td>
<td>Register R6376 bit 14</td>
<td>#1362</td>
<td>1</td>
<td>Register R6377 bit 14</td>
</tr>
<tr>
<td>#1347</td>
<td>1</td>
<td>Register R6376 bit 15</td>
<td>#1363</td>
<td>1</td>
<td>Register R6377 bit 15</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
<th>System variable</th>
<th>Number of points</th>
<th>Interface input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1364</td>
<td>1</td>
<td>Register R6378 bit 0</td>
<td>#1380</td>
<td>1</td>
<td>Register R6379 bit 0</td>
</tr>
<tr>
<td>#1365</td>
<td>1</td>
<td>Register R6378 bit 1</td>
<td>#1381</td>
<td>1</td>
<td>Register R6379 bit 1</td>
</tr>
<tr>
<td>#1366</td>
<td>1</td>
<td>Register R6378 bit 2</td>
<td>#1382</td>
<td>1</td>
<td>Register R6379 bit 2</td>
</tr>
<tr>
<td>#1367</td>
<td>1</td>
<td>Register R6378 bit 3</td>
<td>#1383</td>
<td>1</td>
<td>Register R6379 bit 3</td>
</tr>
<tr>
<td>#1368</td>
<td>1</td>
<td>Register R6378 bit 4</td>
<td>#1384</td>
<td>1</td>
<td>Register R6379 bit 4</td>
</tr>
<tr>
<td>#1369</td>
<td>1</td>
<td>Register R6378 bit 5</td>
<td>#1385</td>
<td>1</td>
<td>Register R6379 bit 5</td>
</tr>
<tr>
<td>#1370</td>
<td>1</td>
<td>Register R6378 bit 6</td>
<td>#1386</td>
<td>1</td>
<td>Register R6379 bit 6</td>
</tr>
<tr>
<td>#1371</td>
<td>1</td>
<td>Register R6378 bit 7</td>
<td>#1387</td>
<td>1</td>
<td>Register R6379 bit 7</td>
</tr>
<tr>
<td>#1372</td>
<td>1</td>
<td>Register R6378 bit 8</td>
<td>#1388</td>
<td>1</td>
<td>Register R6379 bit 8</td>
</tr>
<tr>
<td>#1373</td>
<td>1</td>
<td>Register R6378 bit 9</td>
<td>#1389</td>
<td>1</td>
<td>Register R6379 bit 9</td>
</tr>
<tr>
<td>#1374</td>
<td>1</td>
<td>Register R6378 bit 10</td>
<td>#1390</td>
<td>1</td>
<td>Register R6379 bit 10</td>
</tr>
<tr>
<td>#1375</td>
<td>1</td>
<td>Register R6378 bit 11</td>
<td>#1391</td>
<td>1</td>
<td>Register R6379 bit 11</td>
</tr>
<tr>
<td>#1376</td>
<td>1</td>
<td>Register R6378 bit 12</td>
<td>#1392</td>
<td>1</td>
<td>Register R6379 bit 12</td>
</tr>
<tr>
<td>#1377</td>
<td>1</td>
<td>Register R6378 bit 13</td>
<td>#1393</td>
<td>1</td>
<td>Register R6379 bit 13</td>
</tr>
<tr>
<td>#1378</td>
<td>1</td>
<td>Register R6378 bit 14</td>
<td>#1394</td>
<td>1</td>
<td>Register R6379 bit 14</td>
</tr>
<tr>
<td>#1379</td>
<td>1</td>
<td>Register R6378 bit 15</td>
<td>#1395</td>
<td>1</td>
<td>Register R6379 bit 15</td>
</tr>
</tbody>
</table>

Note 1 The last values of the system variables #1100 to #1135, #1300 to #1395 sent are retained as 1 or 0. (They are not cleared even with resetting.)

Note 2 The following applies when any number except 1 or 0 is substituted into #1100 to #1131, #1300 to #1395.

<Blank> is treated as 0.

Any number except 0 and <Blank> is treated as 1.

Any value less than 0.00000001 is indefinite.
13. Program Support Functions

13.9 User Macro

Input signal

#1032 (R6436,R6437)

#1000

#1031

#1033 (R6438,R6439)

#1200

#1231

#1034 (R6440,R6441)

#1232

#1263

#1035 (R6442,R6443)

#1264

#1295

Macro instructions

Output signal

#1132 (R6372,R6373)

#1100

#1131

#1133 (R6374,R6375)

#1300

#1331

#1134 (R6376,R6377)

#1332

#1363

#1135 (R6378,R6379)

#1364

#1395
13. Program Support Functions

13.9 User Macro

Tool compensation

Tool data can be read and set using the variable numbers.

<table>
<thead>
<tr>
<th>Variable No. range</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1120 TofVal=0</td>
<td>X shape offset amount</td>
</tr>
<tr>
<td>#1120 TofVal=1</td>
<td>X wear offset amount</td>
</tr>
<tr>
<td>#10001 to #10000+n</td>
<td>Additional axis shape offset amount</td>
</tr>
<tr>
<td>#2001 to #2000+n</td>
<td>Additional axis wear offset amount</td>
</tr>
<tr>
<td>#12001 to #12000+n</td>
<td>Z shape offset amount</td>
</tr>
<tr>
<td>#12001 to #12000+n</td>
<td>Z wear offset amount</td>
</tr>
<tr>
<td>#14001 to #14000+n</td>
<td>R shape offset amount</td>
</tr>
<tr>
<td>#15001 to #15000+n</td>
<td>R wear offset amount</td>
</tr>
<tr>
<td>#18001 to #18000+n</td>
<td>Nose offset amount</td>
</tr>
</tbody>
</table>

n in table corresponds to the tool No. Maximum n value is number of tool offset sets.
The numbers in the #10000 order and #2000 order are similar function.
The tool offset data is configured as data with a decimal point in the same way as for other variables.
When

The load axis' tool compensation can be used for only either the 3rd axis or 4th axis. Selected by
the parameter

The variable number corresponding to #2000 order’s shape/wear compensation amount can be
switched with the parameter

Programming example

<table>
<thead>
<tr>
<th>Common variables</th>
<th>Tool offset data</th>
</tr>
</thead>
<tbody>
<tr>
<td>#101 = 1000 ;</td>
<td>#101 = 1000.0</td>
</tr>
<tr>
<td>#10001 = #101 ;</td>
<td>#102 = 1000.0</td>
</tr>
<tr>
<td>#102 = #10001 ;</td>
<td>H1 = 1000.000</td>
</tr>
</tbody>
</table>

(Example 1) Calculation and tool offset data setting
(Note 1) In (Example 1) no consideration is given to the delay in the skip sensor signal.
#5001 is the X-axis start point position and #5061 is the X-axis skip coordinates, and
indicated is the position at which the skip signal is input while G31 is being executed.

(Note 2) For multi-part system
There are cases when each part system has tool data and when the part systems share
common tool data. This can be selected with parameter (#1051 MemTol).

Parameter #1051 MemTol
0 : Tool data provided for each part system
1 : Tool data shared by part systems

When the tool data is shared by the part systems, the read amount and substitution
amount for all part systems' tool offset variables will be the same (when the same
variable No. is commanded).
13. Program Support Functions

13.9 User Macro

Workpiece coordinate system offset

By using variable Nos. #5201 to #532n, it is possible to read out the workpiece coordinate system offset data or to substitute values.

(Note) The number of axes which can be controlled differs according to the specifications. The last digit in the variable No. corresponds to the control axis No.

<table>
<thead>
<tr>
<th>Axis No.</th>
<th>Coordinate name</th>
<th>1st axis</th>
<th>2nd axis</th>
<th>3rd axis</th>
<th>4th axis</th>
<th>...</th>
<th>nth axis</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>External workpiece offset</td>
<td>#5201</td>
<td>#5202</td>
<td>#5203</td>
<td>#5204</td>
<td>...</td>
<td>#520n</td>
<td>External workpiece offset specifications are required.</td>
<td></td>
</tr>
<tr>
<td>G54</td>
<td>#5221</td>
<td>#5222</td>
<td>#5223</td>
<td>#5224</td>
<td>...</td>
<td>#522n</td>
<td>Workpiece coordinate system offset specifications are required.</td>
<td></td>
</tr>
<tr>
<td>G55</td>
<td>#5241</td>
<td>#5242</td>
<td>#5243</td>
<td>#5244</td>
<td>...</td>
<td>#524n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G56</td>
<td>#5261</td>
<td>#5262</td>
<td>#5263</td>
<td>#5264</td>
<td>...</td>
<td>#526n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G57</td>
<td>#5281</td>
<td>#5282</td>
<td>#5283</td>
<td>#5284</td>
<td>...</td>
<td>#528n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G58</td>
<td>#5301</td>
<td>#5302</td>
<td>#5303</td>
<td>#5304</td>
<td>...</td>
<td>#530n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G59</td>
<td>#5321</td>
<td>#5322</td>
<td>#5323</td>
<td>#5324</td>
<td>...</td>
<td>#532n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Example 1)

N1 G28 X0 Z0 ;
N2 #5221 = –20. #5223 = –20. ;
N3 G00 G54 X0 Z0 ;
{ N10 #5221 = –10. #5223 = –90. ;
N11 G00 G54 X020 ;
}
M02 ;

G54 workpiece coordinate system defined by N2

(Example 2)

N100 #5221 = #5221 + #5201 ;
#5222 = #5222 + #5202 ;
#5241 = #5241 + #5201 ;
#5242 = #5242 + #5202 ;
#5201 = 0 #5202 = 0 ;

This is an example where the eternal workpiece offset values are added to the workpiece coordinate (G54, G55) system offset values without changing the position of the workpiece coordinate systems.
13. Program Support Functions

13.9 User Macro

NC alarm (#3000)

The NC unit can be forcibly set to the alarm state by using variable No. #3000.

Format

```
#3000 = 70 (CALL #PROGRAMMER #TEL #530);  
70: Alarm No.  
CALL #PROGRAMMER #TEL #530: Alarm message
```

Any alarm No. from 1 to 9999 can be specified.
The alarm message must be less than 31 characters long.
NC alarm 3 signal (program error) is output.
The "P277: MACRO ALM MESG" appears in the <ALARM> column on "DIAG 1." screen while the alarm No. and alarm message "70: (CALL #PROGRAMMER #TEL #530)" is indicated in the <Operator message>.

Example of program (alarm when #1 = 0)

```
{  
IF [#1 NE 0] GOTO 100;  
#3000=70 (CALL #PROGRAMMER #TEL #530);  
N100  
}
```

(Note 1) Alarm No. 0 is not displayed and any number exceeding 9999 cannot be indicated.

(Note 2) The characters following the first alphabet letter in the right member is treated as the alarm message. Therefore, a number cannot be designated as the first character of an alarm message. It is recommended that the alarm messages be enclosed in round parentheses.
13. Program Support Functions

13.9 User Macro

Integrating time (#3001, #3002)

The integrating time can be read when the power is turned ON or automatic start or values can be substituted by using variable Nos. #3001 and #3002.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable No.</th>
<th>Unit</th>
<th>Contents when power is switched on</th>
<th>Initialization of contents</th>
<th>Count conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power ON</td>
<td>3001</td>
<td>1ms</td>
<td>Same as when power is turned OFF</td>
<td>Value substituted for variable</td>
<td>At all times while power is ON</td>
</tr>
<tr>
<td>Automatic start</td>
<td>3002</td>
<td></td>
<td></td>
<td></td>
<td>In-automatic start</td>
</tr>
</tbody>
</table>

The integrating time returns to zero in about 2.44×10^{11} ms (approximately 7.7 years).

![Diagram]

Suppression of single block stop and miscellaneous function finish signal waiting

By substituting the values below in variable No. #3003, it is possible to suppress single block stop in the subsequent blocks or to advance to the next block without waiting for the miscellaneous function (M, S, T, B) finish (FIN) signal.

<table>
<thead>
<tr>
<th>#3003</th>
<th>Single block stop</th>
<th>Miscellaneous function finish signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not suppressed</td>
<td>Wait</td>
</tr>
<tr>
<td>1</td>
<td>Suppressed</td>
<td>Wait</td>
</tr>
<tr>
<td>2</td>
<td>Not suppressed</td>
<td>No wait</td>
</tr>
<tr>
<td>3</td>
<td>Suppressed</td>
<td>No wait</td>
</tr>
</tbody>
</table>

(Note 1) #3003 is cleared to zero by resetting.
13. Program Support Functions

13.9 User Macro

Feed hold, feed rate override, G09 valid/invalid

By substituting the values below in variable No. #3004, it is possible to make the feed hold, feed rate override and G09 functions either valid or invalid in the subsequent blocks.

<table>
<thead>
<tr>
<th>#3004 contents (value)</th>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feed hold</td>
<td>Feed rate override</td>
<td>G09 check</td>
</tr>
<tr>
<td>0</td>
<td>Valid</td>
<td>Valid</td>
<td>Valid</td>
</tr>
<tr>
<td>1</td>
<td>Invalid</td>
<td>Valid</td>
<td>Valid</td>
</tr>
<tr>
<td>2</td>
<td>Valid</td>
<td>Invalid</td>
<td>Valid</td>
</tr>
<tr>
<td>3</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Valid</td>
</tr>
<tr>
<td>4</td>
<td>Valid</td>
<td>Valid</td>
<td>Invalid</td>
</tr>
<tr>
<td>5</td>
<td>Invalid</td>
<td>Valid</td>
<td>Invalid</td>
</tr>
<tr>
<td>6</td>
<td>Valid</td>
<td>Invalid</td>
<td>Invalid</td>
</tr>
<tr>
<td>7</td>
<td>Invalid</td>
<td>Invalid</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

(Note 1) #3004 is cleared to zero by resetting.

(Note 2) The functions are valid when the above bits are 0 and invalid when they are 1.

(Note 3) When the feed hold is set to invalid with #3004, the following will occur when the feed hold switch is pressed.

- During thread cutting, block stop will be carried out at the end of the next block of the block where thread cutting is completed.
- During tapping with tap cycle, block stop will be carried out after the operation of R point return.
- In the case other than above, block stop will be carried out after termination of the currently executing block.

Message display and stop

By using variable No. #3006, the execution is stopped after the previous block has been executed and, if message display data have been commanded, then the corresponding message will be indicated on the operator message area.

Format

#3006=1 (TAKE FIVE) ;

1 Fixed value (Nothing is displayed if a value other than 1 is set.)
TAKE FIVE Message

The message should not be longer than 31 characters and it should be enclosed within round parentheses.

Mirror image

By reading variable No. #3007, it is possible to ascertain the status of mirror image at a particular point in time for each axis.

The axes correspond to the bits of #3007. When the bits are 0, it means that the mirror image function is invalid; when they are 1, it means that it is valid.
#13. Program Support Functions

13.9 User Macro

G command modals

Using variable Nos. #4001 to #4021, it is possible to read the G modal commands which have been issued up to the block immediately before. Similarly, it is possible to read the medals in the block being executed with variable Nos. #4201 to #4221.

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Pre-read block</th>
<th>Execution block</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4001</td>
<td>#4201</td>
<td></td>
<td>Interpolation mode: G00:0, G01:1, G02:2, G03:3, G33:33</td>
</tr>
<tr>
<td>#4002</td>
<td>#4202</td>
<td></td>
<td>Plane selection: G17:17, G18:18, G19:19</td>
</tr>
<tr>
<td>#4003</td>
<td>#4203</td>
<td></td>
<td>Absolute/incremental: G90:90, G91:91</td>
</tr>
<tr>
<td>#4004</td>
<td>#4204</td>
<td></td>
<td>Barrier check: G22:22, G23:23</td>
</tr>
<tr>
<td>#4005</td>
<td>#4205</td>
<td></td>
<td>Feed designation: G94:94, G95:95</td>
</tr>
<tr>
<td>#4006</td>
<td>#4206</td>
<td></td>
<td>Inch/metric: G20:20, G21:21</td>
</tr>
<tr>
<td>#4007</td>
<td>#4207</td>
<td></td>
<td>Tool nose R compensation: G40:40, G41:41, G42:42, G46:46</td>
</tr>
<tr>
<td>#4008</td>
<td>#4208</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4009</td>
<td>#4209</td>
<td></td>
<td>Fixed cycle: G80:80, G70 to 79:70 to 79, G83 to G85:83 to 85, G83.2:83.2, G87 to G89:87 to 89</td>
</tr>
<tr>
<td>#4010</td>
<td>#4210</td>
<td></td>
<td>Return level: G98:98, G99:99</td>
</tr>
<tr>
<td>#4011</td>
<td>#4211</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4012</td>
<td>#4212</td>
<td></td>
<td>Workpiece coordinate system: G54 to G59:54 to 59</td>
</tr>
<tr>
<td>#4013</td>
<td>#4213</td>
<td></td>
<td>Acceleration/deceleration: G61 to G64:61 to 64, G61.1:61.1</td>
</tr>
<tr>
<td>#4015</td>
<td>#4215</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4016</td>
<td>#4216</td>
<td></td>
<td>Constant surface speed control: G96:96, G97:97</td>
</tr>
<tr>
<td>#4017</td>
<td>#4217</td>
<td></td>
<td>Balance cut: G14:14, G15:15</td>
</tr>
<tr>
<td>#4018</td>
<td>#4218</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4019</td>
<td>#4219</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4020</td>
<td>#4220</td>
<td></td>
<td>No variable No.</td>
</tr>
<tr>
<td>#4021</td>
<td>#4221</td>
<td></td>
<td>No variable No.</td>
</tr>
</tbody>
</table>

(Example)

G29 X0 Z0;
G00 X150. Z200;
M02;
O300

#1 = #4001 ; = → Group 01 G modal (pre-read) #1 = 2.0
#2 = #4201 ; = → Group 01 G modal (now being executed) #2 = 0.0
G#1 W#24 ;
M99 ;
%
13. Program Support Functions

13.9 User Macro

Other modals

Using variable Nos. #4101 to #4120, it is possible to read the modal commands assigned up to the block immediately before. Similarly, it is possible to read the medals in the block being executed with variable Nos. #4301 to #4320.

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Pre-read Execution</th>
<th>Modal information</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4101</td>
<td>#4301</td>
<td></td>
</tr>
<tr>
<td>#4102</td>
<td>#4302</td>
<td></td>
</tr>
<tr>
<td>#4103</td>
<td>#4303</td>
<td></td>
</tr>
<tr>
<td>#4104</td>
<td>#4304</td>
<td></td>
</tr>
<tr>
<td>#4105</td>
<td>#4305</td>
<td></td>
</tr>
<tr>
<td>#4106</td>
<td>#4306</td>
<td></td>
</tr>
<tr>
<td>#4107</td>
<td>#4307</td>
<td></td>
</tr>
<tr>
<td>#4108</td>
<td>#4308</td>
<td></td>
</tr>
<tr>
<td>#4109</td>
<td>#4309 Feed rate F</td>
<td></td>
</tr>
<tr>
<td>#4110</td>
<td>#4310</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Pre-read Execution</th>
<th>Modal information</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4111</td>
<td>#4311</td>
<td></td>
</tr>
<tr>
<td>#4112</td>
<td>#4312</td>
<td></td>
</tr>
<tr>
<td>#4113</td>
<td>#4313 Miscellaneous function M</td>
<td></td>
</tr>
<tr>
<td>#4114</td>
<td>#4314 Sequence No. N</td>
<td></td>
</tr>
<tr>
<td>#4115</td>
<td>#4315 Program No. O</td>
<td></td>
</tr>
<tr>
<td>#4116</td>
<td>#4316</td>
<td></td>
</tr>
<tr>
<td>#4117</td>
<td>#4317</td>
<td></td>
</tr>
<tr>
<td>#4118</td>
<td>#4318</td>
<td></td>
</tr>
<tr>
<td>#4119</td>
<td>#4319 Spindle function S</td>
<td></td>
</tr>
<tr>
<td>#4120</td>
<td>#4320 Tool function T</td>
<td></td>
</tr>
</tbody>
</table>

Position information

Using variable Nos. #5001 to #5104, it is possible to read the servo deviation amounts, tool position offset amount, skip coordinates, work coordinates, machine coordinates and end point coordinates in the block immediately before.

<table>
<thead>
<tr>
<th>Axis No.</th>
<th>Position information</th>
<th>End point coordinate of block immediately before</th>
<th>Machine coordinate</th>
<th>Workpiece coordinate</th>
<th>Skip coordinate</th>
<th>Tool position offset amount</th>
<th>Servo deviation amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>#5001</td>
<td>#5021</td>
<td>#5041</td>
<td>#5061</td>
<td>#5081</td>
<td>#5101</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>#5002</td>
<td>#5022</td>
<td>#5042</td>
<td>#5062</td>
<td>#5082</td>
<td>#5102</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>#5003</td>
<td>#5023</td>
<td>#5043</td>
<td>#5063</td>
<td>#5083</td>
<td>#5203</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>#5004</td>
<td>#5024</td>
<td>#5044</td>
<td>#5064</td>
<td>#5084</td>
<td>#5104</td>
</tr>
<tr>
<td>:</td>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>#5000+n</td>
<td>#5020+n</td>
<td>#5040+n</td>
<td>#5060+n</td>
<td>#5080+n</td>
<td>#5100+n</td>
</tr>
</tbody>
</table>

Remarks (reading during movement) Yes No No Yes No Yes

(Note) The number of axes which can be controlled differs according to the specifications. The last digit of the variable No. corresponds to the control axis No.
(1) The positions of the end point coordinates and skip coordinates are positions in the workpiece coordinate system.

(2) The end point coordinates, skip coordinates and servo deviation amounts can be read even during movement. However, it must first be checked that movement has stopped before reading the machine coordinates and workpiece coordinates.

(3) The position where the skip signal is turned ON in the G31 block is indicated for the skip coordinates. The end point position is indicated when the skip signal has not been turned ON. (For further details, refer to the section on tool length measurement.)
(4) The tool nose position where the tool offset and other such factors are not considered is indicated as the end point coordinates. The tool basic position with consideration given to tool offset is indicated for the machine coordinates, workpiece coordinates and skip coordinates.

![Diagram showing tool position and coordinate systems]

For "●", check stop and then proceed to read. For "○", reading is possible during movement.

The position of the skip signal input coordinate value is the position in the workpiece coordinate system. The coordinate value in variable Nos. #5061 to #5064 memorize the moments when the skip input signal during movement was input and so they can be read at any subsequent time.

For further details, reference should be made to the section on the skip function.
13. Program Support Functions

13.9 User Macro

Variable name setting and quotation

Any name (variable name) can be given to common variables #500 to #519. It must be composed of not more than 7 alphanumerics and it must begin with a letter. Do not use "#" in the variable name. An alarm will result at execution when this sign is used.

Format

\[
\text{SETVn} \text{ [NAME1, NAME2, \ldots \ldots]} ;
\]

- \(n \) Head No. of variable which assigns name
- \(\text{NAME1} \) \(n \) name (variable name)
- \(\text{NAME2} \) \(n + 1 \) name (variable name)

Variable names are separated by a comma (,).

Detailed description

1. Once variable names have been set, they will not be cleared even when the power is turned OFF.
2. The variables in the program are quoted as variable names. In cases like this, the variables should be enclosed in square parentheses.

 \textbf{Example 1} \quad \text{G01X [#POINT1] ;}

3. The variable Nos., data and variable names appear on the CRT screen of the setting and display unit.

\textbf{Example 2} \\
Program... \text{SETVN500 [A234567, DIST, TOOL25] ;}

[Common variables]

\[
\begin{array}{ccc}
#500 & -12345.678 & A234567 \\
#501 & 5670.000 & \text{DIST} \\
#502 & -156.500 & \text{TOOL25} \\
#518 & 10.000 & \text{NUMBER} \\
\end{array}
\]

\text{(Note)} \quad \text{Do not use characters (SIN, COS, etc.) predetermined by the NC for use as operation commands at the head of the variable name.}
13. Program Support Functions

13.9 User Macro

External workpiece coordinate system offset

The external workpiece coordinate system offset can be read using variables #2501 and #2601. By substituting a value in these variables, the external workpiece coordinate system offset can be changed.

<table>
<thead>
<tr>
<th>Axis No.</th>
<th>External workpiece coordinate system offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#2501</td>
</tr>
<tr>
<td>2</td>
<td>#2601</td>
</tr>
</tbody>
</table>

Number of workpiece machining times

The number of workpiece machining times can be read using variables #3901 and #3902. By substituting a value in these variables, the number of workpiece machining times can be changed.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable No.</th>
<th>Data setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of workpiece machining times</td>
<td>#3901</td>
<td>0 to 999999</td>
</tr>
<tr>
<td>Maximum workpiece value</td>
<td>#3902</td>
<td></td>
</tr>
</tbody>
</table>

(Note) Always input the number of workpiece machining times as a positive value.
Tool life management

(1) Definition of variable Nos.

(a) Designation of group No.
 #60000
 The tool life management data group No. to be read with #60001 to #64700 is designated by substituting a value in this variable. If a group No. is not designated, the data of the group registered first is read. This is valid until reset.

(b) Tool life management system variable No. (Read)
 #60001 to #64700

![Variable No. or data type]

(c) Details of data classification

<table>
<thead>
<tr>
<th>Data class</th>
<th>M System</th>
<th>L System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>For control</td>
<td>For control</td>
<td>Refer to following types</td>
</tr>
<tr>
<td>05</td>
<td>Group No.</td>
<td>Group No.</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td>10</td>
<td>Tool No.</td>
<td>Tool No.</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td>15</td>
<td>Tool data flag</td>
<td>Method</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td>20</td>
<td>Tool status</td>
<td>Status</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td>25</td>
<td>Life data</td>
<td>Life time/</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of times</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Usage data</td>
<td>Usage time/</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of times</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Tool length</td>
<td>-</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td></td>
<td>compensation data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Tool radius</td>
<td>-</td>
<td>Refer to registration No.</td>
</tr>
<tr>
<td></td>
<td>compensation data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Auxiliary data</td>
<td>-</td>
<td>Refer to registration No.</td>
</tr>
</tbody>
</table>

The group No., L System method, and life data are common for the group.

(d) Registration No.

<table>
<thead>
<tr>
<th>M System</th>
<th>1 to 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>L System</td>
<td>1 to 16</td>
</tr>
</tbody>
</table>

(e) Data type

<table>
<thead>
<tr>
<th>Type</th>
<th>M System</th>
<th>L System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of registered tools</td>
<td>Number of registered tools</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Life current value</td>
<td>Life current value</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tool selection No.</td>
<td>Tool selection No.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Number of remaining registered tools</td>
<td>Number of remaining registered tools</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Signal being executed</td>
<td>Signal being executed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cutting time cumulative value (minute)</td>
<td>Cutting time cumulative value (minute)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Life end signal</td>
<td>Life end signal</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Life prediction signal</td>
<td>Life prediction signal</td>
<td></td>
</tr>
<tr>
<td>Variable No.</td>
<td>Item</td>
<td>Type</td>
<td>Details</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>60001</td>
<td>Number of registered tools</td>
<td>System common</td>
<td>Total number of tools registered in each group.</td>
</tr>
<tr>
<td>60002</td>
<td>Life current value</td>
<td>For each group (Designate group No. #60000)</td>
<td>Usage time/Number of uses of tool being used. Usage data of tool being used (If tool uses several compensation Nos., the total of the usage data for each compensation No.).</td>
</tr>
<tr>
<td>60003</td>
<td>Tool selection No.</td>
<td>Registration No. of tool being used. Designated group's selected tool registration No. (If tool is not selected, the first tool of ST:1, or if ST:1 is not used, the first tool of ST:0. When all tools have reached their lives, the last tool).</td>
<td>0 to 16</td>
</tr>
<tr>
<td>60004</td>
<td>Remaining number of registered tools</td>
<td></td>
<td>Total number of “usable” tools in the group. Number of tools registered in designated group for which ST is 0: Not used.</td>
</tr>
<tr>
<td>60005</td>
<td>Signal being executed</td>
<td></td>
<td>"1" when this group is used in program being executed. "1" when tool in designated group is selected.</td>
</tr>
<tr>
<td>60006</td>
<td>Cutting time cumulative value (minute)</td>
<td></td>
<td>Indicates the time that this group is used in the program being executed.</td>
</tr>
<tr>
<td>60007</td>
<td>Life end signal</td>
<td></td>
<td>"1" when lives of all tools in this group have been reached. "1" when all tools registered in designated group reach lives.</td>
</tr>
<tr>
<td>60008</td>
<td>Life prediction signal</td>
<td></td>
<td>"1" when new tool is selected with next command in this group. "1" when there is a tool for which ST is 0: Not used in the tools registered the designated group, and there are no tools for which ST is 1: Tools in use.</td>
</tr>
<tr>
<td>Variable No.</td>
<td>Item Type</td>
<td>Details</td>
<td>Data range</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>60500</td>
<td>Group No.</td>
<td>Each group/registration No.</td>
<td>1 to 9999</td>
</tr>
<tr>
<td>61000 +***</td>
<td>Tool No.</td>
<td>Tool's No. and compensation No.</td>
<td>0 to 9999</td>
</tr>
<tr>
<td>61500 +***</td>
<td>Method</td>
<td>Whether to management this group's life as time or number of uses. 0: Time, 1: Number of uses</td>
<td>0/1</td>
</tr>
<tr>
<td>62000 +***</td>
<td>Status</td>
<td>Tool usage state 0: Not used tool 1: Tool being used 2: Normal life tool 3: Tool skip tool</td>
<td>0 to 3</td>
</tr>
<tr>
<td>62500 +***</td>
<td>Life time/Number of uses</td>
<td>This group's tool life value</td>
<td>0 to 9999999 min 0 to 9999999 times</td>
</tr>
<tr>
<td>63000 +***</td>
<td>Usage time/Number of uses</td>
<td></td>
<td>0 to 9999999 min 0 to 9999999 times</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of program

(1) Normal commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#101 = #60001 ;</td>
<td>Reads the number of registered tools.</td>
</tr>
<tr>
<td>#102 = #60002 ;</td>
<td>Reads the life current value.</td>
</tr>
<tr>
<td>#103 = #60003 ;</td>
<td>Reads the tool selection No.</td>
</tr>
<tr>
<td>#60000 = 10 ;</td>
<td>Designates the group No. of the life data to be read.</td>
</tr>
<tr>
<td>#104 = #60004 ;</td>
<td>Reads the remaining number of registered tools in group 10.</td>
</tr>
<tr>
<td>#105 = #60005 ;</td>
<td>Reads the signal being executed in group 10.</td>
</tr>
<tr>
<td>#111 = #61001 ;</td>
<td>Reads the group 10, #1 tool No.</td>
</tr>
<tr>
<td>#112 = #62001 ;</td>
<td>Reads the group 10, #1 status.</td>
</tr>
<tr>
<td>#113 = #61002 ;</td>
<td>Reads the group 10, #2 tool No.</td>
</tr>
</tbody>
</table>

Designated program No. is valid until reset.

(2) When group No. is not designated

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#104 = #60004 ;</td>
<td>Reads the remaining number of registered tools in the group registered first.</td>
</tr>
<tr>
<td>#111 = #61001 ;</td>
<td>Reads the #1 tool No. in the group registered first.</td>
</tr>
</tbody>
</table>

(3) When non-registered group No. is designated (Group 9999 does not exist.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#60000 = 9999 ;</td>
<td>Designates the group No.</td>
</tr>
<tr>
<td>#104 = #60004 ;</td>
<td>#104 = -1.</td>
</tr>
</tbody>
</table>

(4) When registration No. not used is designated (Group 10 has 15 tools)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#60000 = 10 ;</td>
<td>Designates the group No.</td>
</tr>
<tr>
<td>#111 = #61016 ;</td>
<td>#101 = -1.</td>
</tr>
</tbody>
</table>

(5) When registration No. out of the specifications is designated

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#60000 = 10 ;</td>
<td>Designates the group No.</td>
</tr>
<tr>
<td>#111 = #61017 ;</td>
<td>Program error (P241)</td>
</tr>
</tbody>
</table>

(6) When tool life management data is registered with G10 command after group No. is designated

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#60000 = 10 ;</td>
<td>Designates the group No.</td>
</tr>
<tr>
<td>G10 L3 ;</td>
<td>Starts the life management data registration.</td>
</tr>
<tr>
<td>P10 LLn NNn ;</td>
<td>10 is the group No., Ln is the life per tool, Nn is the method.</td>
</tr>
<tr>
<td>TTn ;</td>
<td>Tn is the tool No.</td>
</tr>
<tr>
<td>G11 ;</td>
<td>Registers the group 10 data with the G10 command.</td>
</tr>
<tr>
<td>#111 = #61001 ;</td>
<td>Reads the group 10, #1 tool No.</td>
</tr>
<tr>
<td>G10 L3 ;</td>
<td>Starts the life management data registration.</td>
</tr>
<tr>
<td>P1 LLn NNn ;</td>
<td>1 is the group No., Ln is the life per tool, Nn is the method.</td>
</tr>
<tr>
<td>TTn ;</td>
<td>Tn is the tool No.</td>
</tr>
<tr>
<td>G11 ;</td>
<td>Registers the life data with the G10 command. (The registered data is deleted.)</td>
</tr>
<tr>
<td>#111 = 61001 ;</td>
<td>Group 10 does not exist. #111 = -1.</td>
</tr>
</tbody>
</table>

The group 10 life data is registered.

The life data other than group 10 is registered.
Precautions

(1) If the tool life management system variable is commanded without designating a group No.,
the data of the group registered at the head of the registered data will be read.

(2) If a non-registered group No. is designated and the tool life management system variable is
commanded, "-1" will be read as the data.

(3) If an unused registration No. tool life management system variable is commanded, "-1" will be
read as the data.

(4) Once commanded, the group No. is valid until NC reset.

(5) When the tool life control I specifications are provided with the L System, the tool life
management system variable specifications are not provided. Program error (P241) will occur
if commanded.
13. Program Support Functions

13.9 User Macro

Reading the parameters

Parameter data can be read in with the system variables.

(Note) These can be used only with some models.

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>#100000</td>
<td>Parameter No. designation</td>
</tr>
<tr>
<td>#100001</td>
<td>Part system No. designation</td>
</tr>
<tr>
<td>#100002</td>
<td>Axis No./spindle No. designation</td>
</tr>
<tr>
<td>#100010</td>
<td>Parameter value read</td>
</tr>
</tbody>
</table>

The parameter values are read in with the following four blocks using these four system variables.

#100000 = 1001 ; Designates the parameter No.
#100001 = 1 ; Designates the part system No.
#100002 = 1 ; Designates the axis No./spindle No.
#100 = #100010 ; Reads the parameter value.

(1) Parameter No. designation (#100000)

The parameter to be read in is designated by substituting the parameter No. in this system variable.
If the parameters are read without designating this No., the parameters will be read in the same manner as if the minimum parameter No. (#1) is designated. Once designated, the setting is held until the parameter No. is designated again or until it is reset.
A program error (P39) will occur if a parameter No. that does not exist is set.

(2) Part system No. designation (#100001)

 (a) System variable for part system No. designation
 The part system No. of the parameter to be read in is designated by substituting an index value in this system variable. This designation will be ignored when reading in parameters that are not in a specific part system.
 If the parameters are read without designating this number, the parameters will be read in the same manner as if the index value 0 (system in running program) is designated. Once designated, the setting is held until the part system No. is designated again or until it is reset.
 A program error (P39) will occur if a part system No. that does not exist is set.

 (b) Index values

<table>
<thead>
<tr>
<th>Index value</th>
<th>Parameters per part system</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Running part system</td>
</tr>
<tr>
<td>1</td>
<td>1st part system</td>
</tr>
<tr>
<td>2</td>
<td>2nd part system</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PLC axis</td>
</tr>
</tbody>
</table>
(3) **Axis/spindle No. designation (#100002)**

(a) System variable for axis/spindle No. designation

The axis No./spindle No. of the parameter to be read in is designated by substituting an index value in this system variable. This designation will be ignored when reading in parameters that are not for a specific axis or spindle. The axis parameter index value is the value set in the part system designated with #100001. Thus, when reading parameters that are not in the designated part system, the part system No. must be designated again. The spindle parameter's index value is not affected by the part system designation. If the parameters are read without designating this No., the parameters will be read in the same manner as if the index value 1 (1st axis/1st spindle in designated part system) is designated. Once designated, the setting is held until the index value is designated again or until it is reset. A program error (P39) will occur if an axis/spindle No. that does not exist is set.

(b) Index values

<table>
<thead>
<tr>
<th>Index values</th>
<th>Axis parameter</th>
<th>Spindle parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st axis</td>
<td>1st spindle</td>
</tr>
<tr>
<td>2</td>
<td>2nd axis</td>
<td>2nd spindle</td>
</tr>
<tr>
<td>3</td>
<td>3rd axis</td>
<td>3rd spindle</td>
</tr>
<tr>
<td>4</td>
<td>4th axis</td>
<td>4th spindle</td>
</tr>
<tr>
<td>5</td>
<td>5th axis</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>6th axis</td>
<td>-</td>
</tr>
</tbody>
</table>

(4) **Parameter read (#100010)**

The designated parameter data is read with this system variable. The following data is read according to the parameter type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Read data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>The values displayed on the Parameter screen are output.</td>
</tr>
<tr>
<td>Text</td>
<td>ASCII codes are converted into decimal values.</td>
</tr>
</tbody>
</table>
Example of programs for reading parameters

1. To read the parameter per part system [#1002 axisno (Number of axes)]

<table>
<thead>
<tr>
<th>Condition</th>
<th>1st part system</th>
<th>2nd part system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1st axis></td>
<td><2nd axis></td>
</tr>
<tr>
<td>#100000</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>#100001</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>#101</td>
<td>#100010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reads the number of axes in 1st part system.</td>
</tr>
<tr>
<td>#100000</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>(can be omitted since parameter # is the same)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100001</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>#102</td>
<td>#100010</td>
<td></td>
</tr>
<tr>
<td>#100001</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>#100001</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#110</td>
<td>#100010</td>
<td></td>
</tr>
</tbody>
</table>

2. To read the axis parameter [#2037 G53ofs (#1 reference position)]

<table>
<thead>
<tr>
<th>Conditions</th>
<th>1st part system</th>
<th>2nd part system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1st axis></td>
<td><2nd axis></td>
</tr>
<tr>
<td>#2037 G53ofs</td>
<td>1000.000</td>
<td>200.000</td>
</tr>
<tr>
<td></td>
<td>300.000</td>
<td>400.000</td>
</tr>
</tbody>
</table>

1st part system program

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#100000</td>
<td>Designates [1st axis].</td>
</tr>
<tr>
<td>#100000</td>
<td>#2037</td>
</tr>
<tr>
<td>#101</td>
<td>#100010</td>
</tr>
<tr>
<td>#100002</td>
<td>1</td>
</tr>
<tr>
<td>#100002</td>
<td>#2</td>
</tr>
<tr>
<td>#102</td>
<td>#100010</td>
</tr>
<tr>
<td>#100001</td>
<td>2</td>
</tr>
</tbody>
</table>

2nd part system program

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#100000</td>
<td>Designates [1st axis].</td>
</tr>
<tr>
<td>#100000</td>
<td>#2037</td>
</tr>
<tr>
<td>#101</td>
<td>#100010</td>
</tr>
<tr>
<td>#100002</td>
<td>1</td>
</tr>
<tr>
<td>#100002</td>
<td>#2</td>
</tr>
<tr>
<td>#102</td>
<td>#100010</td>
</tr>
<tr>
<td>#100001</td>
<td>1</td>
</tr>
<tr>
<td>#201</td>
<td>#100010</td>
</tr>
</tbody>
</table>

Program error (P39) occurs.

PLC axis:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#110</td>
<td>#100010</td>
</tr>
<tr>
<td>#110</td>
<td>#100010</td>
</tr>
</tbody>
</table>

Reads the number of PLC axes.
13. Program Support Functions

13.9 User Macro

(3) To read each parameter for each part system, axis and spindle

```
#100002 = 1 ; .........................Designates [1st spindle].
#100000 = 3001 ; .....................Designates [#3001].
#101 = #100010 ; .....................Reads the [#3001 slimt1 (Limit rotation speed gears 00)]
for 1st spindle.
#100000 = 3002 ; .....................Designates [#3002].
#102 = #100010 ; .....................Reads the [#3002 slimt2 (Limit rotation speed gears 01)]
for 1st spindle.
#100002 = 2 ; .........................Designates [2nd spindle].
#100000 = 3001 ; .....................Designates [#3001].
#201 = #100010 ; .....................Reads the [#3001 slimt1 (Limit rotation speed gears 00)]
for 2nd spindle.
#100000 = 3002 ; .....................Designates [#3002].
#202 = #100010 ; .....................Reads the [#3002 slimt2 (Limit rotation speed gears 01)]
for 2nd spindle
```

(4) To read text type parameter [#1169 system name (Part system name)]

<table>
<thead>
<tr>
<th>Conditions</th>
<th>[1st part system]</th>
<th>[2nd part system]</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1169 system name</td>
<td>SYS1</td>
<td>SYS2</td>
</tr>
<tr>
<td>#100000 = 1169 ;Designates #1169.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100001 = 1 ;Designates 1st part system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#101 = #100010 ;This becomes #101 = 1398362929 (0x53595331).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of parameter read macro program

```
<Macro specifications>
Q341 A_.. Q_.. ;
A_ .. Storage common variable Designates the common variable No. for storing the
data read in.
Q_ .. Parameter # designation For an axis/spindle parameter, designates the
axis/spindle No. with one digit after the decimal point.

<Macro contents>
#100000 = FIX [#17] ;  ......... Designates parameter No.
#100002 = FIX [#17*10] MOD 10 ; ......... Designates axis/spindle No.
#1[1] = #100010 ;  ............... Reads parameter data.
M99 ;
```

Precautions for reading parameters

(1) The number of part systems, axes and spindles is the maximum number in the specifications
determined by the model.

(2) The inch/metric changeover function for the setting and display is valid even for the data read
in.
13. Program Support Functions

13.9 User Macro

Reading PLC data

PLC data can be read in with the system variables.

(Note 1) These can be used only with some models.

(Note 2) The read devices are limited.

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>#100100</td>
<td>Device type designation</td>
</tr>
<tr>
<td>#100101</td>
<td>Device No. designation</td>
</tr>
<tr>
<td>#100102</td>
<td>Number of read bytes designation</td>
</tr>
<tr>
<td>#100103</td>
<td>Read bit designation</td>
</tr>
<tr>
<td>#100110</td>
<td>PLC data read</td>
</tr>
</tbody>
</table>

The PLC data is read in with the following five blocks using these five system variables.

#100100 = 1 ;Designates the device type.
#100101 = 0 ;Designates the device No.
#100102 = 1 ;Designates the number of bytes.
#100103 = 2 ;Designates the bit. (Valid only when reading word device bits.)
#100 = #100110 ;Reads in the PLC data.

(1) Device designation (#100100)

(a) System variable for device designation

The type of device to be read in can be designated by substituting the device designation value in this system variable.

If the data is read without designating this number, the data will be read in the same manner as if the minimum device designation value (0: M device) is designated. Once designated, the setting is held until the device is designated again or until it is reset. A program error (P39) will occur if a device that does not exist is set.

(b) Device designation values

<table>
<thead>
<tr>
<th>Device designation value</th>
<th>Device Unit</th>
<th>Device No.</th>
<th>Device designation value</th>
<th>Device Unit</th>
<th>Device No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M Bit</td>
<td>M0 to M10239</td>
<td>10</td>
<td>F Bit</td>
<td>F0 to F1023</td>
</tr>
<tr>
<td>1</td>
<td>D Word</td>
<td>D0 to D2047</td>
<td>13</td>
<td>L Bit</td>
<td>L0 to L511</td>
</tr>
<tr>
<td>2</td>
<td>C Bit</td>
<td>C0 to C255</td>
<td>18</td>
<td>V Bit</td>
<td>V0 to V255</td>
</tr>
<tr>
<td>4</td>
<td>X * Bit</td>
<td>X0 to X1FFF</td>
<td>19</td>
<td>ST Bit</td>
<td>ST0 to ST63</td>
</tr>
<tr>
<td>5</td>
<td>Y * Bit</td>
<td>Y0 to Y1FFF</td>
<td>20</td>
<td>SD Word</td>
<td>SD0 to SD127</td>
</tr>
<tr>
<td>6</td>
<td>R Word</td>
<td>R0 to R13311</td>
<td>21</td>
<td>SB* Bit</td>
<td>SB0 to SB1FF</td>
</tr>
<tr>
<td>7</td>
<td>T Bit</td>
<td>T0 to T703</td>
<td>22</td>
<td>SW* Word</td>
<td>SW0 to SW1FF</td>
</tr>
<tr>
<td>9</td>
<td>SM Bit</td>
<td>SM0 to SM127</td>
<td>23</td>
<td>B* Bit</td>
<td>B0 to B1FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>W* Word</td>
<td>W0 to W1FF</td>
</tr>
</tbody>
</table>

The unit is the amount of data per device No. "Word" has 16 bits, and "Bit" has one bit. "*" is a device that expresses the device No. as a hexadecimal.
13. Program Support Functions

13.9 User Macro

(2) Device No. designation (#100101)

The device to be read in is designated by substituting the device No. in this system variable. Convert a device expressed as a hexadecimal into a decimal when designating. If the data is read without designating this No., the data will be read in the same manner as if the minimum device No. (0) is designated. Once designated, the setting is held until the device No. is designated again or until it is reset. A program error (P39) will occur if a device No. that does not exist is set.

(3) Number of bytes designation (#100102)

(a) System variable for number of bytes designation

The reading size is designated by substituting the number of bytes designation value in this system variable. If the data is read without designating this number, the data will be read in the same manner as if the minimum number of bytes designation value (0: bit designation) is designated. Once designated, the setting is held until the number of bytes is designated again or until it is reset. A program error (P39) will occur if a number of bytes that does not exist in the specifications is set.

(b) Number of bytes designation value

<table>
<thead>
<tr>
<th>Number of bytes designation value</th>
<th>Size</th>
<th>Sign</th>
<th>Range</th>
<th>Word device</th>
<th>Bit device</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 bit</td>
<td>-</td>
<td>0 to 1</td>
<td>The number of bits designated is read in.</td>
<td>The bits for the designated device No. are read in.</td>
</tr>
<tr>
<td>1</td>
<td>1 byte</td>
<td>No</td>
<td>0 to 255</td>
<td>The low-order byte is read in.</td>
<td>8 bits are read in from the designated device No.</td>
</tr>
<tr>
<td>101</td>
<td>Yes</td>
<td>-128 to 127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 bytes</td>
<td>No</td>
<td>0 to 65535</td>
<td>Two bytes are read in.</td>
<td>16 bits are read in from the designated device No.</td>
</tr>
<tr>
<td>102</td>
<td>Yes</td>
<td>-32768 to 32767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 bytes</td>
<td>No</td>
<td>0 to 4294967295</td>
<td>The designated device (L) and next device (H) are read in.</td>
<td>32 bits are read in from the designated device No.</td>
</tr>
<tr>
<td>104</td>
<td>Yes</td>
<td>-2147483648 to 2147483647</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 to 4 are designated without a sign, and 101 to 104 are designated with a sign.
13. Program Support Functions

13.9 User Macro

(4) Bit designation (#100103)

(a) System variable for bit designation
The bit to be read in is designated by substituting the bit designation value in this system variable.
This designation is valid only when reading the bits for a 16-bit device, and is invalid in all other cases.
If the data is read without designating this number, the data will be read in the same manner as if the minimum bit designation value (0: bit 0) is designated. Once designated, the setting is held until the bit is designated again or until it is reset.
A program error (P39) will occur if a bit that does not exist is set.

(b) Bit designation values

<table>
<thead>
<tr>
<th>Bit designation value</th>
<th>Read in bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bit 0</td>
</tr>
<tr>
<td>1</td>
<td>Bit 1</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>15</td>
<td>Bit 15</td>
</tr>
</tbody>
</table>

(5) PLC data read (#100110)

The data for the designated device is read in with this system variable.
Refer to the table for number of bytes designation for details on the range of data read in.
Examples of programs for reading PLC data

(1) To read a bit device

#100100 = 0 ; Designates [M device].
#100101 = 0 ; Designates [Device No. 0].
#100102 = 0 ; Designates [Bit].
#100 = #100110 ; Reads M0 (one bit).
#100102 = 1 ; Designates [1 byte].
#101 = #100110 ; Reads M0 to M7 (eight bits).
 (If M7 to M0 is 0001 0010, this will be #102 = 18 (0x12).)
#100102 = 102 ; Designates [Signed two bytes].
#102 = #100110 ; Reads M0 to M15 (16 bits).
 (If M15 to M0 is 1111 1110 1101 1100, this will be
 #102 = –292 (0xFEDC).)
#100102 = 4 ; Designates [4 bytes].
#104 = #100110 ; Reads M0 to M31 (32 bits).
 (If M31 to M0 is 0001 0010 0011 0100 0101 0110 0111 1000,
 this will be #104 = 305419896 (0x12345678).)

(2) To read a word device

#100100 = 1 ; Designates [D device].
#100101 = 0 ; Designates [Device No. 0].
#100102 = 0 ; Designates [Bit].
#100103 = 1 ; Designates [Bit 1].
#100 = #100110 ; Reads the D0 bit 1.
 (If D0 = 0x0102, this will be #101 =1.)
#100102 = 1 ; Designates [1 byte].
#101 = #100110 ; Reads the low-order byte of D0.
 (If D0 = 0x0102, this will be #101 =2.)
#100102 = 2 ; Designates [2 bytes].
#102 = #100110 ; Reads D0. (If D0 = 0x0102, this will be #102 =258.)
#100102 = 104 ; Designates [Signed four bytes].
#104 = #100110 ; Reads D0 and D1.
 (If D0 = 0xFFF and D1 = 0xFFFF, this will be #104 =–2.)
13. Program Support Functions

13.9 User Macro

Examples of using macro program for reading PLC data

<Macro specifications>

G340 F_. A_. Q_. H_. ;

F_.Number of bytes designation
F0......Designates bit.
F1......Designates one byte.
F2......Designates two bytes.

A_.Device designation
A0Designates M.
A1Designates D.
A2Designates C.
A3Designates X.
A4Designates Y.
A5Designates R.
A6Designates T.
A7Designates ST.

Q_.............Device No. designation
For a bit, designates the bit with two digits after the decimal point.
For a byte, a decimal value is not designated.

H_Storage common variable
Designates the common variable No. for storing the read data.

<Macro contents>

#100100 = #1 ;	Designates device.
#100101 = FIX [#17] ;	Designates device No.
#100102 = #9 ;	Designates number of bytes.
#100103 = FIX [#17+100] MOD 100 ;	Designates bit.
#[#11] = #100110 ;	Reads PLC data.
M99 ;		

Precautions for reading PLC data

(1) As the PLC data is read asynchronously from the ladder execution, the data is not necessarily from the running program. Take care when reading devices that change.

(2) If reading of a device that does not exist is attempted by designating the device No. and number of bytes, the 0 value will be read in only for the sections that do not exist.
Time reading variables

The following operations can be carried out using the system variable extension for the user macro time.

(1) By adding time information system variable #3011 and #3012, the current date (#3011) and current time (#3012) can be read and written.

(2) By adding parameter #1273/bit1, the unit (millisecond unit/hour unit) of the cumulative time during system variable #3002 automatic start can be changed.

<table>
<thead>
<tr>
<th>Variable No.</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3001</td>
<td>The cumulative time during power ON can be read and the value can be substituted. The unit is a millisecond unit.</td>
</tr>
<tr>
<td>#3002</td>
<td>The cumulative time during automatic start can be read and the value can be substituted. The unit can be changed between millisecond and hour with parameter #1273/bit1.</td>
</tr>
<tr>
<td>#3011</td>
<td>The current date can be read and written. YYYY/MM/DD is read as a YYYYMMDD value. When a YYYYMMDD value is written in, it will be set as YY/MM/DD (the last two digits of the year are displayed). Command range for year/month/date setting Year (YYYY) : 2000 to 2099 Month (MM) : 1 to 12 Date (DD) : 1 to maximum number of days in month</td>
</tr>
<tr>
<td>#3012</td>
<td>The current time can be read and written. HH/MM/SS is read as a HHMMSS value. When an HHMMSS value is written in, it will be set as HH/MM/DD. Command range for hour/minute/second setting Hour (HH) : 0 to 23 (24-hour system) Minute (MM) : 0 to 59 Second (SS) : 0 to 59</td>
</tr>
</tbody>
</table>

(3) The cumulative time returns to 0 at approx. 2.44×10^{11} milliseconds (approx. 7.7 years).

(4) If a negative value or a value exceeding 244335917226 milliseconds (67871.08811851 hours for #3002 time designation) is set for the cumulative time, a program error (P35) will occur.

(5) If a value exceeding the command range is set for the date or time, a program error (P35) will occur.

(6) Always set the month/date/hour/minute/second as a two-digit value when setting the date and time.

If the value only has one digit, always add 0. (February 14, 2001 ⇒ #3001= 20010214 ;, etc.)
Examples of using time reading variable

Example 1 To read the current date (February 14, 2001) in common variable #100

\[#100 = #3011 ; \quad (20010214 \text{ is inserted in } #100) \]

Example 2 To write current time (18 hours, 13 minutes, 6 seconds) into system variable #3012

\[#3012 = 181306 ; \quad (\text{The command value cumulative time } #2: \text{ time is set to } 18:13:06.) \]

Example 3 By setting the following type of program, the machining start/end time (year/month/date/hour/minute/second) can be viewed.

\[
\begin{align*}
#100=௃ ; & \Rightarrow & \text{Machining start year/month/date} \\
#101=௄ ; & \Rightarrow & \text{Machining start hour/minute/second} \\
G28 & X0 Y0 Z0 ; \\
G92 ; \\
G0 & X50. ; \\
. \\
. \\
. \\
#102=௃ ; & \Rightarrow & \text{Machining end year/month/date} \\
#103=௄ ; & \Rightarrow & \text{Machining end hour/minute/second} \\
M30 ; \\
\end{align*}
\]

Limits and precautions for using time reading variable

1. #3011 reads the date as an eight-digit value, so the difference of the two dates read in will not be the difference of days.

2. #3012 reads the time as a six-digit value, so the difference of the two times read in will not be the difference of hours.
13.9.6 Operation Commands

A variety of operations can be performed between variables.

Command format

\[\#i = <\text{formula}>; \]

<Formula> is a combination of constants, variables, functions and operators. Constants can be used instead of \#j and \#k below.

<table>
<thead>
<tr>
<th>(1) Definition and substitution of variables</th>
<th>#i = #j</th>
<th>Definition, substitution</th>
</tr>
</thead>
</table>

(2) Addition operation	\#i = \#j + \#k	Addition
	\#i = \#j - \#k	Subtraction
	\#i = \#j OR \#k	Logical sum (at every bit of 32 bits)
	\#i = \#j XOR \#k	Exclusive OR (at every bit of 32 bits)

(3) Multiplication operation	\#i = \#j \times \#k	Multiplication
	\#i = \#j / \#k	Division
	\#i = \#j \mod \#k	Remainder
	\#i = \#j \& \#k	Logical product (at every bit of 32 bits)

(4) Functions	\#i = \text{SIN} [\#k]	Sine
	\#i = \text{COS} [\#k]	Cosine
	\#i = \text{TAN} [\#k]	Tangent \(\theta \) uses \(\sin \theta / \cos \theta \).
	\#i = \text{ASIN} [\#k]	Arcsine
	\#i = \text{ATAN} [\#k]	Arctangent (ATAN or ATN may be used)
	\#i = \text{ACOS} [\#k]	Arccosine
	\#i = \text{SQRT} [\#k]	Square root (SQRT or SQR may be used)
	\#i = \text{ABS} [\#k]	Absolute value
	\#i = \text{BIN} [\#k]	Conversion from BCD to BIN
	\#i = \text{BCD} [\#k]	Conversion from BIN to BCD
	\#i = \text{ROUND} [\#k]	Rounding off (ROUND or RND may be used)
	\#i = \text{FIX} [\#k]	Discard fractions less than 1
	\#i = \text{FUP} [\#k]	Add for fractions less than 1
	\#i = \text{LN} [\#k]	Natural logarithm
	\#i = \text{EXP} [\#k]	Exponent with \(e = 2.718... \) as bottom

(Note 1) A value without a decimal point is basically treated as a value with a decimal point at the end \((1 = 1.000)\).

(Note 2) Offset amounts from \#10001 and workpiece coordinate system offset values from \#5201 are handled as data with a decimal point. Consequently, data with a decimal point will be produced even when data without a decimal point have been defined in the variable Nos.

(Example)

\[
\begin{align*}
\#101 & = 1000; \\
\#10001 & = \#101; \\
\#102 & = \#10001
\end{align*}
\]

(Note 3) The *<formula>* after a function must be enclosed in the square parentheses.
13. Program Support Functions

13.9 User Macro

Sequence of operations

(1) The sequence of the operations (1) to (3) is, respectively, the functions followed by the multiplication operation followed in turn by the addition operation.

\[\#101 = \#111 + \#112 \times \text{SIN} \[\#113]\]

(1) Function
(2) Multiplication operation
(3) Addition operation

(2) The part to be given priority in the operation sequence should be enclosed in brackets. Up to 5 pairs of such brackets including those for the functions may be used.

\[\#101 = \text{SQRT} \left[\left[\left(\#111 - \#112 \right) \times \text{SIN} \left(\#113 \right) + \#114 \right] \times \#115 \right] ; \]

First pair of brackets
Second pair of brackets
Third pair of brackets
Examples of operation commands

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Command/Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main program and argument designation</td>
<td>G65 P100 A10 B20. ; #101=100.000 #102=200.000 ; #1=10.000 #2=20.000 #101=100.000 #102=200.000 ;</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Definition and substitution (=)</td>
<td>#1=1000 #2=1000. #3=#101 #4=#102 #5=#10001 (#10001=-10.) #1=10000000 #2=10000000 #3=10000000 #4=20000000 #5=-10000000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Addition and subtraction (+, -)</td>
<td>#11=#1+1000 #12=#2-50. #13=#101+#1 #14=#10001-3. (#10001 = -10.) #15=#10001+102</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Multiplication and division (*, /)</td>
<td>#21=100*100 #22=100.*100 #23=100+100 #24=100.100. #25=100/100 #26=100./100 #27=100/100. #28=100./100. #29=#10001#101 (/ #10001 = -10.) #30=#10001/#102</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remainder (MOD)</td>
<td>#19=48 #20=9 #31=#19 MOD #20 #19/#20 = 48/9 = 5 with 3 over #31 = 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Logical sum (OR)</td>
<td>#3=100 #4=#3 OR 14 #3 = 01100100 (binary) 14 = 00001110 (binary) #4 = 01101110 = 110</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exclusive OR (XOR)</td>
<td>#3=100 #4=#3 XOR 14 #3 = 01100100 (binary) 14 = 00001110 (binary) #4 = 01101010 = 106</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Logical product (AND)</td>
<td>#9=100 #10=#9 AND 15 #9 = 01100100 (binary) 15 = 00001111 (binary) #10 = 000000100 = 4</td>
<td></td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9)</td>
<td>Sin (SIN)</td>
<td>#501 = SIN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#502 = SIN [60.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#503 = 1000*SIN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#504 = 1000*SIN [60.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#505 = 1000.00*SIN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#506 = 1000.00*SIN [60.]</td>
</tr>
<tr>
<td></td>
<td>(Note) SIN [60] is equivalent to SIN [60.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#501 = 0.860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#502 = 0.860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#503 = 866.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#504 = 866.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#505 = 866.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#506 = 866.025</td>
</tr>
<tr>
<td>(10)</td>
<td>Cosine (COS)</td>
<td>#541 = COS [45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#542 = COS [45.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#543 = 1000*COS [45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#544 = 1000*COS [45.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#545 = 1000.00*COS [45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#546 = 1000.00*COS [45.]</td>
</tr>
<tr>
<td></td>
<td>(Note) COS [45] is equivalent to COS [45.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#541 = 0.707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#542 = 0.707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#543 = 707.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#544 = 707.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#545 = 707.107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#546 = 707.107</td>
</tr>
<tr>
<td>(11)</td>
<td>Tangent (TAN)</td>
<td>#551 = TAN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#552 = TAN [60.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#553 = 1000*TAN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#554 = 1000*TAN [60.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#555 = 1000.00*TAN [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#556 = 1000.00*TAN [60.]</td>
</tr>
<tr>
<td></td>
<td>(Note) TAN [60] is equivalent to TAN [60.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#551 = 1.732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#552 = 1.732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#553 = 1732.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#554 = 1732.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#555 = 1732.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#556 = 1732.051</td>
</tr>
<tr>
<td>(12)</td>
<td>Arcsine ASIN</td>
<td>#531 = ASIN [100.500/201.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#532 = ASIN [100.500/201]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#533 = ASIN [0.500]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#534 = ASIN [-0.500]</td>
</tr>
<tr>
<td></td>
<td>(Note)</td>
<td>#531 = 30.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#532 = 30.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#533 = 30.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#534 = -30.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>Arctangent (ATAN or ATN)</td>
<td>#561 = ATAN [173205/100000]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#562 = ATAN [173205/100000.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#563 = ATAN [173.205/100]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#564 = ATAN [173.205/100.]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#565 = ATAN [1.73205]</td>
</tr>
<tr>
<td></td>
<td>(Note)</td>
<td>#561 = 60.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#562 = 60.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#563 = 60.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#564 = 60.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#565 = 60.000</td>
</tr>
<tr>
<td>(14)</td>
<td>Arccosine (ACOS)</td>
<td>#521 = ACOS [100./141.421]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#522 = ACOS [100./141.421]</td>
</tr>
<tr>
<td></td>
<td>(Note)</td>
<td>#521 = 45.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#522 = 45.000</td>
</tr>
<tr>
<td>(15)</td>
<td>Square root (SQR or SQRT)</td>
<td>#571 = SQRT [1000]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#572 = SQRT [1000.]</td>
</tr>
<tr>
<td></td>
<td>(Note)</td>
<td>#571 = 31.623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#572 = 31.623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#573 = 22.360</td>
</tr>
<tr>
<td>(16)</td>
<td>Absolute value (ABS)</td>
<td>#576 = -1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#577 = ABS [#576]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3 = 70. #4 = -50.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#580 = ABS [#4 - #3]</td>
</tr>
<tr>
<td></td>
<td>(Note)</td>
<td>#576 = -1000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#577 = 1000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#580 = 120.000</td>
</tr>
<tr>
<td>(17)</td>
<td>BIN, BCD</td>
<td>#1 = 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#11 = BIN [#1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#12 = BCD [#1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1 = 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#12 = 256</td>
</tr>
</tbody>
</table>
| **(18)** | **Rounding off**
| Round or RND | \(#21 = \text{ROUND} \left[\frac{14}{3} \right] \) | \(#21 \) \hspace{1cm} \(5 \) |
| | \(#22 = \text{ROUND} \left[\frac{14.}{3} \right] \) | \(#22 \) \hspace{1cm} \(5 \) |
| | \(#23 = \text{ROUND} \left[\frac{14}{3.} \right] \) | \(#23 \) \hspace{1cm} \(5 \) |
| | \(#24 = \text{ROUND} \left[\frac{14.}{3.} \right] \) | \(#24 \) \hspace{1cm} \(5 \) |
| | \(#25 = \text{ROUND} \left[-\frac{14}{3} \right] \) | \(#25 \) \hspace{1cm} \(-5 \) |
| | \(#26 = \text{ROUND} \left[-\frac{14}{3.} \right] \) | \(#26 \) \hspace{1cm} \(-5 \) |
| | \(#27 = \text{ROUND} \left[-\frac{14}{3.} \right] \) | \(#27 \) \hspace{1cm} \(-5 \) |
| | \(#28 = \text{ROUND} \left[-\frac{14}{3.} \right] \) | \(#28 \) \hspace{1cm} \(-5 \) |

(19)	**Discarding fractions below decimal point (FIX)**	\(#21 = \text{FIX} \left[\frac{14}{3} \right] \)	\(#21 \) \hspace{1cm} \(4.000 \)
	\(#22 = \text{FIX} \left[\frac{14.}{3} \right] \)	\(#22 \) \hspace{1cm} \(4.000 \)	
	\(#23 = \text{FIX} \left[\frac{14}{3.} \right] \)	\(#23 \) \hspace{1cm} \(4.000 \)	
	\(#24 = \text{FIX} \left[\frac{14.}{3.} \right] \)	\(#24 \) \hspace{1cm} \(4.000 \)	
	\(#25 = \text{FIX} \left[-\frac{14}{3} \right] \)	\(#25 \) \hspace{1cm} \(-4.000 \)	
	\(#26 = \text{FIX} \left[-\frac{14}{3.} \right] \)	\(#26 \) \hspace{1cm} \(-4.000 \)	
	\(#27 = \text{FIX} \left[-\frac{14}{3.} \right] \)	\(#27 \) \hspace{1cm} \(-4.000 \)	
	\(#28 = \text{FIX} \left[-\frac{14}{3.} \right] \)	\(#28 \) \hspace{1cm} \(-4.000 \)	

(20)	**Adding fractions less than 1 (FUP)**	\(#21 = \text{FUP} \left[\frac{14}{3} \right] \)	\(#21 \) \hspace{1cm} \(5.000 \)
	\(#22 = \text{FUP} \left[\frac{14.}{3} \right] \)	\(#22 \) \hspace{1cm} \(5.000 \)	
	\(#23 = \text{FUP} \left[\frac{14}{3.} \right] \)	\(#23 \) \hspace{1cm} \(5.000 \)	
	\(#24 = \text{FUP} \left[\frac{14.}{3.} \right] \)	\(#24 \) \hspace{1cm} \(5.000 \)	
	\(#25 = \text{FUP} \left[-\frac{14}{3} \right] \)	\(#25 \) \hspace{1cm} \(-5.000 \)	
	\(#26 = \text{FUP} \left[-\frac{14}{3.} \right] \)	\(#26 \) \hspace{1cm} \(-5.000 \)	
	\(#27 = \text{FUP} \left[-\frac{14}{3.} \right] \)	\(#27 \) \hspace{1cm} \(-5.000 \)	
	\(#28 = \text{FUP} \left[-\frac{14}{3.} \right] \)	\(#28 \) \hspace{1cm} \(-5.000 \)	

(21)	**Natural logarithms (LN)**	\(#101 = \text{LN} \left[5 \right] \)	\(#101 \) \hspace{1cm} \(1.609 \)
	\(#102 = \text{LN} \left[0.5 \right] \)	\(#102 \) \hspace{1cm} \(-0.693 \)	
	\(#103 = \text{LN} \left[-5 \right] \)	Error "P282"	

(22)	**Exponents (EXP)**	\(#104 = \text{EXP} \left[2 \right] \)	\(#104 \) \hspace{1cm} \(7.389 \)
	\(#105 = \text{EXP} \left[1 \right] \)	\(#105 \) \hspace{1cm} \(2.718 \)	
	\(#106 = \text{EXP} \left[-2 \right] \)	\(#106 \) \hspace{1cm} \(0.135 \)	
Operation accuracy

As shown in the following table, errors will be generated when performing operations once and these errors will be accumulated by repeating the operations.

<table>
<thead>
<tr>
<th>Operation format</th>
<th>Average error</th>
<th>Maximum error</th>
<th>Type of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = b + c</td>
<td>2.33 × 10⁻¹⁰</td>
<td>5.32 × 10⁻¹⁰</td>
<td>Min.</td>
</tr>
<tr>
<td>a = b - c</td>
<td>1.55 × 10⁻¹⁰</td>
<td>4.66 × 10⁻¹⁰</td>
<td>Relative error</td>
</tr>
<tr>
<td>a = b/c</td>
<td>4.66 × 10⁻¹⁰</td>
<td>1.86 × 10⁻⁹</td>
<td></td>
</tr>
<tr>
<td>a = b</td>
<td>1.24 × 10⁻⁹</td>
<td>3.73 × 10⁻⁹</td>
<td>Absolute error</td>
</tr>
<tr>
<td>a = SIN [b]</td>
<td>5.0 × 10⁻⁹</td>
<td>1.0 × 10⁻⁸</td>
<td></td>
</tr>
<tr>
<td>a = COS [b]</td>
<td>1.8 × 10⁻⁶</td>
<td>3.6 × 10⁻⁶</td>
<td></td>
</tr>
</tbody>
</table>

(Note) SIN/COS is calculated for the function TAN.

Notes on reduced accuracy

(1) Addition and subtraction
It should be noted that when absolute values are used subtractively in addition or subtraction, the relative error cannot be kept below 10.
For instance, it is assumed that the real value produced as the operation calculation result of #10 and #20 are as follows (these values cannot be substituted directly):
#10 = 2345678988888.888
#20 = 2345678901234.567
Performing #10 - #20 will not produce #10 - #20 = 87654.321. There are 8 decimal digits in the variables and so the values of #10 and #20 will be as follows (strictly speaking, the internal values will differ somewhat from the value below because they are binary Nos.):
#10 = 2345679000000.000
#20 = 2345678900000.000
Consequently, #10 - #20 = 100000.000 will generate a large error.

(2) Logical relation
EQ, NE, GT, LT, GE and LE are basically the same as addition and subtraction and so care should be taken with errors. For instance, to determine whether or not #10 and #20 are equal in the above example:
IF [#10 EQ #20]
It is not always possible to provide proper evaluation because of the above-mentioned error. Therefore when the error is evaluated as in the following expression:
IF [ABS [#10 - #20] LT 200000]
and the difference between #10 and #20 falls within the designated range error, both values should be considered equal.

(3) Trigonometric functions
Absolute errors are guaranteed with trigonometric functions but since the relative error is not under 10, care should be taken when dividing or multiplying after having used a trigonometric function.
13.9.7 Control Commands

The flow of programs can be controlled by IF [conditional expression] GOTO n ; and WHILE [conditional expression] DOm ;

Branching

Format

IF [conditional expression] GOTO n ; (where n = sequence No. in the program)

When the condition is satisfied, control branches to "n" and when it is not satisfied, the next block is executed.

IF [conditional expression] can be omitted and, when it is, control passes to "n" unconditionally. The following types of [conditional expressions] are available.

#i EQ #j	= When #i and #j are equal
#i NE #j	≠ When #i and #j are not equal
#i GT #j	> When #i is greater than #j
#i LT #j	< When #i is less than #j
#i GE #j	≥ When #i is #j or more
#i LE #j	≤ When #i is #j or less

"n" of "GOTO n" must always be in the same program. Program error (P231) will result if it is not. A formula or variable can be used instead of #i, #j and "n".

In the block with sequence No. "n" which will be executed after a "GOTO n" command, the sequence No. Nn must always be at the head of the block. Otherwise, program error (P231) will result.

If "/" is at the head of the block and Nn follows, control can be branched to the sequence No.

(Note 1) When the sequence No. of the branch destination is searched, the search is conducted up to the end of the program (% code) from the block following "IF ;" and if it is not found, it is conducted up to the block before "IF ;". Therefore, branch searches in the opposite direction to the program flow will take longer to execute compared with branch searches in the forward direction.

(Note 2) Only compare EQ and NE by integers. Use GE, GT, LE and LT for comparison when there are numbers below the decimal point.
13. Program Support Functions

13.9 User Macro

Repetition

Format

```plaintext
WHILE [conditional expression] DO_m ; (m = 1, 2, 3 ..... 127)

\}

END_m ;
```

While the conditional expression is established, the blocks from the following block to END_m are repeatedly executed; when it is not established, execution moves to the block after END_m. DO_m may come before WHILE. "WHILE [conditional expression] DO_m" and "END_m" must be used as a pair. If "WHILE [conditional expression]" is omitted, these blocks will be repeated ad infinitum. The repeating identification Nos. range from 1 to 127 (DO_1, DO_2, DO_3, DO_127). Up to 27 nesting levels can be used.

1. Same identification No. can be used any number of times.

```
WHILE ~ DO_1 ;
END_1 ;
```

Possible

```
WHILE ~ DO_1 ;
END_1 ;
```

Possible

2. Any number may be used for the WHILE~DO_m identification No.

```
WHILE ~ DO_1 ;
END_1 ;
```

```
WHILE ~ DO_3 ;
END_3 ;
```

Possible

```
WHILE ~ DO_2 ;
END_2 ;
```

```
WHILE ~ DO_1 ;
END_1 ;
```

Possible

```
WHILE ~ DO_2 ;
END_2 ;
```

```
WHILE ~ DO_3 ;
END_3 ;
```

3. Up to 27 nesting levels for WHILE~DO_m. "m" is any number from 1 to 127 for the nesting depth.

```
WHILE ~ DO_1 ;
```

```
WHILE ~ DO_2 ;
```

```
WHILE ~ DO_27 ;
```

```
END_27 ;
```

```
END_2 ;
```

```
END_1 ;
```

Possible

```
WHILE ~ DO_1 ;
```

```
WHILE ~ DO_2 ;
```

```
WHILE ~ DO_27 ;
```

```
END_27 ;
```

```
END_2 ;
```

```
END_1 ;
```

(1) With nesting, "m" which has been used once cannot be used.

4. The number of WHILE~DO_m nesting levels cannot exceed 27.
13. Program Support Functions

13.9 User Macro

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>WHILE ~ DOm must be designated first and ENDm last.</td>
</tr>
<tr>
<td>(6)</td>
<td>WHILE ~ DOm and ENDm must correspond on a 1:1 (pairing) basis in the same program.</td>
</tr>
<tr>
<td>(7)</td>
<td>Two WHILE ~ DOm’s must not overlap.</td>
</tr>
<tr>
<td>(8)</td>
<td>Branching externally is possible from the WHILE ~ DOm range.</td>
</tr>
<tr>
<td>(9)</td>
<td>No branching is possible inside WHILE ~ DOm.</td>
</tr>
<tr>
<td>(10)</td>
<td>Subprograms can be called by M98, G65 or G66 between WHILE ~ DOm’s.</td>
</tr>
<tr>
<td>(11)</td>
<td>Calls can be initiated by G65 or G66 between WHILE ~ DOm’s and commands can be issued again from 1. Up to 27 nesting levels are possible for the main program and subprograms.</td>
</tr>
<tr>
<td>(12)</td>
<td>A program error results with M99 unless WHILE and END are paired within the subprograms (including macro programs).</td>
</tr>
</tbody>
</table>

(Note) Even if a fixed cycle containing WHILE is called, the nesting level will be counted up.
13.9.8 External Output Commands

Function and purpose

Besides the standard user macro commands, the following macro instructions are also available as external output commands. They are designed to output the variable values or characters via the RS-232C interface.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPEN</td>
<td>For preparing the processing of data outputs</td>
</tr>
<tr>
<td>PCLOS</td>
<td>For terminating the processing of data outputs</td>
</tr>
<tr>
<td>DPRNT</td>
<td>For character output and digit-by-digit variable numerical output</td>
</tr>
</tbody>
</table>

Command sequence

- **OPEN** for preparing the processing of data outputs
- **DPRNT** for character output and digit-by-digit variable numerical output
- **PCLOS** for terminating the processing of data outputs

Open command : POPEN

- (1) The command is issued before the series of data output commands.
- (2) The DC2 control code and % code are output from the NC system to the external output device.
- (3) Once POPEN ; has been issued, it will remain valid until PCLOS ; is issued.

Close command : PCLOS

- (1) This command is issued when all the data outputs are completed.
- (2) The DC4 control code and % code are output from the NC unit to the external output device.
- (3) This command is used together with the open command and it should not be issued unless the open mode has been established.
- (4) Issue the close command at the end of the program even when operation has been suspended by resetting or some other operation during data output.
Data output command: DPRNT

DPRNT [/1 # v1 [d1 c1] /2 # v2 [d2 c2] ……………...]

- **/1**: Character string
- **v1**: Variable No.
- **d1**: Significant digits above decimal point
- **c1**: Significant digits below decimal point

\[\text{c} + \text{d} \leq 8 \]

(1) The character output and decimal output of the variable values are done with ISO codes.

(2) The commanded character string is output as is by the ISO code. Alphanumerics (A to Z, 0 to 9) and special characters (+, -, *, /) can be used. Note that asterisk (*) is output as a space code.

(3) The required significant digits above and below the decimal point in the variable values are commanded within square parentheses. As a result, the variable values equivalent to the commanded number of digits including the decimal point are output in ISO code in decimal notation from the high-order digits. Trailing zeroes are not omitted.

(4) Leading zeroes are omitted. The leading zeroes can also be replaced by blank if so specified with a parameter. This can justify printed data on the last column.

Note A data output command can be issued even when two-part system specification is valid. In this case, however, note that the output channel is shared for both part systems. So, take care not to execute data output in both part systems simultaneously.
13.9.9 Precautions

When the user macro commands are employed, it is possible to use the M, S, T and other control commands together with the operation, decision, branching and other macro commands for creating the machining programs. When the former commands are made into executable statements and the latter commands into macro statements, the macro statement processing should be accomplished as quickly as possible in order to minimize the machining time, because such processing is not directly related to machine control.

As a result, the parameter (#8101 MACRO SINGLE on the parameter screen) can be decided upon and the macro statements can be processed in parallel with the execution of the executable statement.

(1) When the parameter can be set OFF during normal machining to process all the macro statements together or set ON during a program check to execute the macro statements block by block. This enables the setting to be made in accordance with the intended objective in mind.)

Macro statements are:
(a) Operation commands (blocks including "+")
(b) Control commands (blocks including GOTO, DO to END, etc.)
(c) Macro call commands (including macro calls based on G codes and cancel command (G65, G66, G66.1, G67))

Execution statements refer to statements other than macro statements.
13. Program Support Functions

13.9 User Macro

Flow of processing

<table>
<thead>
<tr>
<th>MACRO SINGLE</th>
<th>Program analysis</th>
<th>Block executing</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>(1) (2) (3) (4)(5)(6)</td>
<td>(1) (2) (3) (4)(5)(6)</td>
</tr>
<tr>
<td>ON</td>
<td>(1) (2) (3) (4) (5) (6)</td>
<td>(1) (2) (3) (4) (5) (6)</td>
</tr>
</tbody>
</table>

Machining program display

<table>
<thead>
<tr>
<th>MACRO SINGLE</th>
<th>Program analysis</th>
<th>Block executing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>[Executing] N4, N5 and N6 are processed in parallel with the control of the executable statement of N3. N6 is an executable statement and so it is displayed as the next command. If the N4, N5 and N6 analysis is in time during N3 control, the machine movement will be continuously controlled.</td>
<td>[Executing] N4 is processed in parallel with the control of the executable statement of N3, and it is displayed as the next command. N5 and N6 are analyzed and N6 is executed after N3 has finished, and so the machine control is held on standby during the N5 and N6 analysis time.</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.10 Mirror Image for Facing Tool Posts

Function and purpose

In a machine in which the base turret and facing turret are integrated, this function is used to cut with the facing turret cutter using a program created with the base turret side. The distance between the two turrets is set in the parameters beforehand.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G68</td>
<td>Mirror image for facing tool posts ON</td>
</tr>
<tr>
<td>G69</td>
<td>Mirror image for facing tool posts cancel</td>
</tr>
</tbody>
</table>

[T command mirror image for facing tool posts]

The mirror image for facing tool posts can be turned ON and OFF with the T command instead of the G68/G69 command. The T command for the G68 mode and the G69 mode is determined for each tool No. with the following base specification parameters.

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1119</td>
<td>Tmiron</td>
<td>Select the mirror image of each facing turret with T command</td>
<td>0: Invalid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects whether the mirror image for facing tool posts with the T command is valid or invalid.</td>
<td>1: Valid</td>
</tr>
<tr>
<td>1203</td>
<td>TmirS1</td>
<td>Select turret as facing turret with T command</td>
<td>0 to FFFFFFFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The turret selection for the T command mirror image for facing tool posts corresponding to tool No. 1 to 32 is set.</td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>TmirS2</td>
<td>Select turret as facing turret with T command</td>
<td>0 to FFFFFFFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The turret selection for the T command mirror image for facing tool posts corresponding to tool No. 33 to 64 is set.</td>
<td></td>
</tr>
</tbody>
</table>
Detailed description

When G68 is commanded, the following program coordinate system is shifted to the facing turret side of the axis for which the mirror image for facing tool posts is valid (hereafter unless noted in particular, the X axis will be described as the axis for which mirror image for facing tool posts is valid). The axis movement direction is reversed from the program command. When G69 is commanded, the following program coordinate system will be returned to the base turret side.

The mirror image for facing tool posts is valid for the following axes.

1. When parameter #1273 ext09 BIT4=0
 Mirror image for facing tool posts is valid for the 1st axis in the part system.

2. When parameter #1273 ext09 BIT4=1
 Mirror image for facing tool posts is valid for the axis determined in the following manner by the plane selected when mirror image for facing tool posts is selected. Note that even if the plane is changed during mirror image for facing tool posts, the axis for which mirror image for facing tool posts is valid will not change.

<table>
<thead>
<tr>
<th>Plane selection</th>
<th>Axis for which mirror image for facing tool posts is valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17</td>
<td>J designated axis (#1027 base_J or #1030 aux_J axis in plane configuration)</td>
</tr>
<tr>
<td>G18</td>
<td>I designated axis (#1026 base_I or #1029 aux_I axis in plane configuration)</td>
</tr>
<tr>
<td>G19</td>
<td>K designated axis (#1028 base_K or #1031 aux_K axis in plane configuration)</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.10 Mirror Image for Facing Tool Posts

Absolute value command/incremental value command

(1) Absolute value command
The command position for the Z axis is reversed symmetrically, and the base turret moves to the position shifted by the distance between cutters.

<table>
<thead>
<tr>
<th>Program Base turret path</th>
<th>Base turret</th>
<th>Distance between cutters</th>
<th>Facing turret path</th>
<th>Facing turret</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0101 ; G00 X0. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G68 ;</td>
<td></td>
<td>Mirror image for</td>
<td>Facing turret</td>
<td></td>
</tr>
<tr>
<td>T0202 ;</td>
<td></td>
<td>facing tool posts ON</td>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>G00 X10. Z0. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01 Z-50. F400 ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Incremental value command
The commanded X axis direction reverses, and the base turret moves.

<table>
<thead>
<tr>
<th>Program Base turret path</th>
<th>Base turret</th>
<th>Distance between cutters</th>
<th>Facing turret path</th>
<th>Facing turret</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0101 ; G00 X0. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G68 ;</td>
<td></td>
<td>Mirror image for</td>
<td>Facing turret</td>
<td></td>
</tr>
<tr>
<td>T0202 ;</td>
<td></td>
<td>facing tool posts ON</td>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>G00 U10. W-30. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01 W-50. F400 ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U10. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) Changing from an incremental value command to an absolute value command
After changing to the absolute value, the same operation as "(1) Absolute value command" takes place.

<table>
<thead>
<tr>
<th>Program Base turret path</th>
<th>Base turret</th>
<th>Distance between cutters</th>
<th>Facing turret path</th>
<th>Facing turret</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0101 ; G00 X0. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G68 ;</td>
<td></td>
<td>Mirror image for</td>
<td>Facing turret</td>
<td></td>
</tr>
<tr>
<td>T0202 ;</td>
<td></td>
<td>facing tool posts ON</td>
<td>selection</td>
<td></td>
</tr>
<tr>
<td>G00 U10. W-30. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G01 W-50. F400 ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X20. Z-80. ;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Displaying the workpiece coordinate values

The workpiece coordinate values of the axis for which mirror image for facing tool posts is valid are displayed in the following manner.

<table>
<thead>
<tr>
<th>In mirror image for facing tool posts mode</th>
<th>#1273 ext09/bit3 = 0</th>
<th>#1273 ext09/bit3 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The workpiece coordinate values are at the position where the program command value sign has been reversed, and increases/decreases in the same manner as the actual movement, that is, movement on the machine coordinate system. (Indicates coordinate values for facing turret side.)</td>
<td>The workpiece coordinate values are the same as the program command value, and increases/decreases opposite the actual movement, that is, movement on the machine coordinate system.</td>
</tr>
<tr>
<td>At startup</td>
<td>Workpiece coordinate value = Workpiece coordinate value before mirror image for facing tool posts starts - distance between cutters</td>
<td>Workpiece coordinate value = (Workpiece coordinate value before mirror image for facing tool posts starts - distance between cutters) × (-1)</td>
</tr>
<tr>
<td>When movement is commanded while valid</td>
<td>Workpiece coordinate value = Workpiece coordinate value before movement + movement amount</td>
<td>Workpiece coordinate value = Workpiece coordinate value before movement - movement amount</td>
</tr>
<tr>
<td>When canceled</td>
<td>Workpiece coordinate value = Workpiece coordinate value before mirror image for facing tool posts is canceled + distance between cutters</td>
<td>Workpiece coordinate value = (Workpiece coordinate value before mirror image for facing tool posts is canceled × (-1)) + distance between cutters</td>
</tr>
</tbody>
</table>
Example of program and operation

<table>
<thead>
<tr>
<th>G68 ;</th>
<th>T0202 ;</th>
<th>Base turret selection</th>
<th>Machining with base turretA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0101 ;</td>
<td>G00 X10. Z0. ;</td>
<td>Mirror image for facing tool posts ON</td>
<td>Machining with facing turret......B</td>
</tr>
<tr>
<td>G01 Z-40. F400 ;</td>
<td>G00 X20. Z-40. ;</td>
<td>Facing turret selection</td>
<td></td>
</tr>
<tr>
<td>X20. ;</td>
<td>G01 Z-80. F200 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X30. ;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G69 ;</th>
<th>T0101 ;</th>
<th>Base turret selection</th>
<th>Machining with base turretC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00 X30. Z-80. ;</td>
<td>G00 X30. Z-80. ;</td>
<td>Mirror image for facing tool posts cancel</td>
<td></td>
</tr>
<tr>
<td>G01 Z-120. F400 ;</td>
<td>G01 Z-120. F400 ;</td>
<td>Base turret selection</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram showing turret positions and movements]
The original tool direction for the facing turret is shown in the drawing. To set the facing turret tool to the same direction as the base turret tool, set the base specification parameter "#1118 mirr_A" to "1".
13. Program Support Functions

13.10 Mirror Image for Facing Tool Posts

(1) Tool length offset

The tool length offset amount is the length from the tool nose to the tool length basic point. This also applies for the facing turret. Note that the offset amount setting value differs according to the tool length basic point position as shown below.

Tool length basic point and tool length offset

<table>
<thead>
<tr>
<th>Tool length basic point</th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece coordinate zero point</td>
<td>Each turret basic point</td>
<td>Base turret basic point</td>
<td>Workpiece face center</td>
</tr>
<tr>
<td>Turret interval</td>
<td>Distance between basic points of both turrets (radius value)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Workpiece offset</td>
<td>Workpiece coordinate zero point - base turret tool length basic point</td>
<td>Workpiece coordinate zero point - base turret tool length basic point</td>
<td>0</td>
</tr>
<tr>
<td>Tool length</td>
<td>Tool length basic point - tool nose position</td>
<td>Tool length basic point - tool nose position</td>
<td>Tool length basic point - tool nose position</td>
</tr>
</tbody>
</table>

The outline drawings above show the case when #1118 mirr_A is set to 0. If #1118 mirr_A is set to 1, the sign of the X axis tool length offset amount for the double-turret will be reversed.

(2) Tool nose wear offset

The tool nose wear offset amount is the length from the current tool nose to the original tool nose. The original tool nose is the tool nose when the tool length offset value was set.

The drawing shows the case when #1118 mirr_A is set to 0. When #1118 mirr_A is set to 1, the sign of the X axis tool nose wear offset amount for the facing turret will be reversed.
(3) Tool nose point with nose R offset

The tool nose point with nose R offset is as follows. Note that if the selected plane differs from when mirror image for facing tool posts was started, this will be handled as #1118 mirr_A = 0 even if #1118 mirr_A = 1.

<table>
<thead>
<tr>
<th>#1118 mirr_A = 0</th>
<th>#1118 mirr_A = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base turret side</td>
<td>Base turret side</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Examples of setting the tool offset

<table>
<thead>
<tr>
<th></th>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mirr_A = 0</td>
<td>mirr_A = 1</td>
<td>mirr_A = 0</td>
</tr>
<tr>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>Workpiece offset</td>
<td>-100.</td>
<td>-150.</td>
<td>-100.</td>
</tr>
<tr>
<td>Turret interval (Setting value)</td>
<td>100.</td>
<td>100.</td>
<td>0.</td>
</tr>
<tr>
<td>Base turret tool length</td>
<td>40.</td>
<td>20.</td>
<td>40.</td>
</tr>
<tr>
<td>Base turret nose point</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Facing turret tool length</td>
<td>-30.</td>
<td>10.</td>
<td>30.</td>
</tr>
<tr>
<td>Facing turret tool wear amount</td>
<td>2.</td>
<td>-1.</td>
<td>-2.</td>
</tr>
<tr>
<td>Facing turret nose point</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.10 Mirror Image for Facing Tool Posts

Precautions and restrictions

1. The balance cut command (G68, G69) cannot be issued when the mirror image for facing tool posts option is valid in the G code list 6, 7 (#1037 cmdtyp = 7, 8).

2. If mirror image for facing tool posts is turned ON for an axis in a part system having axes that are exchanged with complex control or in a part system to which the axis control is transferred, the "M01 operation error 1035" will occur. Note that mirror image for facing tool posts can be started after the axis is exchanged with complex control.

3. A program error (P486) will occur if polar coordinate interpolation, cylindrical interpolation or milling interpolation is commanded while mirror image for facing tool posts is ON.

4. A program error (P612) will occur if mirror image for facing tool posts is turned ON while the axis is moving with exponential interpolation.

5. A program error (P371) will occur if the axis to which mirror image for facing tool posts is commanded is a rotation axis.

Relation with other functions

1. **Reference position return (G28, G30)**
 - Mirror image for facing tool posts will remain valid when moving to the intermediate point.
 - Mirror image for facing tool posts will be invalidated when moving past the intermediate point and during movement that ignores the intermediate point.
 - Mirror image for facing tool posts will be validated from the next block.

2. **Machine coordinate system selection (G53)**
 - Mirror image for facing tool posts will be invalidated during the movement.
 - Mirror image for facing tool posts will be validated from the next block.

3. **Coordinate system setting (G92)**
 - The following will take place on the axis for which mirror image for facing tool posts is valid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1273 ext09/bit3</td>
<td>0 The "command value × (–1)" coordinate system will be set as the coordinate system on the facing turret side.</td>
</tr>
<tr>
<td>#1273 ext09/bit3</td>
<td>1 The commanded coordinate system will be set as the coordinate system on the facing turret side.</td>
</tr>
</tbody>
</table>

4. **Reading the coordinate position with variables**
 - The following will take place on the axis for which mirror image for facing tool posts is valid.

 (a) When previous block is end point coordinate system (#5001, etc.)
 - The "end point coordinate values on the base turret side in the workpiece coordinate system" will be read in.

 (b) For machine coordinate values (#5021, etc.)
 - The "coordinate values on the base turret side in the machine workpiece system" will be read in.

 (c) For workpiece coordinate values (#5041, etc.)
 - The "workpiece coordinate value in the mirror image for facing tool posts" will be read in.

 (d) For skip coordinate values (#5061, etc.)
 - If mirror image for facing tool posts is valid when skip is executed, the "workpiece coordinate values in the mirror image for facing tool posts" will be read in.
13. Program Support Functions

13.10 Mirror Image for Facing Tool Posts

(5) **Resetting**
 (a) When parameter #1210 RstGmd/bit14 = 0
 The mirror image for facing tool posts will be canceled when reset.
 (b) When parameter #1210 RstGmd/bit14 = 1
 The mirror image for facing tool posts state will be maintained even if reset.

(6) **External mirror image, parameter mirror image**
 (a) A program error (P371) will occur if mirror image for facing tool posts is applied on the axis during external mirror image or parameter mirror image.
 (b) The "M01 operation error 1036" alarm will occur if external mirror image or parameter mirror image is applied on the axis during mirror image for facing tool posts.

(7) **Manual interruption**
 (a) When manual absolute is OFF
 If manual interruption is applied on an axis for which mirror image for facing tool posts is valid, the mirror image will not be applied on the interrupt amount. The interrupt movement amount will not be added to the workpiece coordinate values.
 (b) When manual absolute is ON
 If manual interruption is applied on an axis for which mirror image for facing tool posts is valid, the mirror image will not be applied on the interrupt amount. The interrupt movement amount will be added to the workpiece coordinate values.
13.11 Corner Chamfering/Corner Rounding I

Chamfering at any angle or corner rounding is performed automatically by adding ",C_" or ",R_" to the end of the block to be commanded first among those command blocks which shape the corner with lines only.

By setting the parameters, ",I_", ",K_", ",C_" can be set for the chamfer instead of ",C_", and ",R_" can be set for rounding instead of ",R_".

13.11.1 Corner Chamfering ",C_" (or ",I_", ",K_", ",C_")

Function and purpose

The corner is chamfered in such a way that the positions produced by subtracting the lengths commanded by ",C_" (or ",I_", ",K_", ",C_") from the hypothetical starting and final corners which would apply if no chamfering were to be performed, are connected.

Command format

```
N100 G01 X__ Z__,C__ (or I__ / K__ / C__) ;
N200 G01 X__ Z__ ;
,C/ I / K / C
```

Length up to chamfering starting point or end point from hypothetical corner

Chamfering is performed at the point where N100 and N200 intersect.

Example of program

```
G01 W100. ,C10. F100  ;
U280. W100.  ;
```

Diagram

[Diagram showing the chamfering process with labels for hypothetical corner, intersection point, chamfering start point, and chamfering end point.]
13. Program Support Functions

13.11 Corner Chamfering/Corner Rounding I

Detailed description

1. The start point of the block following the corner chamfering serves as the hypothetical corner intersection point.

2. If the base specification parameter "#1272 ext08/bit6" is "0", the ",C" command will be interpreted as a C command if there is no "," (comma).

3. If there are multiple or duplicate corner chamfering commands in the same block, the command issued last will be valid.

4. When both corner chamfering and corner rounding are commanded in the same block, the latter command is valid.

5. Tool offset is calculated for the shape which has already been subjected to corner chamfering.

6. When the block following a command with corner chamfering does not contain a linear command, a corner chamfering/corner rounding II function results.

7. Program error (P383) results when the movement amount in the block commanding corner chamfering is less than the chamfering amount.

8. Program error (P384) results when the movement amount in the block following the block commanding corner chamfering is less than the chamfering amount.

9. A program error (P382) results when a movement command is not issued in the block following the corner chamfering I command.

10. If "C" is used as the axis name or 2nd miscellaneous function, corner chamfering cannot be commanded with "C".

11. Corner chamfering cannot be commanded with "I" or "K" in an arc command block. "I" and "K" are the arc center commands.

Precautions

1. Corner chamfering and corner rounding can be commanded with "I", "K", "R" only when the 1st block of the corner chamfering/corner rounding command is linear.

2. Corner chamfering with "I", "K", and corner rounding with "R" can be commanded when the 1st block of the corner chamfering/corner rounding command is linear and the 2nd block is an arc command. if "I", "K" in the 2nd block are the arc center commands.

 N100 G01 Xx Zz li ;................. li corner chamfering length
 N200 G02 Xx Zz li Kk ;............. li; Kk arc center command

3. If ",C", ",R" or ",I", ",K", ",C", ",R" are commanded in the same block, ",C", ",R" will have the priority.
13. Program Support Functions

13.11 Corner Chamfering/Corners Rounding

13.11.2 Corner Rounding ",R_" (or "R_")

Function and purpose

Corner rounding of the hypothetical starting and final corners when corner is assumed as not rounded is performed at the radius of the arc commanded in ",R_" (or "R_")

Command format

N100 G01 X__ Z__,R__ (or R__) ;
N200 G01 X__ Z__ ;
,R / R Arc radius of corner rounding

Corner rounding is performed at the point where N100 and N200 intersect.

Example of program

G01 W100.,R10. F100 ;
U280. W100 ;
13. Program Support Functions

13.11 Corner Chamfering/Corner Rounding I

Detailed description

(1) The start point of the block following the corner rounding serves as the hypothetical corner intersection point.

(2) If the base specification parameter "#1272 ext08/bit6" is "0", the ",R" command will be interpreted as a R command if there is no "," (comma).

(3) When both corner chamfering and corner rounding are commanded in the same block the latter command is valid.

(4) Tool offset is calculated for the shape which has already been subjected to corner rounding.

(5) When the block following a command with corner rounding does not contain a linear command, a corner chamfering/corner rounding II function results.

(6) Program error (P383) results when the movement amount in the block commanding corner rounding is less than the R value.

(7) Program error (P384) results when the movement amount in the block following corner rounding is less than the R value.

(8) A program error (P382) will occur if a movement command is not issued in the block following corner rounding.

(9) Corner rounding cannot be commanded with "R" in an arc command block. "R" is the arc radius command.

Precautions

(1) Corner chamfering and corner rounding can be commanded with ",I", ",K", ",R" only when the 1st block of the corner chamfering/corner rounding command is linear.

(2) Corner chamfering with ",I", ",K", and corner rounding with ",R" can be commanded when the 1st block of the corner chamfering/corner rounding command is linear and the 2nd block is an arc command. ",I", ",K" in the 2nd block are the arc center commands.

```
N100 G01 Xx Zz li ................ li corner chamfering length
N200 G02 Xx Zz li Kk ................ li, Kk arc center command
```

(3) If ",C_", ",R_" or ",I_", ",K_", ",C_", ",R_" are commanded in the same block, ",C_", ",R_" will have the priority.
13.11.3 Corner Chamfering/Corner Rounding Expansion

Function and purpose

Using an E command, the feed rate can be designated for the corner chamfering and corner rounding section. In this way the corner section can be cut to the correct shape.

Example

```plaintext
(G94) G01 U70.,C30. F200. E100. ;
W–110. ;

(G94) G01 U70.,R30. F200. E100. ;
W–110. ;
```
13. Program Support Functions

13.11 Corner Chamfering/Corner Rounding I

Detailed description

(1) The E command is modal. It is also valid for the feed in the next corner chamfering/corner rounding section.

Example

```
(G94)
G01 U30. ,C10. F100. E50. ;
W–50. ,C10. ;
U50. ,C10. ;
W–50. ;
```

(2) E command modal has separate asynchronous feed rate modal and synchronous feed rate modal functions. Which one is validated depends on the asynchronous/synchronous mode (G94/G95).

(3) When the E command is 0, or there has not been an E command up to now, the corner chamfering/corner rounding section feed rate is the same as the F command feed rate.

Example

```
(G94)
G01 U30. ,C10. F100. E50. ;
W–50. ,C10. ;
U50. ,C10. E0.;
W–50. ;
```

(4) E command modal is not cleared when the reset button is pressed. It is cleared when the power is turned OFF. (In the same manner as F commands.)

(5) All E commands except those shown below are at the corner chamfering/corner rounding section feed rate.

- E commands during thread cutting modal
- E commands during thread cutting cycle modal
13.11.4 Interrupt during Corner Chamfering/Corn Rounding

Detailed description

(1) The operations are shown below for manual interruption during corner chamfering or corner rounding.

With an absolute value command and manual absolute switch ON.

```
N1   G28   XZ ;
N2   G00  X40. Z120. ;
N3   G03  X140. Z70. K-50. ,R20. F100 ;
N4   G01  X40.  Z20. ;
```

When interrupt is applied

When interrupt is not applied
With an incremental value command and manual absolute switch OFF

N1 G28 XZ ;
N2 G00 U40. W120. ;
N3 G03 U100. W−50. K−50. ,R20. F100 ;
N4 G01 U−100. W−50. ; :

(2) With a single block during corner chamfering or corner rounding, the tool stops after corner chamfering or corner rounding is executed.
13. Program Support Functions

13.12 Corner Chamfering/Corners Rounding II

13.12 Corner Chamfering/Corners Rounding II

In a block that forms a corner with continuous arbitrary angle lines or arcs, corner chamfering and corner rounding can be performed by adding ",C" or ",R" to the end of the block commanded first. By setting the parameters, "I_", "K_", "C_" can be set for the chamfering instead of ",C_", and "R_" can be set for rounding instead of ",R_". Corner chamfering and corner rounding can both be commanded as an absolute value or incremental value.

13.12.1 Corner Chamfering ",C_" (or "I_", "K_", "C_")

Function and purpose

The corner is chamfered by commanding ",C" (or "I_", "K_", "C_") in the 1st block of two blocks having continuous arcs. For an arc, this will be the chord length.

Command format

```
N100 G03 X__ Z__ K__ ,C__ ; (or C__) ;
N200 G01 X__ Z__ ;
,C / C
```

Length up to chamfering starting point or end point from hypothetical corner

Corner chamfering is performed at the point where N100 and N200 intersect.

Example of program

(1) Linear - arc

Absolute value command

```
N1 G28 X Z ;
N2 G00 X50. Z100. ;
N3 G01 X150. Z50. I0 K–50. ;
N4 G02 X50. Z0 I0 K–50. ;
```

Relative value command

```
N1 G28 X Z ;
N2 G00 U25. W100. ;
N3 G01 U50. W–50. ,C20. F100 ;
N4 G02 U–50. W–50. I0 K–50. ;
```
13. Program Support Functions

13.12 Corner Chamfering/Corners Rounding II

(2) Arc - arc

Absolute value command

\[
\begin{align*}
N1 & \text{ G28 X Z;} \\
N2 & \text{ G00 X20. Z140. ;} \\
N3 & \text{ G02 X100. Z60. I100. K0. ,C20. F100 ;} \\
N4 & \text{ X60. Z0 I80. K-60. ;}
\end{align*}
\]

Relative value command

\[
\begin{align*}
N1 & \text{ G28 X Z ;} \\
N2 & \text{ G00 U10. W140. ;} \\
N3 & \text{ G02 U40. W-80. R100. ,C20. F100 ;} \\
N4 & \text{ U-20. W-60. I80. K-60. ;}
\end{align*}
\]

Detailed description

(1) The corner chamfering and corner rounding options are required to use this function. A program error (P381) will occur if the function is commanded when the option is not provided.

(2) The start point of the block following the corner chamfering serves as the hypothetical corner intersection point.

(3) If the base specification parameters "#1272 ext08/bit6" is "0", the ",C" command will be interpreted as a C command if there is no "," (comma).

(4) If there are multiple or duplicate corner chamfering commands in the same block, the command issued last will be valid.

(5) When both corner chamfering and corner rounding are commanded in the same block, the latter command is valid.

(6) Tool offset is calculated for the shape which has already been subjected to corner chamfering.

(7) A program error (P385) results when positioning or thread cutting is commanded in the corner chamfering command block or next block.

(8) A program error (P382) results when the block following corner chamfering contains a G command other than group 01 or another command.

(9) Program error (P383) results when the movement amount in the block commanding corner chamfering is less than the chamfering amount.

(10) Program error (P384) results when the movement amount in the block following the block commanding corner chamfering is less than the chamfering amount.

(11) Even if a diameter is commanded, it will be handled as a radius value during corner chamfering.

(12) A program error (P382) results when a movement command is not issued in the block following the corner chamfering II command.

(13) If "C" is used as the axis name or 2nd miscellaneous function, corner chamfering cannot be commanded with "C".

(14) Corner chamfering cannot be commanded with "I" or "K" in an arc command block. "I" and "K" are the arc center commands.
Precautions

1. Corner chamfering and corner rounding can be commanded with "I", "K", "R" only when the 1st block of the corner chamfering/corner rounding command is linear.

2. Corner chamfering with "I", "K", and corner rounding with "R" can be commanded when the 1st block of the corner chamfering/corner rounding command is linear and the 2nd block is an arc command. "I", "K" in the 2nd block are the arc center commands.

 N100 G01 Xx Zz Ii li corner chamfering length
 N200 G02 Xx Zz li Kk li, Kk arc center command

3. If ",C_", ",R_" or ",I_", ",K_", ",C_", ",R_" are commanded in the same block, ",C_", ",R_" will have the priority.
13. Program Support Functions

13.12 Corner Chamfering/Corners Rounding II

13.12.2 Corner Rounding ",R_" (or ",R_{-}\")

Function and purpose

The corner is rounded by commanding ",R_" (or ",R_{-}\") in the 1st block of two blocks containing continuous arcs.

Command format

N100 G03 X__ Z__ I__ K__ ,R__ (or R__) ;
N200 G01 X__ Z__ ;

Arc radius of corner rounding

Corner rounding is performed at the point where N100 and N200 intersect.

Example of program

(1) Linear - arc

Absolute value command

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G28 X Z ;</td>
</tr>
<tr>
<td>N2</td>
<td>G00 X60. Z100. ;</td>
</tr>
<tr>
<td>N3</td>
<td>G01 X160. Z50. ,R10. F100 ;</td>
</tr>
<tr>
<td>N4</td>
<td>G02 X60. Z0 I0 K-50. ;</td>
</tr>
</tbody>
</table>

Relative value command

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G28 X Z ;</td>
</tr>
<tr>
<td>N2</td>
<td>G00 U30. W100. ;</td>
</tr>
<tr>
<td>N3</td>
<td>G01 U50. W-50. ,R10. F100 ;</td>
</tr>
<tr>
<td>N4</td>
<td>G02 U-50. W-50. I0 K-50. ;</td>
</tr>
</tbody>
</table>

(2) Arc - arc

Absolute value command

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G28 X Z ;</td>
</tr>
<tr>
<td>N2</td>
<td>G00 X60. Z100. ;</td>
</tr>
<tr>
<td>N3</td>
<td>G02 X160. Z50. R60 ,R10. F100 ;</td>
</tr>
<tr>
<td>N4</td>
<td>X60. Z0 R50. ;</td>
</tr>
</tbody>
</table>

Relative value command

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G28 X Z ;</td>
</tr>
<tr>
<td>N2</td>
<td>G00 U30. W100. ;</td>
</tr>
<tr>
<td>N3</td>
<td>G02 U50. W-50. I50. K0 ,R10. F100 ;</td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.12 Corner Chamfering/Corner Rounding II

Detailed description

(1) The corner chamfering and corner rounding options are required to use this function. A program error (P381) will occur if the function is commanded when the option is not provided.

(2) The start point of the block following the corner rounding serves as the hypothetical corner intersection point.

(3) If the base specification parameters ",#1272 ext08/bit6" is "0", the ",,R" command will be interpreted as a R command if there is no "," (comma).

(4) When both corner chamfering and corner rounding are commanded in the same block the latter command is valid.

(5) Tool offset is calculated for the shape which has already been subjected to corner rounding.

(6) A program error (P385) results when positioning or thread cutting is commanded in the corner rounding command block or next block.

(7) A program error (P382) results when the block following corner rounding contains a G command other than group 01 or another command.

(8) Program error (P383) results when the movement amount in the block commanding corner rounding is less than the R value.

(9) Program error (P384) results when the movement amount in the block following the block commanding corner rounding is less than the R value.

(10) Even if a diameter is commanded, it will be handled as a radius value during corner rounding.

(11) A program error (P382) results when a movement command is not issued in the block following corner rounding.

(12) Corner rounding cannot be commanded with "R" in an arc command block. "R" is the arc radius command.

Precautions

(1) Corner chamfering and corner rounding can be commanded with "I", "K", "R" only when the 1st block of the corner chamfering/corner rounding command is linear.

(2) Corner chamfering with "I", "K", and corner rounding with "R" can be commanded when the 1st block of the corner chamfering/corner rounding command is linear and the 2nd block is an arc command. "I", "K" in the 2nd block are the arc center commands.

```
N100 G01 Xx Zz Ii ................. li corner chamfering length
N200 G02 Xx Zz li Kk .............. li, Kk arc center command
```

(3) If ",,C", ",,R" or "I", "K", ",,C", ",,R" are commanded in the same block, ",,C", ",,R" will have the priority.

13.12.3 Corner Chamfering/Corner Rounding Expansion

Refer to section "13.11.3 Corner chamfering/corner rounding expansion" for details.

13.12.4 Interrupt during Corner Chamfering/Corner Rounding

Refer to section "13.11.4 Interrupt during corner chamfering/corner rounding" for details.
13.13 Linear Angle Command

Function and purpose

The end point coordinates are calculated automatically by commanding the linear angle and one of the end point coordinate axes.

Command format

```
N1 G01 Xx1 (Zz1) Aa1;
N1 G01 Xx2 (Zz2) A-a2;   (A-a2 can also be set as Aa 3.)
or
N1 G01 Xx1 (Zz1) ,Aa1;
N1 G01 Xx2 (Zz2) ,A-a2;
```

This designates the angle and the X or Z axis coordinates.

Select the command plane with G17 to G19.

```
X

x2

x1

(z1,x1)

N1

a2

a1

a3

(z2,x2)

Z
```

Detailed description

1. The angle is from the + direction of the horizontal axis on the selected plane. The counterclockwise (CCW) direction is considered to be + and the clockwise direction (CW) -.
2. Either of the axes on the selected plane is commanded for the end point.
3. The angle is ignored when the angle and the coordinates of both axes are commanded.
4. When only the angle has been commanded, this is treated as a geometric command.
5. The angle of either the start point (a1) or end point (a2) may be used.
6. This function is valid only for the G01 command; it is not valid for other interpolation or positioning commands.
7. The range of slope “a” is $-360.000 \leq a \leq 360.000$. When a value outside this range is commanded, it will be divided by 360 (degrees) and the remainder will be commanded.

(Example) If 400 is commanded, 40° (remainder of 400/360) will become the command angle.

8. If address A is used for the axis name or 2nd miscellaneous function, use ",A" as the angle.
9. If "A" and ",A" are commanded in the same block, ",A" will be interpreted as the angle.
13. Program Support Functions

13.14 Geometric

13.14.1 Geometric I

Function and purpose

When it is difficult to determine the point at which the two straight lines intersect with a continuous linear interpolation command, the end point of the first straight line will be automatically calculated inside the CNC and the movement command will be controlled provided that the slope of the first straight line as well as the end point coordinates and slope of the second straight line are commanded.

(Note) If the parameter (#1082 Geomet) is set to 0, geometric I will not function.

Command format

```
N1 G01 Aa1 (A-a2) Ff1 ;
N2 Xx2 Zz2 A-a2 (Aa3 ) Ff2 ;
```

Aa1, A-a2, Aa3	Angle
Ff1, Ff2	Feed rate
Xx2, Zz2	Next block end point coordinates

This designates the angle and feed rate.
This designates the next block end point coordinates, angle and feed rate.
Detailed description

(1) Program error (P396) results when the geometric command is not on the selected plane.

(2) The slope is expressed as the angle that is formed with the horizontal axis + direction on the selected plane. The counterclockwise (CCW) direction is considered to be + and the clockwise direction (CW) -.

(3) Slope "a" ranges from \[-360.000 \leq a \leq 360.000\]. When a value outside this range is commanded, it will be divided by 360 (degrees) and the remainder will be commanded.

(Example) If 400. is commanded, 40\(^\circ\) (remainder of 400/360) will become the command angle.

(4) The slope of the line can be commanded on the start or end point side. The start or end point side of the commanded slope is identified automatically inside the NC unit.

(5) The end point coordinates of the second block should be commanded with absolute values. When incremental values are used, program error (P393) will result.

(6) The feed rate can be commanded for each block.

(7) When the angle where the two straight lines intersect is less than 1\(^\circ\), program error (P392) will result.

(8) Program error (P396) results when the plane is selected in the 1st block and 2nd block.

(9) This function is ignored when address A is used for the axis name or as the 2nd miscellaneous function.

(10) Single block stop is possible at the end point of the 1st block.

(11) Program error (P394) results when the 1st and 2nd blocks do not contain the G01 or G33 command.

Relationship with other functions

(1) Corner chamfering or corner rounding can be commanded after the angle command in the 1st block.

(Example 1)

\[
\begin{align*}
N1 & \text{ Aa}_1, \text{ Cc}_1 ; \\
N2 & \text{ Xx}_2 \text{ Zz}_2 \text{ Aa}_2 ;
\end{align*}
\]
13. Program Support Functions

13.14 Geometric

(Example 2)

N1 Aa₁, Rr₁;
N2 Xx₂ Zz₂ Aa₂;

(2) The geometric command I can be issued after the corner chamfering or corner rounding command.

(Example 3)

N1 Xx₂ Zz₂,Cc₁;
N2 Aa₁;
N3 Xx₃ Zz₃ Aa₂;

(3) The geometric command I can be issued after the linear angle command.

(Example 4)

N1 Xx₂ Aa₁;
N2 Aa₂;
N3 Xx₃ Zz₃ Aa₃;

N1 a₁
N2 a₂
N3 a₃

(x₁, z₁) (x₂, z₂) (x₃, z₃)
13. Program Support Functions

13.14 Geometric

13.14.2 Geometric IB

Function and purpose

With the geometric IB function, the contact and intersection are obtained by commanding an arc center point or linear angle in the movement commands of two continuous blocks (only for blocks having arc commands), instead of commanding the first block end point.

Control target block

(1) Two-arc contact

(2) Linear - arc (arc - linear) intersection

(3) Linear - arc (arc - linear) contact

(Note) If the parameter (#1082 Geomet) is set to a value other than 2, geometric IB will not function.
Function and purpose 1 (Automatic calculation of two-arc contact)

When the contact of two continuous contacting arcs is not indicated in the drawings, it can be automatically calculated by commanding the 1st arc center coordinate value or radius, and the 2nd arc end point absolute value and center coordinate value or radius.

Command format 1 (Automatic calculation of two-arc contact)

<table>
<thead>
<tr>
<th>Block</th>
<th>Command</th>
<th>X and Z axes arc center coordinate absolute value (diameter/radius value command)</th>
<th>1st block arc</th>
<th>2nd block arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>G02 (G03)</td>
<td>Pp1, Qq1, Ff1 ;</td>
<td>Radius command incremental amount from the start point to the center</td>
<td>Radius command incremental amount from the end point to the center</td>
</tr>
<tr>
<td>N2</td>
<td>G03 (G02)</td>
<td>Xx2, Zz2, Pp2, Qq2, Ff2 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>G02 (G03)</td>
<td>Pp1, Qq1, Ff1 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>G03 (G02)</td>
<td>Xx2, Zz2, Rr2, Ff2 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>G02 (G03)</td>
<td>Rr1, Ff1 ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>G03 (G02)</td>
<td>Xx2, Zz2, Pp2, Qq2, Ff2 ;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, Q X and Z axes arc center coordinate absolute value (diameter/radius value command)

The center address for the 3rd axis is commanded with A.

R Arc radius (when a (-) sign is attached, the arc is judged to be 180° or more)

* I and K (X and Z axes arc center coordinate incremental value) commands can be issued instead of P and Q.
13. Program Support Functions

13.14 Geometric

Detailed description 1 (Automatic calculation of two-arc contact)

(1) A program error (P393) will result before the 1st block if the 2nd block does not contain a coordinate absolute value command.

(2) A program error (P398) will result before the 1st block if there are no geometric IB specifications.

(3) A program error (P395) will result before the 1st block if there is no R (here, the 1st block is designated with P and Q (I, K)) or P and Q (I, K) designation.

(4) A program error (P396) will result before the 1st block if another plane selection command (G17 to G19) is issued in the 2nd block.

(5) A program error (P397) will result before the 1st block if two arcs that do not contact are commanded.

(6) The contact calculation accuracy is ±1μm (fractions rounded up).

(7) Single block operation stops at the 1st block.

(8) When I or K is omitted, the values are regarded as I0 and K0. P and Q cannot be omitted.

(9) The error range in which the contact is obtained is set in parameter "#1084 RadErr".

(10) For an arc block perfect circle command (arc block start point = arc block end point), the R designation arc command finishes immediately, and there is no operation. Thus, use a PQ (IK) designation arc command.

(11) G codes of the G modal group 1 in the 1st/2nd block can be omitted.

(12) Addresses being used as axis names cannot be used as command addresses for arc center coordinates or arc radii.

(13) If the 2nd block arc inscribes the 1st arc block when the 2nd block is an R designation arc, the R+ sign becomes the inward turning arc command, and the R- sign becomes the outward turning arc command.
Example of program 1 (Automatic calculation of two-arc contact)

(1) PQ, PQ command

G01 X20.0 Z60.0 ;
N1 G02 P50.0 Q60.0 F100 ;
N2 G03 X80.0 Z30.0 P50.0 Q30.0 ;

(Unit: mm)

(2) PQ, R command

G01 X40.0 Z70.0 F100 ;
N1 G02 R60.0 ;
N2 G03 X80.0 Z30.0 P40.0 Q30.0 ;

(Unit: mm)
Relation with other functions 1 (Automatic calculation of two-arc contact)

<table>
<thead>
<tr>
<th>Command</th>
<th>Tool path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G03 P__ Q__ ;
N2 G02 X__ Z__ R__ ,C__ ;
 G02 X__ Z__ R__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G03 P__ Q__ ;
N2 G02 X__ Z__ R__ .R__ ;
 G02 X__ Z__ R__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G03 P__ Q__ ;
N2 G02 X__ Z__ R__ .C__ ;
 G01 X__ Z__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G03 P__ Q__ ;
N2 G02 X__ Z__ R__ .R__ ;
 G02 X__ Z__ ;</td>
<td></td>
</tr>
</tbody>
</table>
Function and purpose 2 (Automatic calculation of linear - arc intersection)

When the intersection of a shape in which a line and arc intersect is not indicated in the drawings, it can be automatically calculated by commanding the following program.

Command format 2 (Automatic calculation of linear - arc intersection: For G18 plane)

N1	G01	Aa1 (A-a2) Ff1 ;
N2	G02 (G03)	Xx2 Zz2 Pp2 Qq2 Hh2 Ff2 ;
N1	G02 (G03)	Pp1 Qq1 Hh1(Hh1) Ff1 ;
N2	G01	Xx2 Zz2 Aa3 (A-a4) Ff2 ;

A Linear angle (-360.000° to 360.000°)
P, Q X and Z axes arc center coordinate absolute value (diameter/radius value command)
The center address for the 3rd axis is commanded with A.
H Linear - arc intersection selection
 (0 : Intersection of the shorter line
 1 : Intersection of the longer line)
 *
 I and K (X and Z axes arc center coordinate incremental value) commands can be issued instead of P and Q.

1st block arc : Radius command incremental amount from the start point to the center
2nd block arc : Radius command incremental amount from the end point to the center
13. Program Support Functions

13.14 Geometric

Detailed description 2 (Automatic calculation of linear - arc intersection)

(1) When the 2nd miscellaneous function address is A, the 2nd miscellaneous function is validated and this function is invalidated.

(2) A program error (P393) will result before the 1st block if the 2nd block does not contain a coordinate absolute value command.

(3) A program error (P398) will result before the 1st block if there are no geometric IB specifications.

(4) A program error (P395) will result before the 1st block if there is no P and Q (I, K) designation. A program error (P395) will also result if there is no A designation for the line.

(5) A program error (P396) will result before the 1st block if another plane selection command (G17 to G19) is issued in the 2nd block.

(6) A program error (P397) will result before the 1st block if a straight line and arc that do not contact or intersect are commanded.

(7) Single block operation stops at the 1st block.

(8) When I or K is omitted, the values are regarded as I0 and K0. P and Q cannot be omitted.

(9) When H is omitted, the value is regarded as H0.

(10) The linear - arc contact is automatically calculated by designating R instead of P and Q (I, K).

(11) The error range in which the intersection is obtained is set in parameter "#1084 RadErr".

(12) The line slope is rotated at the angle regarded as its horizontal axis. Counterclockwise (CCW) is positive (+). Clockwise (CW) is negative (−).

(13) The line slope can be commanded from either the start point side or the end point side. The judgment whether the designated slope is start point side or end point side is carried out automatically.
(14) When the distance to the intersection of the line and arc is the same (as in the drawing below),
the control by address H (short/long distance selection) is invalidated. In this case the
judgment is carried out based on the angle of the line.

\[
\begin{align*}
\text{Linear - arc} \\
\begin{array}{c}
(p2, q2) \\
\end{array} \\
\begin{array}{c}
(\overline{a1}) \\
\end{array} \\
\begin{array}{c}
(\overline{a2}) \\
\end{array} \\
\text{N1 G1 A[1] Ff1 ;} \\
\text{N2 G2 Xx2 Zz2 Pp2 Qq2 Ff2 ;} \\
\end{align*}
\]

(15) The intersection calculation accuracy is $\pm 1\mu m$ (fractions rounded up).

(16) In linear - arc intersections, the arc command can only be a PQ (IK) command. When the arc
block start point = arc block end point, the arc is a perfect circle.

(17) G codes of the G modal group in the 1st block can be omitted.

(18) Addresses being used as axis names cannot be used as command addresses for angles, arc
center coordinates or intersection selections.

(19) When geometric IB is commanded, two blocks are pre-read.
Example of program 2 (Automatic calculation of linear - arc intersection)

G01 X80.0 Z50.0 F100 ;
N1 G01 A180.0 ;
N2 G03 X100.0 Z0 P0 Q0 ;
(Unit: mm)
Relation with other functions 2 (Automatic calculation of linear - arc intersection)

<table>
<thead>
<tr>
<th>Command</th>
<th>Tool path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__ ,C__ ; N2 G03 X__Z__P__ Q__H__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__ ,R__ ; N2 G03 X__Z__P__ Q__H__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__ ; N2 G03 X__Z__P__ Q__H__ ,C__ ; G01 X__Z__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__ ; N2 G03 X__Z__P__ Q__H__ ,R__ ; G01 X__Z__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G02 P__Q__H__ ; N2 G01 X__Z__A__ ,C__ ; G01 X__Z__ ;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G02 P__Q__H__ ; N2 G01 X__Z__A__ ,R__ ; G01 X__Z__ ;</td>
<td></td>
</tr>
</tbody>
</table>
Function and purpose 3 (Automatic calculation of linear - arc intersection)

When the contact of a shape in which a line and arc contact is not indicated in the drawings, it can be automatically calculated by commanding the following program.

Command format 3 (Automatic calculation of linear - arc intersection: For G18 plane)

N1	G0	Aa1 (A-a2) Ff1 ;
N2	G03 (G02)	Xx2 Zz2 Rr2 ;
N1	G03 (G02)	Rr2 Ff1 ;
N2	G01	Xx2 Zz2 Aa3 (A-a4) Ff2 ;

A Linear angle (-360.000° to 360.000°)
R Arc radius
(1) When the 2nd miscellaneous function address is A, the 2nd miscellaneous function is validated and this function is invalidated.

(2) A program error (P393) will result before the 1st block if the 2nd block does not contain a coordinate absolute value command.

(3) A program error (P398) will result before the 1st block if there are no geometric IB specifications.

(4) A program error (P396) will result before the 1st block if another plane selection command (G17 to G19) is issued in the 2nd block.

(5) A program error (P397) will result before the 1st block if a straight line and arc that do not contact are commanded.

(6) A program error (P395) will result before the 1st block if there is no R designation for the 2nd block. A program error (P395) will also result if there is no A designation for the line.

(7) Single block operation stops at the 1st block.

(8) The linear - arc intersection is automatically calculated by designating R instead of P and Q (I, K).

(9) The error range in which the contact is obtained is set in parameter "#1084 RadErr".

(10) The line slope is rotated at the angle regarded as the positive (+) direction of its horizontal axis. Counterclockwise (CCW) is positive (+). Clockwise (CW) is negative (−).

(11) The line slope can be commanded from either the start point side or the end point side. The judgment whether the designated slope is start point side or end point side is carried out automatically.

(12) The intersection calculation accuracy is ± 1μm (fractions rounded up).

(13) In linear - arc contact, the arc command can only be an R command. Thus, when the arc block start point = arc block end point, the arc command finishes immediately, and there is no operation. (Perfect circle commands are not possible.)

(14) G codes of the G modal group 1 in the 1st block can be omitted.

(15) Addresses being used as axis names cannot be used as command addresses for angles or arc radii.

(16) When geometric IB is commanded, two blocks are pre-read.
Example of program 3 (Automatic calculation of linear - arc intersection)

G01 X40.0 Z50.0 F100 ;
N1 G01 A135.0 ;
N2 G03 X100.0 Z0.0 R50.0 ;

(Unit: mm)
13. Program Support Functions

13.14 Geometric

Relation with other functions 3 (Automatic calculation of linear - arc intersection)

<table>
<thead>
<tr>
<th>Command</th>
<th>Tool path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric IB + corner chamfering</td>
<td></td>
</tr>
<tr>
<td>N1 G03 R__; N2 G01 X__Z__ A__,C__; G01 X__Z__ R__;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding</td>
<td></td>
</tr>
<tr>
<td>N1 G03 R__; N2 G01 X__Z__ A__,R__; G01 X__Z__;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner chamfering II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__; N2 G02 X__Z__ R__,C__; G01 X__Z__;</td>
<td></td>
</tr>
<tr>
<td>Geometric IB + corner rounding II</td>
<td></td>
</tr>
<tr>
<td>N1 G01 A__; N2 G02 X__Z__ R__,R__; G01 X__Z__;</td>
<td></td>
</tr>
</tbody>
</table>
13. Program Support Functions

13.15 Parameter Input by Program; G10, G11

Function and purpose

The parameters set from the setting and display unit can be changed in the machining programs. The range of command data depends on the parameter setting range described in the Setup Manual. The data format used for the data setting is as follows.

Command format

(1) G10 L70 command

<table>
<thead>
<tr>
<th>G10 L70 ;</th>
<th>Data setting start command</th>
</tr>
</thead>
<tbody>
<tr>
<td>P parameter No.</td>
<td>S part system No.</td>
</tr>
<tr>
<td>P parameter No.</td>
<td>S part system No.</td>
</tr>
<tr>
<td>P parameter No.</td>
<td>S part system No.</td>
</tr>
</tbody>
</table>

G11.1 Data setting end command

(Note 1) The sequence of addresses in a block must be as shown above. When an address is commanded two or more times, the last command will be valid.

(Note 2) The part system No. is set in the following manner: "1" for 1st part system, "2" for 2nd part system, and so forth. If the address S is omitted, the part system of the executing program will be applied. As for the parameters common to part systems, the command of part system No. will be ignored.

(Note 3) The axis No. is set in the following manner: "1" for 1st axis, "2" for 2nd axis, and so forth. If the address A is omitted, the 1st axis will be applied. As for the parameters common to axes, the command of axis No. will be ignored.

(Note 4) Address H is commanded with the combination of setting data (0 or 1) and the bit designation (†) (0 to 7).

(Note 5) Only the decimal number can be commanded with the address D. The value that is smaller than the input setting increment (#1003 iunit) will be round off to the nearest increment.

(Note 6) The character string must be put in angled brackets "<" and ">". If these brackets are not provided, the program error (P33) will occur. Up to 63 characters can be set.

(Note 7) Command G10 L70, G11 in independent blocks. A program error (P33, P421) will occur if not commanded in independent blocks.
13. Program Support Functions

13.15 Parameter Input by Program

(2) G10 L50 command

G10 L50 ; Data setting command

<table>
<thead>
<tr>
<th>P major classification No.</th>
<th>N data No.</th>
<th>H□ bit type data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A axis No.</td>
<td>N data No.</td>
<td>D byte type data</td>
</tr>
<tr>
<td>A axis No.</td>
<td>N data No.</td>
<td>S word type data</td>
</tr>
<tr>
<td>A axis No.</td>
<td>N data No.</td>
<td>L 2 word type data</td>
</tr>
</tbody>
</table>

G11 ; Data setting mode cancel (data setting completed)

There are 8 types of data formats according to the type of parameter (axis-common and axis-independent) and data type, as listed below.

With axis-common data

- Axis-common bit-type parameter: \(P_\text{major classification No.} \ N_\text{data No.} \ H{\square} \text{bit type data} \)
- Axis-common byte-type parameter: \(P_\text{major classification No.} \ N_\text{data No.} \ D \text{byte type data} \)
- Axis-common word-type parameter: \(P_\text{major classification No.} \ N_\text{data No.} \ S \text{word type data} \)
- Axis-common 2-word-type parameter: \(P_\text{major classification No.} \ N_\text{data No.} \ L \text{2 word type data} \)

With axis-independent data

- Axis-independent bit-type parameter: \(P_\text{A axis No.} \ N_\text{data No.} \ H{\square} \text{bit type data} \)
- Axis-independent byte-type parameter: \(P_\text{A axis No.} \ N_\text{data No.} \ D \text{byte type data} \)
- Axis-independent word-type parameter: \(P_\text{A axis No.} \ N_\text{data No.} \ S \text{word type data} \)
- Axis-independent 2-word-type parameter: \(P_\text{A axis No.} \ N_\text{data No.} \ L \text{2 word type data} \)

(Note 1) The sequence of addresses in a block must be as shown above.

(Note 2) Refer to Appendix Table 1 for the P, N No. correspondence table.

(Note 3) For a bit type parameter, the data type will be H□ (□ is a value between 0 and 7).

(Note 4) The axis No. is set in the following manner: 1st axis is 1, 2nd axis is 2, and so forth. When using multi-part systems, the 1st axis in each part system is set as 1, the second axis is set as 2, and so forth.

(Note 5) Command G10 L50, G11 in independent blocks. A program error (P33, P421) will occur if not commanded in independent blocks.

Example of program

(Example 1) When G10 L70 command

<table>
<thead>
<tr>
<th>G10 L70;</th>
<th>P6401 H71 ;</th>
<th>Sets “1” to “#6401 bit7”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8204 S1 A2 D1.234 ;</td>
<td>Sets “1.234” to #8204 of the 1st part system 2nd axis.</td>
<td></td>
</tr>
<tr>
<td>P8621 <X> ;</td>
<td>Sets “x” to “#8621”.</td>
<td></td>
</tr>
<tr>
<td>G11.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Example 2) When G10 L50 command

<table>
<thead>
<tr>
<th>G10 L50 ;</th>
<th>P 8 N1 H21 ;</th>
<th>To turn ON bit 2 of bit selection #6401</th>
</tr>
</thead>
<tbody>
<tr>
<td>G11 ;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.16 Macro Interruption

Function and purpose

A user macro interruption signal (UIT) is input from the machine to interrupt the program being currently executed and instead call another program and execute it. This is called the user macro interruption function.

Use of this function allows the program to operate flexibly enough to meet varying conditions.

Command format

```
M96 P__ H__ ;  User macro interruption enable
or M96 <File name> H__ ;
M96 User macro interruption command
P Interrupt program No.
<File name> File name
A file name can be specified instead of a program No.
In this case, enclose the file name with brackets <>.
(The file name can have up to 32 characters including the extension.)
H Interrupt sequence No.
```

```
M97  ;  User macro interruption disable
M97 User macro interruption end command
```

The user macro interruption function is enabled and disabled by the M96 and M97 commands programmed to make the user macro interrupt signal (UIT) valid or invalid. That is, if an interrupt signal (UIT) is input from the machine side in a user macro interruption enable period from when M96 is issued to when M97 is issued or the NC is reset, a user macro interruption is caused to execute the program specified by P__ instead of the one being executed currently.

Another interrupt signal (UIT) is ignored while one user macro interruption is being in service. It is also ignored in a user macro interrupt disable state such as after an M97 command is issued or the system is reset.

M96 and M97 are processed internally as user macro interruption control M codes.

Interrupt enable conditions

A user macro interruption is enabled only during execution of a program. The requirements for the user macro interrupt are as follows:

1. An automatic operation mode or MDI has been selected.
2. The system is running in automatic mode.
3. No user macro interruption is being processed.

(Note 1) A macro interruption is disabled in manual operation mode (JOG, STEP, HANDLE, etc.)
13. Program Support Functions

13.16 Macro Interruption

Outline of operation

(1) When a user macro interruption signal (UIT) is input after an M96 Pp1 ; command is issued by the current program, interrupt program Op1 is executed. When an M99 ; command is issued by the interrupt program, control returns to the main program.

(2) When M99 Pp2; is issued, the blocks from the one next to the interrupted block to the last block are searched. If it is not found, all of the blocks before the interrupted one are searched. The execution block returns to the first block with sequence No. Np2.
Interrupt types 1 and 2 can be selected by the parameter "#1113 INT_2".

[Type 1]
- When an interrupt signal (UIT) is input, the system immediately stops moving the tool and interrupts dwell, then permits the interrupt program to run.
- If the interrupt program contains a move or miscellaneous function (MSTB) command, the commands in the interrupted block are lost. After the interrupt program completes, the main program resumes operation from the block next to the interrupted one.
- If the interrupted program contains no move and miscellaneous (MSTB) commands, it resumes operation, after completion of the interrupt program, from the point in the block where the interrupt was caused.

If an interrupt signal (UIT) is input during execution of a miscellaneous function (MSTB) command, the NC system waits for a completion signal (FIN). The system thus executes a move or miscellaneous function (MSTB) command in the interrupt program only after input of FIN.

[Type 2]
- When an interrupt signal (UIT) is input, the interrupt program will be executed in parallel with the executing block.
- If the interrupt program contains a move or miscellaneous function (MSTB) command, the commands in the interrupted block are completed, then, these commands will be executed.
- If the interrupt program contains no move and miscellaneous function (MSTB) commands, the interrupt program is executed without interrupting execution of the current program.

However, if the interrupt program has not ended even after the execution of the original block is completed, the system may stop machining temporarily.
13. Program Support Functions

13.16 Macro Interruption

If the interrupt program contains a move or miscellaneous function command, the reset of block (2) is lost.

If the interrupted program contains no move and miscellaneous commands, it resumes operation from where it left in block (2), that is, all the reset commands.

If the interrupted program contains no move and miscellaneous commands, the interrupted program is kept executed in parallel to execution of the current program.

The move or miscellaneous command in the interrupt program is executed after completion of the current block.
13. Program Support Functions

13.16 Macro Interruption

Calling method

User macro interruption is classified into the following two types depending on the way an interrupt program is called. These two types of interrupt are selected by parameter "#1229 set01/bit0".

a. Subprogram type interrupt
b. Macro type interrupt

Both types of interrupt are included in calculation of the nest level. The subprograms and user macros called in the interrupt program are also included in calculation of the nest level.

<table>
<thead>
<tr>
<th>Subprogram type interrupt</th>
<th>The user macro interruption program is called as a subprogram. As with calling by M98, the local variable level remains unchanged before and after an interrupt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro type interrupt</td>
<td>The user macro interruption program is called as a user macro. As with calling by G65, the local variable level changes before and after an interrupt. No arguments in the main program can be passed to the interrupt program.</td>
</tr>
</tbody>
</table>

Acceptance of user macro interruption signal (UIT)

A user macro interruption signal (UIT) is accepted in the following two modes. These two modes are selected by a parameter "#1112 S_TRG".

a. Status trigger mode
b. Edge trigger mode

| Status trigger mode | The user macro interruption signal (UIT) is accepted as valid when it is ON. If the interrupt signal (UIT) is ON when the user macro interrupt function is enabled by M96, the interrupt program is activated. By keeping the interrupt signal (UIT) ON, the interrupt program can be executed repeatedly. |
| Edge trigger mode | The user macro interruption signal (UIT) is accepted as valid at its rising edge, that is, at the instance it turns ON. This mode is useful to execute an interrupt program once. |

User macro interruption signal (UIT)

![Diagram of User macro interruption signal (UIT)]

Accepting user macro interruption signal (UIT)
13. Program Support Functions

13.16 Macro Interruption

Returning from user macro interruption

M99 (P__) ;

An M99 command is issued in the interrupt program to return to the main program. Address P is used to specify the sequence No. of the return destination in the main program. The blocks from the one next to the interrupted block to the last one in the main program are first searched for the block with designated sequence No. If it is not found, all the blocks before the interrupted one are then searched. Control thus returns to the block with sequence No. that is found first in the above search.

(This is equivalent to M99 P__ used after M98 calling.)

Modal information affected by user macro interruption

If modal information is changed by the interrupt program, it is handled as follows after control returns from the interrupt program to the main program.

| Returning with M99 ; | The change of modal information by the interrupt program is invalidated and the original modal information is not restored. With interrupt type 1, however, if the interrupt program contains a move or miscellaneous function (MSTB) command, the original modal information is not restored. |
| Returning with M99 P__ ; | If the modal information is changed in the interrupt program, the modal information changed in the interrupt program will be applied even after returning to the main program. This is the same as when returning with M99P_; from a program called by M98, etc. |

![Modal information affected by user macro interruption](image-url)
13. Program Support Functions

13.16 Macro Interruption

Modal information variables (#4401 to #4520)

Modal information when control passes to the user macro interruption program can be known by reading system variables #4401 to #4520. The unit specified with a command applies.

<table>
<thead>
<tr>
<th>System variable</th>
<th>Modal information</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4401 to #4421</td>
<td>G code (group 01 to group 21)</td>
</tr>
<tr>
<td>#4507</td>
<td>D code</td>
</tr>
<tr>
<td>#4509</td>
<td>F code</td>
</tr>
<tr>
<td>#4511</td>
<td>H code</td>
</tr>
<tr>
<td>#4513</td>
<td>M code</td>
</tr>
<tr>
<td>#4514</td>
<td>Sequence No.</td>
</tr>
<tr>
<td>#4515</td>
<td>Program No. (Note 1)</td>
</tr>
<tr>
<td>#4519</td>
<td>S code</td>
</tr>
<tr>
<td>#4520</td>
<td>T code</td>
</tr>
</tbody>
</table>

Some groups are not used.

The above system variables are available only in the user macro interruption program. If they are used in other programs, program error (P241) results.

(Note 1) The programs are registered as files. When the program No. (file name) is read with #4515, the character string will be converted to a value.

(Example 1) The file name "123" is the character string 0×31, 0×32, 0×33, so the value will be (0×31–0×30)*100 + (0×32–0×30)*10 + (0×33–0×30) = 123.0. Note that if the file name contains characters other than numbers, it will be "blank".

(Example 2) If the file name is "123ABC", it contains characters other than numbers, so the result will be "blank".

M code for control of user macro interruption

The user macro interruption is controlled by M96 and M97. However, these commands may have been used for other operation. To be prepared for such case, these command functions can be assigned to other M codes. (This invalidates program compatibility.)

User macro interruption control with alternate M codes is possible by setting the alternate M code in parameters "#1110 M96_M" and "#1111 M97_M" and by validating the setting by selecting parameter "#1109 subs_M". (M codes 03 to 97 except 30 are available for this purpose.)

If the parameter "#1109 subs_M" used to enable the alternate M codes is not selected, the M96 and M97 codes remain effective for user macro interruption control. In either case, the M codes for user macro interruption control are processed internally and not output to the outside.
Parameters

1. **Subprogram call validity

 1: Subprogram type user macro interruption
 0: Macro type user macro interruption**

2. **Status trigger mode validity

 1: Status trigger mode
 0: Edge trigger mode**

3. **Interrupt type 2 validity

 1: The executable statements in the interrupt program are executed after completion of execution of the current block. (Type 2)
 0: The executable statements in the interrupt program are executed before completion of execution of the current block. (Type 1)**

4. **Validity of alternate M code for user macro interruption control

 1: Valid
 0: Invalid**

5. **Alternate M codes for user macro interruption

 - Interrupt enable M code (equivalent to M96)

 1110 M96_M
 - Interrupt disable M code (equivalent to M97)

 1111 M97_M**

Restrictions

1. If the user macro interruption program uses system variables #5001 and after (position information) to read coordinates, the coordinates pre-read in the buffer are used.

2. If an interrupt is caused during execution of the tool diameter compensation, a sequence No. (M99 P__;) must be specified with a command to return from the user macro interruption program. If no sequence No. is specified, control cannot return to the main program normally.
13.17 Tool Change Position Return; G30.1 to G30.5

Function and purpose

By specifying the tool change position in a parameter "#8206 tool change" and also specifying a tool change position return command in a machining program, the tool can be changed at the most appropriate position.

The axes that are going to return to the tool change position and the order in which the axes begin to return can be changed by commands.

Command format

(1) The format of tool change position return commands is as follows.

\[\text{G30.n ;} \]
\[n = 1 \text{ to } 5 \quad \text{Specify the axes that return to the tool change position and the order in which they return.} \]

<table>
<thead>
<tr>
<th>Command</th>
<th>Return order</th>
</tr>
</thead>
<tbody>
<tr>
<td>G30.1</td>
<td>X axis only (→ additional axis)</td>
</tr>
<tr>
<td>G30.2</td>
<td>Z axis only (→ additional axis)</td>
</tr>
<tr>
<td>G30.3</td>
<td>X axis → Z axis (→ additional axis)</td>
</tr>
<tr>
<td>G30.4</td>
<td>Z axis → X axis (→ additional axis)</td>
</tr>
<tr>
<td>G30.5</td>
<td>X axis • Z axis (→ additional axis)</td>
</tr>
</tbody>
</table>

(Note 1) An arrow (→) indicates the order of axes that begin to return. A period (•) indicates that the axes begin to return simultaneously.

Example: "Z axis → X axis" indicate that the Z axis returns to the tool change position, then the X axis does.

(2) The tool change position return on/off for the additional axis can be set with parameter "#1092 Tchg_A" for the additional axis. For the order for returning to the tool change position, the axes return after the standard axis completes the return to the tool change position (refer to above table). For specifications having two additional axes, the two additional axes simultaneously return to the tool change position after the standard axis has finished its return to the tool change position.

The additional axis alone cannot return to the tool change position.

(3) When the axis address is commanded in the same block as the tool change position return command, the program error (P33) will occur.
(1) The following drawing shows an example of operation during a tool change position return command.

(a) G30.1 command:
X axis only returns to the tool change position. (If the tool change position return is validated for the additional axis, the additional axis also returns to the tool change position after the X axis reaches the tool change position.)

(b) G30.2 command:
Z axis only returns to the tool change position. (If the tool change position return is validated for the additional axis, the additional axis also returns to the tool change position after the Z axis reaches the tool change position.)

(c) G30.3 command:
X axis returns to the tool change position, then the Z axis does the same thing. (If the tool change position return is validated for the additional axis, the additional axis also returns to the tool change position after the X and Z axes reaches the tool change position.)

(d) G30.4 command:
Z axis returns to the tool change position, then the X axis does the same thing. (If the tool change position return is validated for the additional axis, the additional axis also returns to the tool change position after the X and Z axes reaches the tool change position.)

(e) G30.5 command:
X and Z axes return to the tool change position simultaneously. (If the tool change position return is validated for the additional axis, the additional axis also returns to the tool change position after the X and Z axes reaches the tool change position.)
(2) After all necessary tool change position return is completed by a G30.n command, tool change position return complete signal TCP (XC93) is turned ON. When an axis out of those having returned to the tool change position by a G30.n command leaves the tool change position, the TCP signal is turned OFF.

(With a G30.3 command, for example, the TCP signal is turned ON when the Z axis has reached the tool change position after the X axis did (after the additional axis did if additional axis tool change position return is valid). The TCP signal is then turned OFF when the X or Z axis leaves the position. If tool change position return for additional axes is ON with parameter "#1092 Tchg_A", the TCP signal is turned ON when the additional axis or axes have reached the tool change position after the standard axes did. It is then turned OFF when one of the X, Z, and additional axes leaves the position.)

<table>
<thead>
<tr>
<th>TCP signal output timing chart</th>
<th>(G30.3 command with tool change position return for additional axes set ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machining program</td>
<td></td>
</tr>
<tr>
<td>Arrival of X axis to tool</td>
<td></td>
</tr>
<tr>
<td>change position</td>
<td></td>
</tr>
<tr>
<td>Arrival of Z axis to tool</td>
<td></td>
</tr>
<tr>
<td>change position</td>
<td></td>
</tr>
<tr>
<td>Arrival of additional axis to</td>
<td></td>
</tr>
<tr>
<td>tool change position</td>
<td></td>
</tr>
<tr>
<td>Tool change position return</td>
<td></td>
</tr>
<tr>
<td>complete signal (TCP)</td>
<td></td>
</tr>
</tbody>
</table>

(3) Tool compensation data such as tool length offset and tool nose wear compensation are temporarily canceled by the tool change position return command. The machine moves to the tool change position set in the parameters, but because the tool compensation amount is stored in the memory, it moves by the next movement command to a position with the tool compensation applied.

(4) This command is executed by dividing blocks for every axis. If this command is issued during single-block operation, therefore, a block stop occurs each time one axis returns to the tool change position. To make the next axis tool change position return, therefore, a cycle start needs to be specified.
13.18 Balance Cut; G15, G14

Function and purpose

The timing for starting the operation of the 1st part system turret and part 2nd part system turret can be synchronized.

![Diagram of turret and workpiece](image)

When machining a relatively thin and long workpiece with a lathe, the workpiece could slack, and highly accurate machining may not be possible. In this case, if the cutters are applied simultaneously from both sides of the workpiece and the workpiece is machined while synchronizing these (balance cut), the slack can be suppressed. Furthermore, the machining time can be shortened by machining with two cutters.

With this function, the movement of two turrets belonging to different part systems can be completely synchronized, so the following type of machining can be done easily.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G15 ;</td>
<td>Balance cut command ON (modal)</td>
</tr>
<tr>
<td>G14 ;</td>
<td>Balance cut command OFF (modal)</td>
</tr>
</tbody>
</table>

Detailed description

1. Command G15 and G14 in independent blocks.
2. G15 and G14 are modals. In the CNC's initial state, the G14 balance cut command is OFF.
3. When G15 is commanded, movement will standby at all cutting feed command blocks until G14 is commanded or until the modal information is cleared by the reset signal.
4. If G15 or G14 is commanded in one part system, movement will not advance until the same G code is commanded in the other part system.
5. When subprogram call, macro call or PLC interrupt is carried out, the cutting feed command in a block that configures the subprogram is handled as one block and will be synchronized.
6. After G14 is commanded in both part systems, 1st part system and 2nd part system will operate independently.
Example of operation

(1) Balance cut is turned ON with the G15 command.

(2) (3) The S command and rapid traverse command are not synchronized, so the operation will wait at (4).

(4) 1st part system will finish first, but since the next block is a cutting feed command, the operation will wait at the head of (5).

(5) Cutting will start with 1st part system and 2nd part system together.

(6) Balance cut is turned OFF with the G14 command.

(7) Each part system will operate independently after this.
Example of program

An example of a program for machining with a 1-spindle 2-turret CNC lathe while simultaneously applying the cutters from the top and bottom of a thin long workpiece using balance cut is shown below.

1st part system program

G28 XZ ;
S100 T0101 ;
G15 ;
G00 X15 Z-3 ;
G01 Z100 F0.2 ;
X50 Z120 ;
X52 ;
G14 ;
G28 XZ ;
M30 ;

2nd part system program

G28 XZ ;
T0101 ;
G15 ;
G00 X15 Z-3 ;
G01 Z100 F0.2 ;
X50 Z120 ;
X52 ;
G14 ;
G28 XZ ;
M30 ;
13. Program Support Functions

13.18 Balance Cut

Precautions and restrictions

(1) Synchronization during movement
This function simultaneously starts cutting feed for both part systems. The following synchronization will change according to the movement amount and feed rate, etc., and thus cannot be guaranteed. To move in complete synchronization, the movement amount and feed rate must be set to the same values. Note that even if the previous conditions match, there may be cases when accurate machining, such as thread cutting, is not possible.

(2) Number of cutting feed blocks in balance cut mode
If G14 is commanded in one part system first and the other part system is in cutting feed, the first part system will enter the synchronization standby state. Operation cannot be advanced to the next blocks in this case. When commanding balance cut, make sure that the same number of cutting feed blocks are set between the 1st part system and 2nd part system mode ON and mode OFF states.

<table>
<thead>
<tr>
<th><1st part system></th>
<th><2nd part system></th>
</tr>
</thead>
<tbody>
<tr>
<td>N20 G15</td>
<td>N20 G15</td>
</tr>
<tr>
<td>N30 G00 X40. Z0.</td>
<td>N30 G00 X-40. Z250.</td>
</tr>
<tr>
<td>N40 G01 W-30. F1000</td>
<td>N40 G01 W-130. F500</td>
</tr>
<tr>
<td>N60 G01 W-20.</td>
<td>N60 G14</td>
</tr>
<tr>
<td>N70 G14</td>
<td>N70 S200</td>
</tr>
<tr>
<td>N80 G01 X120. Z30.</td>
<td>N80 G00 X-100.</td>
</tr>
</tbody>
</table>

The balance cut mode is canceled with G14 on the 2nd part system side first, so 1st part system enters the synchronization standby state. The synchronization standby state will also be entered when only one part system has been reset.

(3) Use with synchronization between part systems command
If one part system is standing by for synchronization with the synchronization between part systems command and the other part system enters the synchronization standby state with the G15 command, both part systems will be in the standby state, and will not shift to the next block. Command so that standby for synchronization with G15 and standby for synchronization with the synchronization between part systems command do not occur simultaneously.

(4) Synchronization between part systems command during balance cutting mode
When the synchronization between part systems command is issued during the balance cut mode, that is handled as a command of one block without movement and will not be synchronized.

(5) Conditions for alarm with G15 and G14
(a) For one part system
A program error (P34) will occur if G15 or G14 is commanded in one part system.
(b) Command during milling
A program error (P481) will occur if G15 or G14 is commanded during the milling mode.

(6) Conditions for ignoring G15 and G14
If G14 is commanded when G15 is not commanded (when balance cut is OFF), the G14 block will be handled as one that has no process.
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

CAUTION

⚠️ When programming a multi-part system, carefully observe the movements caused by other part systems' programs.

13.19.1 Synchronization Standby Code (! code)

Function and purpose

The multi-axis, multi-part system complex control NC system can simultaneously run multiple machining programs independently. The synchronization-between-part systems function is used in cases when, at some particular point during operation, the operations of 1st and 2nd part systems are to be synchronized or in cases when the operation of only one part system is required.

<table>
<thead>
<tr>
<th>1st part system machining program</th>
<th>2nd part system machining program</th>
</tr>
</thead>
<tbody>
<tr>
<td>!;</td>
<td>!;</td>
</tr>
<tr>
<td></td>
<td>!;</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>!;</td>
</tr>
<tr>
<td>!;</td>
<td>!;</td>
</tr>
<tr>
<td>No program</td>
<td>!;</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Program Support Functions
13.19 Synchronizing Operation between Part Systems

Command format

```
!L__; 
L       : Synchronizing No. 1 to 9999
```

Detailed description

(1) If !L__ is commanded from one part system, operation of the first part system's program will wait until !L__ is commanded from the other part system's program. When !L__ is commanded, the programs for the two part systems will start simultaneously.
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

(2) The synchronizing command is normally issued in a single block. However, if a movement command or M, S or T command is issued in the same block, whether to synchronize after the movement command or M, S or T command or to execute the movement command or M, S or T command after synchronization will depend on the parameter (#1093 Wmvfin).

#1093 Wmvfin
0: Synchronize before executing movement command.
1: Synchronize after executing movement command.

(3) If there is no movement command in the same block as the synchronizing command, when the next block movement starts, synchronization may not be secured between the part systems. To synchronize the part systems when movement starts after synchronization, issue the movement command in the same block as the synchronizing command.

(4) Synchronizing is done only while the part system to be synchronized is operating automatically. If this is not possible, the synchronizing command will be ignored and operation will advance to the next block.

(5) The L command is the synchronizing identification No. The same Nos. are synchronized but when they are omitted, the Nos. are handled as L0.

(6) "SYN" will appear in the operation status section during synchronization. The synchronizing signal will be output to the PLC I/F.

Example of synchronization between part systems

![Diagram of synchronization between part systems]

The above programs are executed as follows:

![Execution of programs]

523
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

13.19.2 Start Point Designation Synchronizing (Type 1); G115

Function and purpose

The part system can wait for the other part system to reach the start point before starting itself. The synchronization point can be set in the middle of a block.

Command format

<table>
<thead>
<tr>
<th>Command Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL__ G115 X__ Z__ C__ ;</td>
</tr>
<tr>
<td>IL</td>
</tr>
<tr>
<td>G115</td>
</tr>
<tr>
<td>X Z C</td>
</tr>
</tbody>
</table>

Detailed description

1. Designate the start point using the workpiece coordinates of the other part system.
2. The start point check is executed only for the axis designated by G115.
 (Example) IL2 G115 X100.;
 Once the other part system reaches X100., the own part system will start. The other axes are not checked.
3. The other part system starts first when synchronizing is executed.
4. The own part system waits for the other part system to move and reach the designated start point, and then starts.

Diagram: Synchronizing Operation between Part Systems

- Own part system
- Other part system
- Designated start point
- Synchronized operation
(5) When the start point designated by G115 is not on the next block movement path of the other part system, the own part system starts once the other part system has reached all of the start point axis coordinates.

(6) The waiting status continues when the G115 command has been duplicated between part systems.

(7) The single block stop function does not apply for the G115 block.

(8) A program error (P32) will occur if an address other than an axis is designated in G115 command block.
13.19.3 Start Point Designation Synchronization (Type 2); G116

Function and purpose

Starting of the other part system can be delayed until the own part system reaches the designated start point.
The synchronization point can be set in the middle of a block.

Command format

```
!L_ G116 X_ Z_ C_ ;
```

- **!L**: Synchronizing command
- **G116**: G command
- **X Z C**: Start point
 (Command axis and workpiece coordinate values for checking synchronization of own part system.)

Detailed description

1. Designate the start point using the workpiece coordinates of own part system.
2. The start point check is executed only for the axis designated by G116.

 (Example) `!L1 G116 X100.;`

 Once the own part system reaches X100., the other part system will start. The other axes are not checked.
3. The own part system starts first when synchronizing is performed.
4. The other part system waits for the own part system to move and reach the designated start point, and then starts.
(5) When the start point designated by G116 is not on the next block movement path of the own part system, the other part system starts once the own part system has reached all of the start point axis coordinates.

Example:

- Movement
- Command point
- Actual start point

(6) The waiting status continues when the G116 command has been duplicated between part systems.

(7) The single block stop function does not apply for the G116 block.

(8) A program error (P32) will occur if an address other than an axis is designated in G116 command block.
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

13.19.4 Synchronization Function Using M Codes

Function and purpose

The synchronization function between part systems is conventionally commanded with the "!" code, but by using this function, the part systems can be synchronized with the M code commanded in the machining program.

If the synchronization M code is commanded in either part system during automatic operation, the system will wait for the same M code to be commanded in the other part system before executing the next block.

The synchronization M code is used to control the synchronization between the 1st part system and 2nd part system. Whether the synchronization M code can be used is determined with the parameter settings.

Command format

M***;

*** Synchronization M code

The minimum and maximum values of the synchronization M code range are set beforehand in the parameters.

Detailed description

(1) When the synchronization M code is commanded in the machining program, the two part systems will be synchronized and operation will start in the commanded block. If the synchronization M code is commanded in either part system during automatic operation, the system will wait for the same M code to be commanded in the other part system before executing the next block.
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

(2) When the synchronization M code has been commanded in one part system, and the part system is standing by for synchronization, an alarm will occur if a different M code is commanded in the other part system.

(3) The part systems are synchronized with the M code following the parameters below.

(a) M code range designation parameter (M code minimum value ≤ M code ≤ M code maximum value)

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310</td>
<td>WtMmin</td>
<td>Minimum value for synchronization M code</td>
<td>0, 100 to 99999999</td>
</tr>
<tr>
<td>1311</td>
<td>WtMmax</td>
<td>Maximum value for synchronization M code</td>
<td>0, 100 to 99999999</td>
</tr>
</tbody>
</table>

Synchronization between part systems using the M code is valid when both of the above parameters are set to a value other than "0". (This function is invalid if either parameter is set to a value other than "0".)
The synchronization M code cannot be used if the M code maximum value is smaller than the minimum value.
When the synchronization M code is valid, both the M code and I code can be used for synchronization.
13. Program Support Functions

13.19 Synchronizing Operation between Part Systems

(b) Synchronization method parameters

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1279(PR)</td>
<td>ext15(bit0) Method for synchronization between part systems</td>
<td>Select an operation for synchronization between part systems. 0: If one of the part systems is not in automatic operation, ignore the synchronization command and execute the next block. 1: Operate according to the synchronization ignore signal. If the synchronization ignore signal is "1", the synchronization command will be ignored. If "0", the part systems will be synchronized.</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>

Depending on the synchronization method selection parameter and synchronization ignore signal combination, the synchronization operation will be determined by the parameters, regardless of the command format ("!" code and M code).

(c) Synchronization method pattern

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>Details</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1093</td>
<td>Wmvfin Method for synchronization between part systems</td>
<td>Designate the synchronization between part systems method when using multi-part systems. When there is a movement command in the synchronization command (!, M) block: 0: Synchronize before executing movement command 1: Synchronize after executing movement command</td>
<td>0 / 1</td>
</tr>
</tbody>
</table>

Precautions and restrictions

1. When synchronizing with the M code, always command the M code in an independent block.
2. When standing by after commanding the synchronization M code in one part system, an alarm will occur if a different M code is commanded in the other part system. Operation will stop in both part systems.
3. The M code in the machining program can be ignored with the synchronization ignore signal. Operation with a single part system is possible without deleting the M code in the machining program.
4. When the M code can be used, both the M code and ! code can be used.
5. While the synchronization M code is valid, if one part system is standing by with an M code, an alarm will occur if there is a ! code synchronization command in the other part system.
6. While the synchronization M code is valid, if one part system is standing by with a ! code, an alarm will occur if there is an M code synchronization command in the other part system.
7. The G115 and G116 commands cannot be used when synchronizing with the M code.
8. If the M code command Nos. are overlapped, the order of priority will be M code macro, M command synchronous tap, synchronization M code and normal M code.
13.20 2-part System Synchronous Thread Cutting Cycle

Function and purpose

The 2-part system synchronous thread cutting cycle function allows 1st part system and 2nd part system to perform thread cutting simultaneously for the same spindle. The 2-part system synchronous thread-cutting cycle has two command; the command (G76.1) for simultaneously cutting threads in two places, which is known as the "2-part system synchronous thread cutting cycle I" and the command (G76.2) for simultaneously cutting a thread by two part systems, which is known as the "2-part system synchronous thread cutting cycle II"

13.20.1 Parameter Setting Command

Command format

The various parameters for thread-cutting are set by commands.
Set the parameters in the block before 2-part system simultaneous thread-cutting cycle I or II is commanded.

G76 Pmra QΔmin Rd;

<table>
<thead>
<tr>
<th>Address</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Number of cutting passes for finishing</td>
</tr>
</tbody>
</table>
| r | Chamfering amount
This sets the chamfering width based on the thread lead 1 across a range from 0.0 to 9.9 with a 2-digit integer with the decimal point omitted. (00 to 99) |
| f | This selects the angle from 0° to 99° and commands the value in two digits. |
| a | Tool nose angle (thread angle) |
| Q | Minimum cut amount
If the calculated cut amount is smaller than Δmin, it is clamped by Δmin. |
| R | Finishing allowance |

Detailed description

(1) The data is set in machining parameters m: #8058, r: #8014, a: #8059 and d: #8057 for each part system.
(2) Issue the command for each part system.
(3) The parameter setting command can be omitted when "#1222 aux06/bit5" is set to "1".
(4) When "#1265 ext01/bit0" is "1", MELDAS special format will be applied. Therefore, program error (P33) will occur when the parameter setting commands.
(5) If the parameter setting command is omitted, the parameter setting values are used from #8014, #8057, #8058, #8059 settings. The minimum cut-in amount (Δmin) is followed the #1222/bit4 setting.
13. Program Support Functions

13.20 2-part System Synchronous Thread Cutting Cycle

13.20.2 2-part System Synchronous Thread Cutting Cycle I; G76.1

Command format

G76.1 X/U__ Z/W__ R__ P__ Q__ F__ ;

<table>
<thead>
<tr>
<th>X/U</th>
<th>X-axis end point coordinates of thread section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... The X-axis coordinates of the end point at the thread section are commanded with absolute or incremental values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z/W</th>
<th>Z-axis end point coordinates of thread section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... The Z-axis coordinates of the end point at the thread section are commanded with absolute or incremental values.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>Taper height component (radial value) at thread section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... A straight thread is created when R0 = 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Thread height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... The thread height is commanded with a positive radial value.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>Cut amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... The cut amount for the first cutting pass is commanded with a positive radial value.</td>
</tr>
</tbody>
</table>

| F | Thread lead |

Detailed description

(1) When G76.1 is issued by 1st part system and 2nd part system, synchronized operation is done until the command is issued to another part system. The thread-cutting cycle starts when the commands are aligned properly.

```
$1

\{  
  G00X_ Z_ ;  
  G76.1... ;  
\}  

$2

\{  
  G00X_ Z_ ;  
  G76.1... ;  
\}  
```
(2) In the G76.1 cycle, G76.1 is issued simultaneously by 1st part system and 2nd part system, and the thread is cut in synchronization at the start and end of thread-cutting.

(3) In one cycle, operation is synchronized at the start and end of the thread-cutting.

(4) The same precautions for thread-cutting command (G33), thread-cutting cycle (G78) and compound thread-cutting cycle (G76) apply to this cycle.

(5) As the threads are cut in two places by the G76.1 command, the various commands do not need to be the same. Each of them can be issued independently.
(6) Thread cutting controls the Z axis position while tracking the spindle encoder rotation. Thus, the relative relation of the spindle position detected by the spindle encoder and the Z axis will change with the following elements.

(a) Z axis feed rate (spindle rotation speed * screw pitch)
(b) Cutting feed acceleration/deceleration time constant
(c) Position loop gain

Thus, when cutting a multi-thread screw, the above conditions must be the same from the start to end of machining.

(7) This function is unmodal. So it needs to be commanded each time.

(8) G group 1 modal (G00, G01, G02, G03, G02.3, G03.3 etc.) is canceled temporarily during 2-part system synchronous thread cutting.

(9) Thread cutting start shift angle is not available in G76.1. A program error (P32) will occur if commanded.
13.20.3 2-part System Synchronous Thread Cutting Cycle II; G76.2

Command format

\[
\text{G76.2 X/U__ Z/W__ R__ P__ Q__ Aa F__ ;}
\]

(1) Thread cutting start shift angle

The thread cutting command starts movement after waiting for the spindle encoder's one rotation synchronization signal. However, the start point can be delayed by the a° amount.

\[a°: \text{Thread cutting start angle}\]

The meanings of the addresses other than A are the same as the 2-part system synchronous thread cutting cycle I.

Detailed description

(1) When G76.2 is issued by 1st part system and 2nd part system, synchronized operation is done until the command is issued to another system. The thread-cutting cycle starts when the commands are aligned properly.
(2) G76.2 assumes the same thread cutting, and deeply cuts in with the cutting amount using 1st part system and 2nd part system alternately.

(1) Cutting with 1st part system
(2) Cutting with 2nd part system

Finishing allowance d

\[d \times n \]

\[\Delta d \times \sqrt{n} \]
13. Program Support Functions

13.20 2-part System Synchronous Thread Cutting Cycle

(3) In one cycle, operation is synchronized at the start and end of the thread-cutting.

![Diagram showing synchronized operation]

(4) The same precautions for thread-cutting command (G33), thread-cutting cycle (G78) and compound thread-cutting cycle (G76) apply to this cycle.

(5) G76.2 is the same thread cutting, so the various parameters, thread section, taper height, screw thread height, cutting amount and thread lead must be commanded to the same values for 1st part system and 2nd part system.

Note that the start shift angle can be commanded to match the thread cutting state.

(6) Thread cutting controls the Z axis position while tracking the spindle encoder rotation. Thus, the relative relation of the spindle position detected by the spindle encoder and the Z axis will change with the following elements.

(a) Z axis feed rate (spindle rotation speed * screw pitch)

(b) Cutting feed acceleration/deceleration time constant

(c) Position loop gain

Thus, with G76.2 which is same thread cutting, the parameters must be set so that the conditions are the same for 1st part system and 2nd part system.

(7) Thread cutting start shift angle command

As shown on the left, if the 1st part system and 2nd part system blades oppose at 180°, the 1st part system and 2nd part system thread cutting start shift angle difference is set to 180°.

(Example)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdot)</td>
<td>(\cdot)</td>
</tr>
</tbody>
</table>

\[
G76.2X_{-}Z_{-}A0.; \quad G76.2X_{-}Z_{-}A180.;
\]

\[
\cdot \quad \cdot
\]
(8) When G76.2 and G76.1 are commanded
 The part systems, in which each are commanded, will carry out the G76.1 and G76.2
 movements. However, the part system in which G76.2 is commanded will assume that the
 other part system is using G76.2 when cutting the threads, so the thread grooves will not be
 guaranteed.

(9) This function is unmodal. So it needs to be commanded each time.

(10) G group 1 modal (G00, G01, G02, G03, G02.3, G03.3 etc.) is canceled temporarily during
 2-part system synchronous thread cutting.

(11) Reset simultaneously for 1st part system and 2nd part system during 2-part system
 synchronous thread cutting cycle II (G76.2).
 If reset is individually executed for each part system, the part system is not in automatic
 operation. Thus, the other part system keeps moving according to #1279 setting.
13.21 2-part System Simultaneous Thread-cutting Cycle (MELDAS special format)

Function and purpose

The 2-part system simultaneous thread-cutting cycle function allows 1st part system and 2nd part system to perform thread-cutting simultaneously for the same spindle. Featured in this cycle is the command (G76.1) for simultaneously cutting threads in two places, which is known as the "2-part system simultaneous thread-cutting cycle I".

When using the MELDAS special format (#1265 ext01/bit1 ON), some addresses differ from the normal format. The sections that differ from the normal format are shown below.

Refer to section "13.21 2-part System Simultaneous Thread-cutting Cycle" for details on the 2-part system simultaneous thread-cutting cycle.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G76.1 X/U__ Z/W__ I__ K__ D__ F__ A__;</td>
<td></td>
</tr>
<tr>
<td>G76.2 X/U__ Z/W__ I__ K__ D__ Q__ F__ A__;</td>
<td></td>
</tr>
</tbody>
</table>

- **X/U**: X-axis end point coordinates of thread section
 - The X-axis coordinates of the end point at the thread section are commanded with absolute or incremental values.
- **Z/W**: Z-axis end point coordinates of thread section
 - The Z-axis coordinates of the end point at the thread section are commanded with absolute or incremental values.
- **I**: Taper height component (radial value) at thread section
 - A straight thread is created when I0 = 0.
- **K**: Thread height
 - The thread height is commanded with a positive radial value.
- **D**: Cut amount
 - The cut amount for the first cutting pass is commanded with a positive radial value.
- **Q**: Thread cutting start shift angle
- **F**: Thread lead
- **A**: Tool nose angle (thread angle)

(Note 1) This is 1 block command. It is not necessary to command "G76P__Q__R_" immediately before.

Precautions and restrictions

1. The switch of MELDAS special format and a normal format can be selected by setting "#1265/bit0": (0: Normal format, 1: MELDAS special format)
2. A program error (P33) will occur if a G76 P__Q__R_ command or a normal format is commanded when MELDAS special format is selected.
13. Program Support Functions
13.21 2-part System Simultaneous Thread-cutting Cycle (MELDAS special format)

Comparison of MELDAS special format and normal format

<table>
<thead>
<tr>
<th>MELDAS special format</th>
<th>Normal format</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)G76 Pmra Q_ R_;(2)G76.1/G76.2X_ Z_ R_ P_ Q_ A_ F_;</td>
<td>G76.1 /G76.2 X_ Z_ I_ K_ D_ Q_ F_ A_;</td>
<td>Command format</td>
</tr>
<tr>
<td>(2)X/U</td>
<td>X/U</td>
<td>X-axis end point coordinates of thread section</td>
</tr>
<tr>
<td>(2)Z/W</td>
<td>Z/W</td>
<td>Z-axis end point coordinates of thread section</td>
</tr>
<tr>
<td>(2)I</td>
<td>I</td>
<td>Taper height component (radial value) at thread section</td>
</tr>
<tr>
<td>(2)P</td>
<td>K</td>
<td>Thread height</td>
</tr>
<tr>
<td>(2)Q</td>
<td>D</td>
<td>Cut amount</td>
</tr>
<tr>
<td>(2)A</td>
<td>Q</td>
<td>Thread cutting start shift angle</td>
</tr>
<tr>
<td>(2)F</td>
<td>F</td>
<td>Thread lead</td>
</tr>
<tr>
<td>(1)Q</td>
<td>None</td>
<td>Minimum cut amount</td>
</tr>
<tr>
<td>[When omitting : #1222/bit4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)Pa</td>
<td>A</td>
<td>Tool nose angle (thread angle)</td>
</tr>
<tr>
<td>[Reversible parameter #8059]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)Pm</td>
<td>Parameter #8058</td>
<td>Number of cutting passes for finishing</td>
</tr>
<tr>
<td>[Reversible parameter #8058]</td>
<td>#8058</td>
<td>Chamfering amount</td>
</tr>
<tr>
<td>(1)Pr</td>
<td>#8014</td>
<td></td>
</tr>
<tr>
<td>[Reversible parameter #8014]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)R</td>
<td>#8057</td>
<td>Finishing allowance</td>
</tr>
<tr>
<td>[Reversible parameter #8057]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relation with other functions

The modals must be set as shown below when commanding 2-part system synchronous thread cutting.

<table>
<thead>
<tr>
<th>Function</th>
<th>G code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical interpolation cancel</td>
<td>G07.1</td>
</tr>
<tr>
<td>Polar coordinate interpolation cancel</td>
<td>G13.1</td>
</tr>
<tr>
<td>Balance cut OFF</td>
<td>G14</td>
</tr>
<tr>
<td>Tool nose radius compensation cancel</td>
<td>G40</td>
</tr>
<tr>
<td>Mirror image by parameter setting</td>
<td>Cancel</td>
</tr>
<tr>
<td>Mirror image by external input</td>
<td>Cancel</td>
</tr>
<tr>
<td>Polygon machining mode cancel</td>
<td>G50.2</td>
</tr>
<tr>
<td>Constant surface speed control mode cancel</td>
<td>G97</td>
</tr>
</tbody>
</table>
14. Coordinate System Setting Functions

14.1 Coordinate Words and Control Axes

Function and purpose

In the case of a lathe, the axis parallel to the spindle is known as the Z axis and its forward direction is the direction in which the turret moves away from the spindle stock while the axis at right angle to the Z axis is the X axis and its forward direction is the direction in which it moves away from the Z axis, as shown in the figure below.

Since coordinates based on the right hand rule are used with a lathe, the forward direction of the Y axis in the above figure which is at right angles to the X-Z plane is downward. It should be borne in mind that an arc on the X-Z plane is expressed as clockwise or counterclockwise as seen from the forward direction of the Y axis. (Refer to the section on circular interpolation.)
14.2 Basic Machine, Workpiece and Local Coordinate Systems

Function and purpose

The basic machine coordinate system is fixed in the machine and it denotes that position which is determined inherently by the machine.

The workpiece coordinate systems are used for programming and in these systems the basic point on the workpiece is set as the coordinate zero point.

The local coordinate systems are created on the workpiece coordinate systems and they are designed to facilitate the programs for parts machining.

Upon completion of the reference position return, the basic machine coordinate system and workpiece coordinate systems (G54 to G59) are automatically set with reference to the parameters.

The basic machine coordinate system is set so that the first reference position is brought to the position specified by the parameter from the basic machine coordinate zero point (machine zero point).

The local coordinate systems (G52) are valid on the coordinate systems designated by workpiece coordinate systems 1 to 6.

The hypothetical machine coordinate system can be set on the basic machine coordinate system using a G92 command. At this time, the workpiece coordinate system 1 to 6 is also simultaneously shifted.
14.3 Machine Zero Point and 2nd Reference Position (Zero point)

Function and purpose

The machine zero point serves as the reference for the basic machine coordinate system. It is inherent to the machine and is determined by the reference position (zero point) return. The 2nd reference position (zero point) relates to the position of the coordinates which have been set beforehand by parameter from the basic machine coordinate system zero point.
14. Coordinate System Setting Functions

14.4 Automatic Coordinate System Setting

Function and purpose

When the tool has arrived at the reference position by dog-type reference position return after the CNC's power has been turned ON, this function create the various coordinate systems in accordance with the parameter values input beforehand from the setting and display unit. The actual machining program is programmed over the coordinate systems which have been set above.

![Diagram of coordinate systems]

Detailed description

1. The coordinate systems created by this function are as follows:
 a. Basic machine coordinate system
 b. Workpiece coordinate systems (G54 to G59)
 - The local coordinate system (G52) is canceled.

2. The coordinate related parameters all provide the distance from the basic machine coordinate system zero point. Therefore it is decided at which position in the basic machine coordinate system the 1st reference position should be set and then the zero point positions of the workpiece coordinate systems are set.

3. When the automatic coordinate system setting function is executed, the following functions are canceled: workpiece coordinate system shift based on G92, local coordinate system setting based on G52, workpiece coordinate system shift based on origin setting and workpiece coordinate system shift based on manual interruption.

4. When a parameter has been used to select the dog-type of first manual reference position return or automatic reference position return after the power has been turned ON, the dog-type reference position return will be executed for the 2nd and subsequent manual reference position returns or automatic reference position returns.

CAUTION

⚠️ If the workpiece coordinate offset amount is changed during automatic operation (including single block operation), the changes will be valid from the next block of the command several blocks later.
14.5 Basic Machine Coordinate System Selection; G53

Function and purpose

The tool is moved to a command position in the basic machine coordinate system, using a G53 command and feed mode command (G01 or G00) and the coordinate command following them.

Command format

\[
\begin{align*}
\text{G53 G00 } & \quad \text{X}_ \text{Z}_ \alpha ; \\
\text{G53 G00 } & \quad \text{U}_ \text{W}_ \beta ;
\end{align*}
\]

where

- \(\alpha \) Additional axis
- \(\beta \) Incremental command of the additional axis

Detailed description

(1) When the power is turned ON, the basic machine coordinate system is automatically set as referenced to the reference position (zero point) return position, which is determined by the automatic or manual reference position (zero point) return.

(2) The basic machine coordinate system is not changed by the G92 command.

(3) The G53 command is valid only in the block in which it has been designated.

(4) When an incremental value is issued (U, W, \(\beta \)), the axis will move with the incremental value within the selected coordinate system.

(5) The 1st reference position coordinates denote the distance from the basic machine coordinate system zero point to the reference position (zero point) return position.

(6) The G53 command will move with cutting feedrate or rapid traverse following command modal.

![Diagram showing the basic machine coordinate system and reference position](image)
14.6 Coordinate System Setting; G92

Function and purpose

This function places the tool at the desired position, and the coordinate system is set by assigning the coordinate system setting command G92 at that position. This system can be set as desired though normally the X and Y axes are set so that the workpiece center serves as the zero point and the Z axis is set so that the workpiece end serves as the zero point.

Command format

```
G92 Xx2 Zz2 \alpha a2 ;
```

\(\alpha \) Additional axis

Detailed description

1. The basic machine coordinate system is shifted by the G92 command, the hypothetical machine coordinate system is created, and at the same time all workpiece coordinate systems 1 to 6 are also shifted.

2. When G92 and S or Q are assigned, the spindle clamp rotation speed is set. (Refer to the section on setting the spindle clamp rotation speed.)
14.7 Reference Position (Zero point) Return; G28, G29

Function and purpose

(1) After the commanded axes have been positioned by G0, they are returned respectively at rapid traverse to the 1st reference position (zero point) when G28 is commanded.

(2) By commanding G29, the axes are first positioned independently at high speed to the G28 or G30 intermediate point and then positioned by G0 at the commanded position.

Command format

- **G28 Xx₁ Zz₁ α₁;** Automatic reference position return
- **G29 Xx₂ Zz₂ α₂;** Start position return
- α₁/α₂ Additional axis
14. Coordinate System Setting Functions

14.7 Reference Position (Zero point) Return

Detailed description

(1) The G28 command is equivalent to the following:

\[
\begin{align*}
G00 & \text{ } Xx_1 \text{ } Zz_1 \text{ } \alpha_1 ; \\
G00 & \text{ } Xx_3 \text{ } Zz_3 \text{ } \alpha_3 ;
\end{align*}
\]

In this case, \(x_3, z_3\) and \(\alpha_3\) are the reference position coordinates and they are set by parameters "#2037 G53ofs" as the distance from the basic machine coordinate system zero point.

(2) After the power has been turned ON, the axes which have not been subject to manual reference position (zero point) return are returned by the dog-type of return just as with the manual type. In this case, the return direction is regarded as the command sign direction. For the second and subsequent returns, the return is made at high speed to the reference position (zero point) which was stored at the first time.

(3) When reference position (zero point) return is completed, the zero point arrival output signal is output and also #1 appears at the axis name line on the setting and display unit screen.

(4) The G29 command is equivalent to the following:

\[
\begin{align*}
G00 & \text{ } Xx_1 \text{ } Zz_1 \text{ } \alpha_1 ; \\
G00 & \text{ } Xx_2 \text{ } Zz_2 \text{ } \alpha_2 ;
\end{align*}
\]

The rapid traverse (non-interpolation type) independent for each axis takes place.

In this case, \(x_1, z_1\) and \(\alpha_1\) are the coordinate value of the G28 or G30 intermediate point.

(5) Program error (P430) results when G29 is executed when automatic reference position (zero point) return (G28) is not performed after the power has been turned ON.

(6) The intermediate point coordinate value \((x_1, z_1, \alpha_1)\) of the positioning point are assigned by absolute/incremental value commands.

(7) G29 is valid for either G28 or G30 but the commanded axes are positioned after a return has been made to the latest intermediate point.

(8) The tool offset will be temporarily canceled during reference position return unless it is already canceled, and the intermediate point will be the offset position.

(9) The intermediate point can also be ignored by parameter "#1091 Mpoint" setting.

(10) Control from the intermediate point to the reference position (zero point) is ignored for reference position (zero point) return in the machine lock status. The next block is executed when the commanded axis survives as far as the intermediate point.

(11) Mirror image is valid from the start point to the intermediate point during reference position (zero point) return in the mirror image mode and the tool will move in the opposite direction to that of the command. However, mirror image is ignored from the intermediate point to the reference position (zero point) and the tool will move to the reference position (zero point).
Example of program

(Example 1) G28 Xx1 Zz1 ;

Reference (zero) position (#1)

1st operation after power has been turned ON

2nd and subsequent operations

G0 Xx3 Zz3 ;

Intermediate point (x1, z1)

G0Xx1 Zz1 ;

Return start position

Rapid traverse rate

1st operation after power has been turned ON

2nd and subsequent operations

Near-point dog

Reference (zero) position (#1)
14. Coordinate System Setting Functions

14.7 Reference Position (Zero point) Return

(Example 2) G29 Xx₂ Zz₂ ;

(G0) Xx₁ Zz₁ ;

G28, G30 intermediate point (x₁, z₁)

G0 Xx₁ Zz₁ ;

(x₂, z₂)

(Example 3) G28 Xx₁ Zz₁ ;

: (From point A to reference (zero) position)

G30 Xx₂ Zz₂ ;

: (From point B to 2nd reference (zero) position)

G29 Xx₃ Zz₃ ;

(From point C to point D)

Present position

Reference (zero) position (#1)

New intermediate point

(x₂, z₂)

Old intermediate point (x₁, z₁)

G29

2nd reference (zero) position (#2)

R₁

D

R₂

C

B

A

G28

G30

G29
14.8 2nd, 3rd, and 4th Reference Position (Zero point) Return; G30

Function and purpose

The tool can return to the 2nd, 3rd, or 4th reference position (zero point) by specifying G30 P2 (P3 or P4).

Command format

G30 P2 (P3, P4) Xx1 Zz1 αα1 ;

αα1 Additional axis
14. Coordinate System Setting Functions

14.8 2nd, 3rd, and 4th Reference Position (Zero point) Return

Detailed description

1. The 2nd, 3rd, or 4th reference position (zero point) return is specified by P2, P3, or P4. A command without P or with P0, P1, P5 or a greater P number is ignored, returning the tool to the 2nd reference position (zero point).

2. In the 2nd, 3rd, or 4th reference position (zero point) return mode, as in the 1st reference position (zero point) return mode, the tool returns to the 2nd, 3rd, or 4th reference position (zero point) via the intermediate point specified by G30.

3. The 2nd, 3rd, and 4th reference position (zero point) coordinates refer to the positions specific to the machine, and these can be checked with the setting and display unit.

4. If G29 is specified after completion of returning to the 2nd, 3rd, and 4th reference position (zero point), the intermediate position used last is used as the intermediate position for returning by G29.

5. With reference position (zero point) return on a plane during compensation, the tool moves without tool nose radius compensation (zero compensation) from the intermediate point as far as the reference position (zero point). With a subsequent G29 command, the tool move without tool nose radius compensation from the reference position (zero point) to the intermediate point and it move with such compensation until the G29 command from the intermediate point.
(6) The tool length offset amount for the axis involved is canceled temporarily after the 2nd, 3rd and 4th reference position (zero point) return.

(7) With the 2nd, 3rd and 4th reference position (zero point) return in the machine lock status, control from the intermediate point to the reference position (zero point) will be ignored. When the designated axis reaches as far as the intermediate point, the next block will be executed.

(8) With the 2nd, 3rd and 4th reference position (zero point) return in the mirror image mode mirror image will be valid from the start point to the intermediate point and the tool will move in the opposite direction to that of the command. However, mirror image is ignored from the intermediate point to the reference position (zero point) and the tool moves to the reference position (zero point).
14.9 Reference Position Collation; G27

Function and purpose

This command first positions the tool at the position assigned by the program and then, if that positioning point is the 1st reference position, it outputs the reference position arrival signal to the machine in the same way as with the G28 command. Therefore, when a machining program is prepared so that the tool will depart from the 1st reference position and return to the 1st reference position, it is possible to check whether the tool has returned to the reference position after the program has been run.

Command format

G27 X__ Z__ α__ P__ ;

G27 Collation command
X Z α Return control axis
P Collation No.
 P1 : 1st reference position collation
 P2 : 2nd reference position collation
 P3 : 3rd reference position collation
 P4 : 4th reference position collation

Detailed description

(1) If the P command has been omitted, the 1st reference position will be collated.
(2) The number of axes whose reference positions can be collated simultaneously depends on the number of axes which can be controlled simultaneously.
(3) An alarm will occur if the reference position is not reached after the command is completed.
14. Coordinate System Setting Functions

14.10 Workpiece Coordinate System Setting and Offset; G54 to G59 (G54.1)

Function and purpose

(1) The workpiece coordinate systems facilitate the programming on the workpiece, serving the basic point of the machining workpiece as the zero point.

(2) These commands enable the tool to move to the positions in the workpiece coordinate system. There are 6 workpiece coordinate systems which are used by the programmer for programming. (G54 to G59) In addition to the six sets of workpiece coordinate systems between G54 and G59, there are 48 additional workpiece coordinate system sets. (The 48 sets are options.)

(3) Among the workpiece coordinate systems currently selected by these commands, any workpiece coordinate system with coordinates which have been commanded by the present position of the tool is reset. (The "present position of the tool" includes the offset amounts for nose R, tool length and tool position offset.)

(4) An hypothetical machine coordinate system with coordinates which have been commanded by the present position of the tool is set by this command. (The "present position of the tool" includes the offset amounts for nose radius, tool length and tool position offset.) (G54 to G92)

Command format

(1) Workpiece coordinate system selection (G54 to G59)

\[
\text{G54 } \alpha\text{ } X _ _ Z _ _ \alpha_ ;
\]

\(\alpha\) Additional axis

(2) Workpiece coordinate system setting (G54 to G59)

\[
\text{(G54) G92 } \alpha\text{ } X _ _ Z _ _ \alpha_ ;
\]

\(\alpha\) Additional axis

(3) Workpiece coordinate system selection (P1 to P48)

\[
\text{G54.1 Pn ;}
\]

(4) Workpiece coordinate system setting (P1 to P48)

\[
\text{G54.1 Pn ;}
\text{G92 } \alpha\text{ } X _ _ Z _ _ ;
\]

(5) Workpiece coordinate system offset amount setting (P1 to P48)

When the designated extended workpiece coordinate system offset amount is rewritten

\[
\text{G10 L20 Pn } \alpha\text{ } X _ _ Z _ _ ;
\]

When the extended workpiece coordinate system is selected, and the offset amount is rewritten

\[
\text{G10 G54.1 Pn } \alpha\text{ } Y _ _ Z _ _ ;
\]
14. Coordinate System Setting Functions

14.10 Workpiece Coordinate System Setting and Offset

Detailed description

(1) With any of the G54 to G59 commands, the nose radius offset amounts for the commanded axes will not be canceled even if workpiece coordinate system selection is commanded.

(2) The G54 workpiece coordinate system is selected when the power is turned ON.

(3) Commands G54 to G59 are modal commands (group 12).

(4) The coordinate system will move with G92 in a workpiece coordinate system.

(5) The offset setting in a workpiece coordinate system denotes the distance from the basic machine coordinate system zero point.

(6) The offset settings of workpiece coordinate systems can be changed any number of times. (They can also be changed by G10 L2 Pp1 Xx1 Zz1.)

Handling when L or P is omitted

G10 L2 Pn Xx Zz ; n=0 : Set the offset amount in the external workpiece coordinate system.

n=1 to 6 : Set the offset amount in the designated workpiece coordinate system.

Others : The program error (P35) will occur.

G10 L2 Xx Zz ; Set the offset amount in the currently selected workpiece coordinate system.

When in G54.1 modal, the program error (P33) will occur.

G10 L20 Pn Xx Zz ; n=1 to 48 : Set the offset amount in the designated workpiece coordinate system.

Others : The program error (P35) will occur.

G10 L20 Xx Zz ; Set the offset amount in the currently selected workpiece coordinate system.

When in G54 to G59 modal, the program error (P33) will occur.

G10 Pn Xx Zz ;

G10 Xx Zz ;

G10 G54.1 Xx Yy Zz ; L10 (tool offset) will be judged if there is no L value.

556
(7) A new workpiece coordinate system 1 is set by issuing the G92 command in the G54 (workpiece coordinate system 1) mode. At the same time, the other workpiece coordinate systems 2 to 6 (G55 to G59) will move in parallel and new workpiece coordinate systems 2 to 6 will be set.

(8) A hypothetical machine coordinate system is formed at the position which deviates from the new workpiece reference position (zero point) by an amount equivalent to the workpiece coordinate system offset amount.

(9) By setting the hypothetical machine coordinate system, the new workpiece coordinate system will be set at a position which deviates from that hypothetical machine coordinate system by an amount equivalent to the workpiece coordinate system offset amount.

(10) When the first automatic (G28) or manual reference position (zero point) return is completed after the power has been turned ON, the basic machine coordinate system and workpiece coordinate systems are set automatically in accordance with the parameter settings.

(11) If G54 X- ; is commanded after the reference position return (both automatic or manual) executed after the power is turned ON, the program error (P62) will occur. (A speed command is required as the movement will be controlled with the G01 speed.)

(12) Do not command a G code for which a P code is used in the same block as G54.1. The P code will be handled as work coordinate system selection No.

(13) When number of workpiece offset sets additional specifications is not added, the program error (P39) will occur when the G54.1 command is executed.
14. Coordinate System Setting Functions

14.10 Workpiece Coordinate System Setting and Offset

(14) When the number of workpiece offset sets additional specifications is not added, the program error (P172) will occur when the G10 L20 command is executed.

(15) The local coordinate system cannot be used during G54.1 modal. The program error (P438) will occur when the G52 command is executed during G54.1 modal.

(16) A new workpiece coordinate system P1 can be set by commanding G92 in the G54.1 P1 mode. However, the workpiece coordinate system of the other workpiece coordinate systems G54 to G59, G54.1, and P2 to P48 will move in parallel with it, and a new workpiece coordinate system will be set.

(17) The offset amount of the extended workpiece coordinate system is assigned to the variable No. as shown in Table 1.

Table 1 Variable Nos. of the extended workpiece coordinate offset system

<table>
<thead>
<tr>
<th>1st axis to nth axis</th>
<th>1st axis to nth axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>#7001 to #700n</td>
</tr>
<tr>
<td>P2</td>
<td>#7021 to #702n</td>
</tr>
<tr>
<td>P3</td>
<td>#7041 to #704n</td>
</tr>
<tr>
<td>P4</td>
<td>#7061 to #706n</td>
</tr>
<tr>
<td>P5</td>
<td>#7081 to #708n</td>
</tr>
<tr>
<td>P6</td>
<td>#7101 to #710n</td>
</tr>
<tr>
<td>P7</td>
<td>#7121 to #712n</td>
</tr>
<tr>
<td>P8</td>
<td>#7141 to #714n</td>
</tr>
<tr>
<td>P9</td>
<td>#7161 to #716n</td>
</tr>
<tr>
<td>P10</td>
<td>#7181 to #718n</td>
</tr>
<tr>
<td>P11</td>
<td>#7201 to #720n</td>
</tr>
<tr>
<td>P12</td>
<td>#7221 to #722n</td>
</tr>
<tr>
<td>P13</td>
<td>#7241 to #724n</td>
</tr>
<tr>
<td>P14</td>
<td>#7261 to #726n</td>
</tr>
<tr>
<td>P15</td>
<td>#7281 to #728n</td>
</tr>
<tr>
<td>P16</td>
<td>#7301 to #730n</td>
</tr>
<tr>
<td>P17</td>
<td>#7321 to #732n</td>
</tr>
<tr>
<td>P18</td>
<td>#7341 to #734n</td>
</tr>
<tr>
<td>P19</td>
<td>#7361 to #736n</td>
</tr>
<tr>
<td>P20</td>
<td>#7381 to #738n</td>
</tr>
<tr>
<td>P21</td>
<td>#7401 to #740n</td>
</tr>
<tr>
<td>P22</td>
<td>#7421 to #742n</td>
</tr>
<tr>
<td>P23</td>
<td>#7441 to #744n</td>
</tr>
<tr>
<td>P24</td>
<td>#7461 to #746n</td>
</tr>
<tr>
<td>P25</td>
<td>#7481 to #748n</td>
</tr>
<tr>
<td>P26</td>
<td>#7501 to #750n</td>
</tr>
<tr>
<td>P27</td>
<td>#7521 to #752n</td>
</tr>
<tr>
<td>P28</td>
<td>#7541 to #754n</td>
</tr>
<tr>
<td>P29</td>
<td>#7561 to #756n</td>
</tr>
<tr>
<td>P30</td>
<td>#7581 to #758n</td>
</tr>
<tr>
<td>P31</td>
<td>#7601 to #760n</td>
</tr>
<tr>
<td>P32</td>
<td>#7621 to #762n</td>
</tr>
<tr>
<td>P33</td>
<td>#7641 to #764n</td>
</tr>
<tr>
<td>P34</td>
<td>#7661 to #766n</td>
</tr>
<tr>
<td>P35</td>
<td>#7681 to #768n</td>
</tr>
<tr>
<td>P36</td>
<td>#7701 to #770n</td>
</tr>
<tr>
<td>P37</td>
<td>#7721 to #772n</td>
</tr>
<tr>
<td>P38</td>
<td>#7741 to #774n</td>
</tr>
<tr>
<td>P39</td>
<td>#7761 to #776n</td>
</tr>
<tr>
<td>P40</td>
<td>#7781 to #778n</td>
</tr>
<tr>
<td>P41</td>
<td>#7801 to #780n</td>
</tr>
<tr>
<td>P42</td>
<td>#7821 to #782n</td>
</tr>
<tr>
<td>P43</td>
<td>#7841 to #784n</td>
</tr>
<tr>
<td>P44</td>
<td>#7861 to #786n</td>
</tr>
<tr>
<td>P45</td>
<td>#7881 to #788n</td>
</tr>
<tr>
<td>P46</td>
<td>#7901 to #790n</td>
</tr>
<tr>
<td>P47</td>
<td>#7921 to #792n</td>
</tr>
<tr>
<td>P48</td>
<td>#7941 to #794n</td>
</tr>
</tbody>
</table>

CAUTION

⚠️ If the workpiece coordinate system offset amount is changed during single block stop, the new setting will be valid from the next block.
Example of program

(Example 1)

(1) G28 X0 Z0;
(2) G53 X–500 Z–1000;
(3) G53 X0 Z0;

Present position

Reference (zero) position

return position (#1)

When the 1st reference position coordinate is zero, the basic machine coordinate system zero point and reference position (zero point) return position (#1) will coincide.

(Example 2)

(1) G28 X0 Z0;
(2) G00 G53 X0 Z0;
(3) G54 X–500 Z–500;
(4) G01 W–500 F100;
(5) U–500;
(6) W+500;
(7) U+500;
(8) G00 G55 X0 Z0;
(9) G01 Z–500 F200;
(10) X–500 Z0;
(11) G28 X0 Z0;

Reference (zero) position

return position (#1)

Present position

Reference (zero) position

return position (#1)

(Unit: mm)
Example 3 When workpiece coordinate system G54 has deviated (-500, -500) in Example 2 (It is assumed that (3) to (10) in Example 2 have been entered in subprogram 1111.)

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G28 X0 Z0 ;</td>
<td>Reference (zero) position return position (#1)</td>
</tr>
<tr>
<td>2</td>
<td>G00 G53 X0 Z0 ;</td>
<td>(Not required when there is no basic machine coordinate system offset.)</td>
</tr>
<tr>
<td>3</td>
<td>G54 X-500 Z-500 ;</td>
<td>Amount by which workpiece coordinate system deviates</td>
</tr>
<tr>
<td>4</td>
<td>G92 X0 Z0 ;</td>
<td>New workpiece coordinate system is set.</td>
</tr>
<tr>
<td>5</td>
<td>M98 P1111 ;</td>
<td></td>
</tr>
</tbody>
</table>

Note The workpiece coordinate system will deviate each time steps (3) to (5) are repeated. The reference position return (G28) command should therefore be issued upon completion of the program.
14.11 Local Coordinate System Setting; G52

Function and purpose

The local coordinate systems can be set independently on the G54 to G59 workpiece coordinate systems using the G52 command so that the commanded position serves as the programmed zero point.

The G52 command can also be used instead of the G92 command to change the deviation between the zero point in the machining program and the machining workpiece zero point.

Command format

```
G54 (G54 to G59) G52 X__ Z__ ;
```

Detailed description

1. The G52 command is valid until a new G52 command is issued and the tool does not move. This command comes in handy for employing another coordinate system without changing the zero point positions of the workpiece coordinate systems (G54 to G59).
2. The local coordinate system offset is cleared by the reference position (zero point) return or dog-type manual reference position (zero point) return after the power is turned ON.
3. The local coordinate system is canceled by (G54 to G59) G52 X0 Z0 ;.
4. Coordinate commands in the absolute value cause the tool to move to the local coordinate system position.

(Nota) If the program is executed repeatedly, the workpiece coordinate system will deviate each time. Thus, when the program is completed, the reference position return operation must be commanded.
14. Coordinate System Setting Functions

14.12 Workpiece Coordinate System Preset; G92.1

Function and purpose

(1) This function presets the workpiece coordinate system shifted with the program command during manual operation to the workpiece coordinate system offset from the machine zero point by the workpiece coordinate offset amount by the program command (G92.1).

(2) The set workpiece coordinate system will be shifted from the machine coordinate system when the following type of operation or program command is executed.

- When manual interrupt is executed while manual absolute is OFF
- When movement command is issued in machine lock state
- When axis is moved with handle interrupt
- When operation is started with mirror image
- When local coordinate system is set with G52
- When workpiece coordinate system is shifted with G92

This function presets the shifted workpiece coordinate system to the workpiece coordinate system offset from the machine zero point by the workpiece coordinate offset amount. This takes place in the same manner as manual reference position return. Whether to preset the relative coordinates or not can be selected with the parameters.

Command format

<table>
<thead>
<tr>
<th>G92.1</th>
<th>X0 Y0 Z0 α0 ;</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G50.3)</td>
<td>α0 Additional axis</td>
</tr>
</tbody>
</table>
14. Coordinate System Setting Functions

14.12 Workpiece Coordinate System Preset

Detailed description

1. Command the address of the axis to be preset. The axis will not be preset unless commanded.

2. A program error (P35) will occur if a value other than "0" is commanded.

3. This can be commanded in the following G code lists.
 - G code list 2 to 7
 - G code list 1 when the G code changeover parameter (#1267 ext3/bit0 = 1) is set.

4. Depending on the G code list, the G code will be "G50.3".

5. When manual operation is carried out when manual absolute is set to OFF, or if the axis is moved with handle interrupt.

If manual operation is carried out when manual absolute is set to OFF, or if the axis is moved with handle interrupt, the workpiece coordinate system will be shifted by the manual movement amount. This function returns the shifted workpiece coordinate zero point W1' to the original workpiece coordinate zero point W1, and sets the distance from W1 to the present position as the workpiece coordinate system's present position.
(6) When movement command is issued in machine lock state

If the movement command is issued in the machine lock state, the present position will not move, and only the workpiece coordinates will move. This function returns the moved workpiece coordinates to the original present position, and sets the distance from W1 to the present position as the workpiece coordinate system's present position.

(7) When operation is carried out with mirror image

If operation is carried out with mirror image, only the NC internal coordinates are used as the program command coordinates. The other coordinates are the present position coordinates. This function sets the NC internal coordinates as the present position coordinates.
The local coordinate system is set with the G52 command, and the program commands, etc., are issued with the local coordinate system. With this function, the set local coordinate system is canceled, and the program commands, etc., use the workpiece coordinate system which has W1 as the zero point. The canceled local coordinate system is only the selected workpiece coordinate system.

The workpiece coordinate system shifts with the G92 command, and the distance between W1' and the present position is set as the present position of the workpiece coordinate system. This function returns the shifted workpiece coordinate zero point to W1, and sets the distance from W1 to the present position as the workpiece coordinate system's present position. This is valid for all workpiece coordinate systems.
Example of program

The workpiece coordinate system shifted with G92 is preset with G92.1.

\[\text{Example} \]

\[
\begin{align*}
\text{G28 X0 Y0 ;} & \quad \text{...................... (1)} \\
\text{G00 G90 X1. Y1. ;} & \quad \text{............ (2)} \\
\text{G92 X0 Y0 ;} & \quad \text{..................... (3)} \\
\text{G00 X500 Y500 ;} & \quad \text{.............. (4)} \\
\text{G92.1 X0 Y0 ;} & \quad \text{.............. (5)}
\end{align*}
\]

Precautions

1. Cancel tool radius compensation, tool length offset and tool position offset before using this function. If these are not canceled, the workpiece coordinates will be at a position obtained by subtracting the workpiece coordinate offset amount from the machine value. Thus, the compensation vector will be temporarily canceled.

2. This function cannot be executed while the program is being resumed.

3. Do not command this function during the scaling, coordinate rotation or program mirror image modes. A program error (P34) will occur if commanded.
14.13 Coordinate System for Rotary Axis

Function and purpose

The axis designated as the rotary axis with the parameters is controlled with the rotary axis' coordinate system.

The rotary axis includes the rotating type (short-cut valid/invalid) and linear type (workpiece coordinate position linear type, all coordinate position linear type).

The workpiece coordinate position range is 0 to 359.999° for the rotating type, and 0 to ±99999.999° for the linear type.

The machine coordinate position and relative position differ according to the parameters.

The rotary axis is commanded with a degree (°) unit regardless of the inch or metric designation.

The rotary axis type can be set with the parameter "#8213 rotation axis type" for each axis.

<table>
<thead>
<tr>
<th>Rotary axis</th>
<th>Rotating type rotary axis</th>
<th>Linear type rotary axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short-cut invalid</td>
<td>Short-cut valid</td>
</tr>
<tr>
<td>#8213 setting value</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Workpiece coordinate value</td>
<td>Displayed in the range of 0° to 359.999°.</td>
<td>Displayed in the range of 0° to ±99999.999°.</td>
</tr>
<tr>
<td>Machine coordinate value/relative position</td>
<td>Displayed in the range of 0° to 359.999°.</td>
<td>Displayed in the range of 0° to ±99999.999°.</td>
</tr>
</tbody>
</table>

ABS command

- The incremental amount from the end point to the current position is divided by 360, and the axis moves by the remainder amount according to the sign.
- Moves with a short-cut to the end point.
- In the same manner as the normal linear axis, moves according to the sign by the amount obtained by subtracting the current position from the end point (without rounding up to 360 degrees).

INC command

Moves in the direction of the commanded sign by the commanded incremental amount starting at the current position.

Reference position return

- Until the intermediate point:
 - Depends on the absolute command or the incremental command.
- From the intermediate point to the reference position:
 - Returns with movement within 360 degrees.
- Moves and returns in the reference position direction by the difference from the intermediate point to the reference position.
Example of operation

Examples of differences in the operation and counter displays according to the type of rotation coordinate are given below.
(The workpiece offset is set as 0°.)

(1) Rotary type (short-cut invalid)
(a) The machine coordinate position, workpiece coordinate position and current position are displayed in the range of 0 to 359.999°.
(b) For the absolute command, the axis moves according to the sign by the excessive amount obtained by dividing by 360°.

<table>
<thead>
<tr>
<th>Program</th>
<th>Workpiece coordinate counter</th>
<th>Machine coordinate counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 C0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 G90 C-270.</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>N2 C405.</td>
<td>45.000</td>
<td>45.000</td>
</tr>
<tr>
<td>N3 G91 C180</td>
<td>225.000</td>
<td>225.000</td>
</tr>
</tbody>
</table>

(2) Rotation type (short-cut valid)
(a) The machine coordinate position, workpiece coordinate position and current position are displayed in the range of 0 to 359.999°.
(b) For the absolute command, the axis rotates to the direction having less amount of movement to the end point.

<table>
<thead>
<tr>
<th>Program</th>
<th>Workpiece coordinate counter</th>
<th>Machine coordinate counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 C0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 G90 C-270.</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>N2 C405.</td>
<td>45.000</td>
<td>45.000</td>
</tr>
<tr>
<td>N3 G91 C180</td>
<td>225.000</td>
<td>225.000</td>
</tr>
</tbody>
</table>
14. Coordinate System Setting Functions

14.13 Coordinate System for Rotary Axis

(3) Linear type (workpiece coordinate position linear type)

(a) The coordinate position counter other than the workpiece coordinate position is displayed in the range of 0 to 359.999°.
The workpiece coordinate position is displayed in the range of 0 to ±99999.999°.
(b) The movement is the same as the linear axis.
(c) During reference position return, the axis moves in the same manner as the linear axis until the intermediate point.
The axis returns with a rotation within 360° from the intermediate point to the reference position.
(d) During absolute position detection, even if the workpiece coordinate position is not within the range of 0 to 359.999°, the system will start up in the range of 0 to 359.999° when the power is turned ON again.

Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Workpiece coordinate counter</th>
<th>Machine coordinate counter</th>
<th>POSITION counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 C0.</td>
<td>-270.000</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>N1 G90</td>
<td>-270.000</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td></td>
<td>405.000</td>
<td>45.000</td>
<td>45.000</td>
</tr>
<tr>
<td>N3 G91</td>
<td>585.000</td>
<td>225.000</td>
<td>225.000</td>
</tr>
</tbody>
</table>

When power is turned ON again ↓

<table>
<thead>
<tr>
<th>Workpiece</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.000</td>
<td>225.000</td>
</tr>
</tbody>
</table>

(4) Linear type (all coordinate values linear type)

(a) The all-coordinate position counter is displayed in the range of 0 to 99999.999°.
(b) The movement is the same as the linear axis.
(c) During reference position return, the axis moves in the same manner as the linear axis until the intermediate point.
The axis rotates by the difference from the intermediate point to the reference position and returns to the reference position.
(d) During absolute position detection, the system starts up at the position where the power was turned OFF when the power is turned ON again.

Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Workpiece coordinate counter</th>
<th>Machine coordinate counter</th>
<th>POSITION counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28 C0.</td>
<td>-270.000</td>
<td>-270.000</td>
<td>-270.000</td>
</tr>
<tr>
<td>N1 G90</td>
<td>-270.000</td>
<td>-270.000</td>
<td>-270.000</td>
</tr>
<tr>
<td></td>
<td>405.000</td>
<td>405.000</td>
<td>405.000</td>
</tr>
<tr>
<td>N3 G91</td>
<td>585.000</td>
<td>585.000</td>
<td>585.000</td>
</tr>
</tbody>
</table>

When power is turned ON again ↓

<table>
<thead>
<tr>
<th>Workpiece</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>585.000</td>
<td>585.000</td>
</tr>
</tbody>
</table>

569
15. Protection Function

15.1 Chuck Barrier/Tailstock Barrier; G22, G23

Function and purpose

By limiting the tool nose movement range, the chuck barrier and tailstock barrier prevent collision with the chuck and tailstock due to programming errors. If movement is commanded which exceeds the region set in the parameters, the tool will automatically stop at the barrier boundary.

Command format

G22; Barriers valid
G23; Barriers invalid

Set G22 and G23 commands in independent blocks.
15. Protection Function

15.1 Chuck Barrier/Tailstock Barrier

Detailed description

(1) An alarm will appear if the machine stops because it was about to exceed the set region. Reset to cancel this alarm.

(2) This function is also valid during machine lock.

(3) This function is validated when all axes in which chuck barrier and tailstock barrier are set have finished their reference position returns.

(4) When there is a stored stroke check function, and the stored stroke limit region is set, the chuck barrier/tailstock barrier function is validated simultaneously with the stored stroke check function.

(5) A detailed barrier can be set on the left and right by using the PLC external signal.

Setting the chuck barrier/tailstock barrier

(1) Using G22 and G23

(a) Three points can be input as parameters for both the chuck barrier and tailstock barrier. Set in the machine coordinate system. Points P1, P2 and P3 (parameters "#8301 P1" to "#8303 P3") are for the chuck barrier. Points P4, P5 and P6 (parameters "#8304 P4" to "#8306 P6") are for the tailstock barrier.

(b) The barrier region should be a symmetric shape regarding the Z axis. When the X axis coordinates of barrier point P are a negative value, reverse the sign to the positive side, then convert and check. The absolute value of each barrier point's X axis coordinates must be set as follows. P1 ≥ P2 ≥ P3, P4 ≥ P5 ≥ P6

(Note that the Z axis coordinates do not have to follow this setting.)
15. Protection Function

15.1 Chuck Barrier/Tailstock Barrier

(2) Using the PLC external signal input

Set the coordinate values for each point between "#8300 P0" to "#8314 P10".
P0 is the basic X coordinate of the chuck and tailstock barrier. Set the workpiece center coordinate in the basic machine coordinate system as a radius value.
The coordinate value from the workpiece center (P0) is set as a radius value for the P1 to P10 X axes. The Z axis is set as a basic machine coordinate system coordinate.
The barrier region is symmetrical in respect to P0.
The X axis coordinate of each point must be set in the following manner.

\[
P1 \geq P2 \geq P3 \quad P4 \geq P5 \geq P6 \\
P7 \geq P8 \quad P9 \geq P10
\]

If the P8 Z axis coordinate must be less than P1 to P3, and the P10 Z axis coordinate must be more than P4 to P6.

The positions of the P0 to P10 points in the chuck/tailstock are as follow.

(a) Setting the chuck

![Diagram of Chuck Barrier/Tailstock Barrier]

- P0: Workpiece rotation center coordinate
- P1, P2, P3: Chuck section (left)
- P7, P8: Spindle section (left)
- P4, P5, P6: Chuck section (right)
- P9, P10: Spindle section (right)

- Set the X axis coordinates so that P1 > P2 > P3 is established.
- The P3 and P7 Z coordinates and the P6 and P9 Z coordinates shall be equal.
- If there is no spindle inner diameter, set the P8 X coordinate to the same value as P0.
If a spindle section is not to be set, set the P3, P7 and P8 values to the same values, and the P6, P9 and P10 values to the same values. The barrier range will be as shown below in this case.

<table>
<thead>
<tr>
<th>i) For external claw</th>
<th>ii) For internal claw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Setting the tailstock

- P7 and P9 are not used.
- The tailstock end section angle is set with the parameters.
- If "0" is set, the angle will be 90°. (Default)
- Set the P8 X coordinate to the same value as P0. (No spindle inner diameter)
15. Protection Function

15.1 Chuck Barrier/Tailstock Barrier

Restrictions

1. There is only one checkpoint from the tool regarding the chuck barrier/tailstock barrier. Therefore, the following cautions must be observed.

 In the following examples, when the barrier points are set to be checked by the hypothetical tool nose point and the tool moves in the direction of the arrow in the drawing, the following situation may occur.

 In Example 1, there is a checkpoint in the range "a", so the tool will automatically stop at the barrier boundary. However, in Example 2 there is a checkpoint in range "b", so the chuck and tool may collide in range "a".

 ![Example 1 and Example 2 Diagrams](image)

 To avoid this, Example 3 is given. In this example, if the barrier points P1, P2 and P3 are set and the checkpoint is set in range "c", the tool can be stopped at the barrier boundary.

 ![Example 3 Diagram](image)

2. When the tool enters the barrier region and an alarm occurs, the tool may move in the opposite direction from which it came, once the alarm is canceled by resetting.

3. There is no barrier region for axes without a reference position return function. Thus, there is no barrier alarm for that axis.

4. When the tool enters a canceled barrier region, and that barrier is then validated, an alarm will result immediately if the tool is moved.

 If the alarm is canceled with reset in this manner, invalidate the barrier (G23) before escaping or change the value set for each barrier point.

5. The soft limit is valid even if the barrier is invalid (G23).
15. Protection Function

15.2 Stored Stroke Limit

Function and purpose

Three tool entry prohibited ranges can be set with stored stroke limit I, stored stroke limit II and stored stroke limit IB. These areas are set with parameters.

Command format

With the stored stroke limit II function, the prohibited range (parameters) can be changed and this function can be turned ON and OFF with the program commands.

\[
\text{G22 X}___ Z___ C___ I___ J___ K___ ;
\]

- **G22**: Stored stroke limit II function parameter change
- **G23**: Stored stroke limit II function ON (all axes)
- **X, Z, C**: (1st to 3rd axis name) Stored stroke limit + side designation
- **I, J, K**: (Plane selection axis name) Stored stroke limit - side designation

Detailed description

Command G22 and G23 in independent blocks.

Whether to set the prohibited range on the inside or outside follows the parameter settings.

When prohibited range is on outside

![Diagram of prohibited range on outside](image)

When prohibited range is on inside

![Diagram of prohibited range on inside](image)
15. Protection Function

15.2 Stored Stroke Limit

Precautions

(1) If the maximum value and minimum value of the stored stroke limit's prohibited range are set to the same value, the following will occur.

(a) When the maximum value and minimum value are set to 0, if the outside is the prohibited range, the entire range will be prohibited. If the inside is the prohibited range, the entire range will be the moveable range.

(b) If data other than 0 is set for the maximum value and minimum value, the entire range will be the moveable range.

(2) The settings (G22, G23) with the stored stroke limit II program command are valid at the G code list 6 and 7 (cmdtyp = 7, 8).

(3) G22 and G23 are unmodal (group 0), and are valid only in the commanded block.
16. Measurement Support Functions

16.1 Automatic Tool Length Measurement; G37

Function and purpose

These functions issue the command values from the measuring start position as far as the measurement time, move the tool in the direction of the measurement position, stop the machine once the tool has arrived at the sensor, cause the NC system to calculate automatically the difference between the coordinate values at that time and the coordinate values of the commanded measurement position and provide this difference as the tool offset amount. When offset is already being applied to a tool, it moves the tool toward the measurement position with the offset still applied, and if a further offset amount is generated as a result of the measurement and calculation, it provides further compensation of the present wear offset amount.

Command format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G37 α R D F ;</td>
<td>Automatic tool length measurement command</td>
</tr>
<tr>
<td>α</td>
<td>Measuring axis address and coordinates of measurement position X, Z</td>
</tr>
<tr>
<td>R</td>
<td>This commands the distance between the measurement position and point where the movement is to start at the measuring speed (Radius value fixed, incremental value)</td>
</tr>
<tr>
<td>D</td>
<td>This commands the range within which the tool is to stop. (Radius value fixed, incremental value)</td>
</tr>
<tr>
<td>F</td>
<td>This commands the measuring speed. When R__, D__ or F__ is omitted, the value set in the parameter is used instead.</td>
</tr>
</tbody>
</table>

<Parameter> ("TLM" on machining parameter screen)

- #8004 Measuring feed rate (Fp) : 0 to 60000 (mm/min)
- #8005 Deceleration range r : 0 to 99999.999 (mm)
- #8006 Measurement range d : 0 to 99999.999 (mm)
16. Measurement Support Functions

16.1 Automatic Tool Length Measurement

Detailed description

(1) Operation with G37 command

(2) The sensor signal (measuring position arrival signal) is used in common with the skip signal.

(3) The feed rate will be 1mm/min if the F command and parameter measurement speed are 0.

(4) During the synchronous feed mode, the axis will move at the synchronous feed rate [mm/rev].

(5) An updated offset amount is valid unless it is assigned from the following T command of the G37 command.

(6) Excluding the delay at the PLC side, the delay and fluctuations in the sensor signal processing range from 0 to 0.2ms.
As a result, the measuring error shown below is caused.

\[
\text{Maximum measuring error [mm] = Measuring speed [mm/min] \times 1/60 \times 0.2 [ms] / 1000}
\]

(7) The machine position coordinates at that point in time are ready by sensor signal detection, and the machine will overtravel and stop at a position equivalent to the servo droop.

\[
\text{Maximum overtravel [mm] = Measuring speed [mm/min] \times 1/60 \times \text{1/Position loop gain [1/s]}}
\]

The standard position loop gain is 33 [1/s].
16. Measurement Support Functions

16.1 Automatic Tool Length Measurement

Precautions

(1) Program error (P600) results if G37 is commanded when the automatic tool length measurement function is not provided.

(2) Program error (P604) results when no axis has been commanded in the G37 block or when two or more axes have been commanded.

(3) Program error (P605) results when the T code is commanded in the G37 block. If the low-order digit or two digits is 0, the (4) error will occur.

(4) Program error (P606) results when T code is not commanded prior to the G37 block. When the low-order digit or two digits is 0, the program error (P606) will occur even if T is commanded.

(5) Program error (P607) results when the sensor signal was input outside the allowable measuring range or when the sensor signal was not detected even upon arrival at the end point. If the sensor signal stays ON during operation 3 in "Detailed description" (1), it will be judged as a normal measurement even when the (b) region is not present.

(6) When a manual interruption is applied while the tool is moving at the measuring speed, a return must be made to the position prior to the interrupt and then operation must be resumed.

(7) The data commanded in G37 or the parameter setting data must meet the following conditions:

\[|\text{Measurement point - start point}| > R \text{ command or parameter } r > \]
\[D \text{ command or parameter } d \]

(8) When the D address and parameter d in (7) above are zero, operation will be completed normally only when the commanded measurement point and sensor signal detection point coincide. Otherwise, program error (P607) will result.

(9) When the R and D address as well as parameters r and d in (7) above are all zero, program error (P607) will result regardless of whether the sensor signal is present or not after the tool has been positioned at the commanded measurement point.

(10) When the measurement command distance < measurement allowable range, it becomes the measurement allowable range for all axes.
(11) When the measurement command distance < measurement speed movement distance, all axes move at the measurement speed.

(12) When the measurement allowable range > measurement speed movement distance, the axis moves in the measurement allowable range at the measurement speed.

(13) Always cancel nose R compensation before commanding G37.

(14) Calculate the tool length offset amount without regard for the nose R value and tool nose point No., even if the nose R compensation option is attached.
To set the tool nose point No. to 0, subtract the nose R value from the measured tool length offset amount and set.
When the tool nose point No. (tool nose shape) is 5, 6, 7, or 8, measure the tool length at the tool tip.
16.2 Skip Function; G31

Function and purpose

When the skip signal is input externally during linear interpolation based on the G31 command, the machine feed is stopped immediately, the remaining distance is discarded and the command in the following block is executed.

Command format

G31 X/U__ Z/W__ F__ ;

| X, Z, U, W | Axis coordinate value; they are commanded as absolute or incremental values. |
| F | Feed rate (mm/min) |

Linear interpolation can be executed using this function. If the skip signal is input externally while this command is being executed, the machine will stop, the remaining commands will be canceled and operation will be executed from the next block.

Detailed description

1. If F is commanded as the feed rate, command speed f will apply; if it not commanded, the value set in the parameter ":1174 skip_F" will serve as the feed rate. In either case, the F modal will not be updated.
2. The machine will not automatically accelerate and decelerate with the G31 block.
3. Override is invalid with the G31 command, and it is fixed at 100%. Dry run is also invalid. The stop conditions (feed hold, interlock, override zero and stroke end) are valid. External deceleration is also valid.
4. The G31 command is unmodal and so it needs to be commanded each time.
5. If the skip signal is input during G31 command start, the G31 command will be completed immediately. When a skip signal has not been input until the G31 block completion, the G31 command will also be completed upon completion of the movement commands.
6. When the G31 command is issued during nose R compensation, program error (P608) will result.
7. When there is no F command in the G31 command and the parameter speed is also zero, program error (P603) will result.
8. If only the Z axis is commanded when the machine lock is ON or the Z axis cancel switch is ON, the skip signal will be ignored and execution will continue as far as the end of the block.
16. Measurement Support Functions

16.2 Skip Function

Execution of G31

Example 1 When the next block is an incremental value command

G31 Z1000 F100 ;
G01 U2000 W1000 ;

![Diagram of external signal entered and movement when external signal is not entered](image1)

Example 2 When the next block is a one axis movement command with absolute value

G31 Z1000 F100 ;
G01 X1000 ;

![Diagram of external signal entered and movement when external signal is not entered](image2)

Example 3 When the next block is a two axes movement command with absolute value

G31 Z1000 F100 ;
G01 X1000 Z2000 ;

![Diagram of external signal entered and movement when external signal is not entered](image3)
Detailed description (Readout of skip coordinates)

As the skip signal inputting coordinate positions have been stored in the system variables #5061 (1st axis) to #506n (n-th axis), it is possible to use them with user macro.

\[
\begin{align*}
&\{ \\
&\text{G00 X-100. ;} \\
&\text{G31 X-200. F60 ;} \\
&\#101 = \#5061
\end{align*}
\]

Skip command
Skip signal input coordinate values (workpiece coordinate system) are readout to #101.

Detailed description (G31 coasting)

The amount of coasting from when the skip signal is input during the G31 command until the machine stops differs according to the parameter "#1174 skip_F" or F command in G31. The time to start deceleration to a stop after responding to the skip signal is short, so the machine can be stopped precisely with a small coasting amount. The coasting amount can be calculated from the following formula.

\[
\begin{align*}
\delta_0 = \frac{F}{60} \times Tp + \frac{F}{60} \times (t_1 \pm t_2) = \frac{F}{60} \times (Tp + t_1) \pm \frac{F}{60} \times t_2
\end{align*}
\]

\[
\begin{align*}
\delta_0 : \text{Coasting amount (mm)} \\
F : \text{G31 skip speed (mm/min)} \\
Tp : \text{Position loop time constant (s) = (position loop gain)}^{-1} \\
t_1 : \text{Response delay time (s) = (Time from when skip signal is detected, PC is passed, and control unit is reached.)} \\
t_2 : \text{Response error time 0.001 (s)}
\end{align*}
\]

When G31 is used for calculation, the value calculated from the section indicated by \(\delta_1\) in the above equation can be compensated, however, \(\delta_2\) results in calculation error.
The relationship between the coasting amount and speed when T_p is 30ms and t_1 is 5ms is shown in the following figure.

![Graph showing the relationship between coasting amount and feed rate](image-url)

Relationship between coasting amount and feed rate (example)
16. Measurement Support Functions

16.2 Skip Function

Detailed description (Skip coordinate readout error mm)

1. **Skip signal input coordinate readout**
 The coasting amount based on the position loop time constant T_p and cutting feed time constant T_s is not included in the skip signal input coordinate values. Therefore, the workpiece coordinate values applying when the skip signal is input can be read out across the error range in the following formula as the skip signal input coordinate values. However, coasting based on response delay time t_1 results in a measurement error and so compensation must be provided.

 $$
 \varepsilon = \pm \frac{F}{60} \times t_2
 $$

 ε : Readout error (mm)
 F : Feed rate (mm/min)
 t_2 : Response error time 0.001 (s)

 Readout error of skip input coordinates
 - Readout error of skip signal input coordinates
 - Readout error with a 60mm/min feed rate is as follows:
 $$
 \varepsilon = \pm \frac{60}{60} \times 0.001 = \pm 0.001 \text{ (mm)}
 $$
 - Measurement value within readout error range of $\pm 1 \mu m$.

2. **Readout of other coordinates**
 The readout coordinate values include the coasting amount. Therefore, when coordinate values are required with skip signal input, refer to the section on the G31 coasting amount to compensate the coordinate value. As in the case of (1), the coasting amount based on the delay error time t_2 cannot be calculated, and this generates a measuring error.
16. Measurement Support Functions

16.2 Skip Function

Examples of compensating for coasting

1. **Compensating for skip signal input coordinates**

   ```
   \#110 = Skip feed rate;
   \#111 = Response delay time \( t_1 \);
   ```

   ```
   \[
   \begin{align*}
   \text{G31 X100. F100 ;} & \quad \text{Skip command} \\
   \text{G04 ;} & \quad \text{Machine stop check} \\
   \#101 = \#5061 ; & \quad \text{Skip signal input coordinate readout} \\
   \#102 = \#110+\#111/60 ; & \quad \text{Coasting amount based on response delay time} \\
   \#105 = \#101–\#102 ; & \quad \text{Skip signal input coordinates}
   \end{align*}
   \]
   ```

2. **Compensating for workpiece coordinates**

   ```
   \#110 = Skip feed rate;
   \#111 = Response delay time \( t_1 \);
   \#112 = Position loop time constant \( T_p \);
   ```

   ```
   \[
   \begin{align*}
   \text{G31 X100. F100 ;} & \quad \text{Skip command} \\
   \text{G04 ;} & \quad \text{Machine stop check} \\
   \#101 = \#5061 ; & \quad \text{Skip signal input coordinate readout} \\
   \#102 = \#110+\#111/60 ; & \quad \text{Coasting amount based on response delay time} \\
   \#103 = \#110+\#112/60 ; & \quad \text{Coasting amount based on position loop time constant} \\
   \#105 = \#101–\#102–\#103 ; & \quad \text{Skip signal input coordinates}
   \end{align*}
   \]
   ```
16.3 Multiple-step Skip Function; G31.n, G04

Function and purpose

The setting of combinations of skip signals to be input enables skipping under various conditions. The actual skip operation is the same as with G31. The G commands which can specify skipping are G31.1, G31.2, G31.3, and G04, and the correspondence between the G commands and skip signals can be set by parameters.

Command format

<table>
<thead>
<tr>
<th>Command format axis coordinate word and target coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Feed rate (mm/min)</td>
</tr>
</tbody>
</table>

Same with G31.2 and G31.3; Ff is not required with G04. As with the G31 command, this command executes linear interpolation and when the preset skip signal conditions have been met, the machine is stopped, the remaining commands are canceled, and the next block is executed.

Detailed description

(1) Feed rate G31.1 set with the parameter corresponds to "#1176 skip1f", G31.2 corresponds to "#1178 skip2f", and G31.3 corresponds to "#1180 skip3f".

(2) A command is skipped if it meets the specified skip signal condition.

(3) The G31.n and G04 commands work the same as the G31 command for other than (1) and (2) above.

(4) The feed rates corresponding to the G31.1, G31.2, and G31.3 commands can be set by parameters.

(5) The skip conditions (logical sum of skip signals which have been set) corresponding to the G31.1, G31.2, G31.3 and G04 commands can be set by parameters.

<table>
<thead>
<tr>
<th>Parameter setting</th>
<th>Valid skip signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
16. Measurement Support Functions

16.3 Multiple-step Skip Function

Operation

(1) The multiple-step skip function enables the following control, thereby improving measurement accuracy and shortening the time required for measurement.

<table>
<thead>
<tr>
<th>Parameter settings</th>
<th>Skip condition</th>
<th>Skip speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G31.1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0mm/min</td>
</tr>
<tr>
<td></td>
<td>G31.2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0mm/min</td>
</tr>
<tr>
<td></td>
<td>G31.3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0mm/min</td>
</tr>
</tbody>
</table>

Program example

N10 G31.1 X200.0 ;
N20 G31.2 X40.0 ;
N30 G31.3 X1.0 ;

(Note 1) If skip signal 1 is input before skip signal 2 in the above operation, N20 is skipped at that point and N30 is also ignored.

(2) If a skip signal with the condition set during G04 (dwell) is input, the remaining dwell time is canceled and the following block is executed.
16. Measurement Support Functions

16.4 Multiple-step Skip Function 2; G31

Function and purpose

During linear interpolation, command operation is skipped if skip signal parameter \(P \) specified with a skip command (G31), which indicates external skip signals 1 to 8, is met. If multiple-step skip commands are issued simultaneously in different part systems, both part systems perform skip operation simultaneously if the input skip signals are the same, or they perform skip operation separately according to the earlier skip signal if the input skip signals are different. The skip operation is the same as with a normal skip command (G31 without \(P \) command).

If the skip condition specified by the parameter "#1173 dwlskp" (indicating external skip signals 1 to 8) is met during execution of a dwell command (G04), the remaining dwell time is canceled and the following block is executed. Similarly, if the skip condition is met during speed dwelling, the remaining speed is canceled and the following block is executed.

Command format

```
G31 X__ Z__ α__ P__ F__ ;
```

- **X Z α** Command format axis coordinate word and target coordinates
- **P** Skip signal command
- **F** Feed rate (mm/min)
Detailed description

(1) The skip is specified by command speed f. Note that the F modal is not updated.

(2) The skip signal is specified by skip signal command p. p can range from 1 to 255. If p is specified outside the range, program error (P35) occurs.

<table>
<thead>
<tr>
<th>Skip signal command</th>
<th>Valid skip signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>8 7 6 5 4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>2</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>3</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>4</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>5</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>6</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>7</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>8</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
</tbody>
</table>

(Skip when ○ signal is input.)

(3) The specified skip signal command is a logical sum of the skip signals.

Example) G31 X100. P5 F100 ;

Operation is skipped if skip signal 1 or 3 is input.
(4) If skip signal command Pp is not specified, the skip condition specified by the G31 command works. If speed command Ff is not specified, the skip speed specified by the G31 command parameter works.

Table 2 Relations between skip and multiple-step skip

<table>
<thead>
<tr>
<th>Skip specifications</th>
<th>×</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condition</td>
<td>Speed</td>
</tr>
<tr>
<td>G31 X100 ;</td>
<td>Program error (P601)</td>
<td>Skip 1</td>
</tr>
<tr>
<td>(Without P and F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G31 X100 P5 ;</td>
<td>Program error (P602)</td>
<td>Command value</td>
</tr>
<tr>
<td>(Without F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G31 X100 F100 ;</td>
<td>Program error (P601)</td>
<td>Skip 1</td>
</tr>
<tr>
<td>(Without P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G31 X100 P5 F100 ;</td>
<td>Program error (P602)</td>
<td>Command value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Note) "Parameter" in the above table indicates that specified with a skip command (G31).

(5) If skip specification is effective and P is specified as an axis address, skip signal command P is given priority and axis address P is ignored.

(Example) G31 P500. F100 ;

This is regarded as a skip signal command and program error (P35) results.

(6) Those items other than (1) to (5) are the same with the ordinary skip function (G31 without P).
16.5 Speed Change Skip

Function and purpose

When the skip signal is detected during linear interpolation by the skip command (G31), the feed rate is changed.

Command format

```
G31 X__ Y__ Z__ α__ F__ F1= __ ... Fn= __ ;
```

(n is the skip signal 1 to 8)

- **G31** Skip command
- **X Y Z α** Command format axis coordinate word and target coordinates
- **F** Feed rate when starting the cutting feed (mm/min)
- **Fn=** Feed rate after detecting the skip signal (mm/min)
 - **Fn=0:** Movement stop
 - **Fn≠0:** Changing the feed rate to fn
- **F1=** Feed rate after inputting the skip signal 1
- **... F8=** Feed rate after inputting the skip signal 8

Detailed description

1. When the skip signal for which the feed rate \(fn≠0 \) is commanded, the speed is changed to the command speed corresponding to the skip signal.
2. When the skip signal for which the feed rate \(fn=0 \) is commanded, the movement is stopped. The acceleration and deceleration time constant at the movement stop does not follow the skip time constant, but the normal G31 skip. After the movement is stopped, the remaining movement commands are canceled and the following block executed.
3. When the skip signal has not been input until the G31 block completion, the G31 command will be also completed upon completion of the movement command.
4. When the skip retract is valid, the return operation by the skip signal detection is executed after the movement is stopped.
5. Even if the acceleration and deceleration with the inclination constant G1 (#1201 G1_acc) is valid, the speed change skip will be the operation of the time constant acceleration and deceleration.
6. When the feed rate command (\(Fn=fn \)) is not specified after detecting the skip signal, the normal G31 skip operation will be applied.
(7) If the skip signal is input during the deceleration by the movement command completion, the speed change will be ignored.

(8) The skip signal for which the feed rate is not commanded in the program is ignored.

(9) The speed change or the movement stop is performed when detecting the rising edge of the skip signal. Note that if several rising edges are input at 3.5ms intervals or less, they maybe judged the simultaneous input. When they are judged the simultaneous input, the smaller value will be valid.
(10) If the G31 block is started with the skip signal input, that signal is considered to rise at the same time as the block start.

(11) If the skip signals for changing the speed and for stopping the movement are simultaneously input, the skip signal for stopping the movement will be valid regardless of the size of the No.

(12) If the skip time constant
"#2102 skip_tL" is illegal, the "Y51 PARAMETER ERROR 15" will occur, and if the
"#2103 skip_t1" is illegal, the "Y51 PARAMETER ERROR 16" will occur.

(13) The items other than (1) to (12) are the same with the G31 command.

Example of operation

Example of program

```
G31 X100. Ff F1=0 F2=f2 F3=f3 F4=f4 ;
```

Operation

![Graph showing speed and time relationships with skip signals](image-url)

- **Skip time constant**
- **Position loop time constant (Position loop gain⁻¹)**
16.6 Programmable Current Limitation

Function and purpose

This function allows the current limit value of the servo axis to be changed to a desired value in the program, and is used for the workpiece stopper, etc. The commanded current limit value is designated with a ratio of the limit current to the rated current.

Command format

<table>
<thead>
<tr>
<th>Command format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10 L14 Xn ;</td>
<td>(n is the skip signal 1 to 8)</td>
</tr>
<tr>
<td>L14 Current limit value setting</td>
<td>(+ side/- side)</td>
</tr>
<tr>
<td>X Axis address</td>
<td></td>
</tr>
<tr>
<td>n Current limit value (%)</td>
<td>Setting value: 1 to 999</td>
</tr>
</tbody>
</table>

Precautions and restrictions

1. If the current limit value is reached when the current limit is valid, the current limit reached signal is output.

2. The following two modes can be used as the operation after the current limit is reached. The external signal determines which mode applies.
 - Normal mode
 The movement command is executed in the current state. During automatic operation, the movement command is executed to the end, and then the next block is moved to with the droops still accumulated.
 - Interlock mode
 The movement command is executed in the current state. During automatic operation, the operation stops at the corresponding block, and the next block is not moved to. During manual operation, the following same direction commands are ignored.

3. During the current limit, the position droop generated by the current limit can be canceled when the current limit changeover signal of external signals is canceled. (Note that the axis must not be moving.)

4. The setting range of the current limit value is 1% to 999%. Commands that exceed this range will cause a program error (P35).

5. If a decimal point is designated with the G10 command, only the integer will be valid. **(Example)** G10 L14 X10.123 ; The current limit value will be set to 10%.

6. For the axis name "C", the current limit value cannot be set from the program (G10 command). To set from the program, set the axis address with an incremental axis name, or set the axis name to one other than "C".
Appendix 1. Parameter Input by Program N No. Correspondence Table

(Note 1) The units in the table indicate the minimum setting units for the parameter data.

(Note 2) The setting ranges given in the table are the setting ranges on the screen. Designate parameters related to the length by doubling the input setting unit.

(Example 1) If the input setting unit in the metric system is "B" (0.001mm), set 30mm in the parameter.
L60000

(Example 2) If the input setting unit in the inch system is "B" (0.0001inch), set 5inch in the parameter.
L100000

(Note 3) The binary type parameters must be converted into by-type data, and commanded with a decimal data after address D.

(Example 1) Binary data
01010101_B = 55_H = 85_D Command 85

(Example 2) ASCII code
"M" = 01001101_B = 4DH = 77_D Command 77
(B indicates Binary, H indicates Hexadecimal, and D indicates Decimal.)

(Note 4) In a system with a section No. (P), the section No. is assigned according to the function increment after No. 20. Thus, the No. may be duplicated with the parameters that can be set with other section Nos.

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8007</td>
<td>OVERRIDE</td>
<td>11</td>
<td>–</td>
<td>1010</td>
<td>D</td>
<td>0 to 100 (%)</td>
<td></td>
</tr>
<tr>
<td>8008</td>
<td>MAX ANGLE</td>
<td>11</td>
<td>–</td>
<td>756</td>
<td>L</td>
<td>0 to 180 (°)</td>
<td></td>
</tr>
<tr>
<td>8009</td>
<td>DSC. ZONE</td>
<td>11</td>
<td>–</td>
<td>760</td>
<td>L</td>
<td>0 to 199999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8010</td>
<td>ABS. MAX.</td>
<td>11</td>
<td>–</td>
<td>776</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8011</td>
<td>INC. MAX.</td>
<td>11</td>
<td>–</td>
<td>780</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8013</td>
<td>G83 n</td>
<td>11</td>
<td>–</td>
<td>832</td>
<td>L</td>
<td>0 to 99999999 (µm)</td>
<td></td>
</tr>
<tr>
<td>8014</td>
<td>CDZ-VALE</td>
<td>11</td>
<td>–</td>
<td>1012</td>
<td>D</td>
<td>0 to 127 lead</td>
<td></td>
</tr>
<tr>
<td>8015</td>
<td>CDZ-ANGLE</td>
<td>11</td>
<td>–</td>
<td>1011</td>
<td>D</td>
<td>0 to 89 (°)</td>
<td></td>
</tr>
<tr>
<td>8016</td>
<td>G71 MINIMUM</td>
<td>11</td>
<td>–</td>
<td>788</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8017</td>
<td>DELTA-D</td>
<td>11</td>
<td>–</td>
<td>792</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8051</td>
<td>G71 THICK</td>
<td>11</td>
<td>–</td>
<td>784</td>
<td>L</td>
<td>0 to 199999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8052</td>
<td>PULL UP</td>
<td>11</td>
<td>–</td>
<td>796</td>
<td>L</td>
<td>0 to 199999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8053</td>
<td>G73 U</td>
<td>11</td>
<td>–</td>
<td>800</td>
<td>L</td>
<td>±199999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8054</td>
<td>W</td>
<td>11</td>
<td>–</td>
<td>804</td>
<td>L</td>
<td>±199999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8055</td>
<td>R</td>
<td>11</td>
<td>–</td>
<td>808</td>
<td>L</td>
<td>0 to 999999</td>
<td></td>
</tr>
<tr>
<td>8056</td>
<td>G74 RETRACT</td>
<td>11</td>
<td>–</td>
<td>820</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8057</td>
<td>G76 LAST-D</td>
<td>11</td>
<td>–</td>
<td>824</td>
<td>L</td>
<td>0 to 199998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8058</td>
<td>TIMES</td>
<td>11</td>
<td>–</td>
<td>997</td>
<td>D</td>
<td>0 to 99</td>
<td></td>
</tr>
<tr>
<td>8059</td>
<td>ANGLE</td>
<td>11</td>
<td>–</td>
<td>998</td>
<td>D</td>
<td>0 to 99</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1. Parameter Input by Program N No. Correspondence Table

[Axis parameters]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8202</td>
<td>OT-CHECK OFF</td>
<td>2</td>
<td></td>
<td>897</td>
<td>H2</td>
<td>0 to 1</td>
<td></td>
</tr>
</tbody>
</table>

8204 OT-CHECK-N
8205 OT-CHECK-P

[Barrier data]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8300</td>
<td>(P0) X</td>
<td>11</td>
<td>–</td>
<td>1128</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8301</td>
<td>(P1) X</td>
<td>11</td>
<td>No.</td>
<td>1136</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1160</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8302</td>
<td>(P2) X</td>
<td>11</td>
<td>No.</td>
<td>1140</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1164</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8303</td>
<td>(P3) X</td>
<td>11</td>
<td>No.</td>
<td>1144</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1168</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8304</td>
<td>(P4) X</td>
<td>11</td>
<td>No.</td>
<td>1148</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1172</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8305</td>
<td>(P5) X</td>
<td>11</td>
<td>No.</td>
<td>1152</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1176</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td>8306</td>
<td>(P6) X</td>
<td>11</td>
<td>No.</td>
<td>1156</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>11</td>
<td>No.</td>
<td>1180</td>
<td>L</td>
<td>±1999999998 (0.5µm)</td>
<td></td>
</tr>
</tbody>
</table>

[PLC data]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18001</td>
<td>PLC constant</td>
<td>5</td>
<td>–</td>
<td>1</td>
<td>L</td>
<td>±99999999</td>
<td></td>
</tr>
<tr>
<td>18150</td>
<td>to</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

597
Appendix 1. Parameter Input by Program N No. Correspondence Table

[PLC timer]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>16000 to 16703</td>
<td>10ms/100ms TIMER (T0 to T703)</td>
<td>6</td>
<td>–</td>
<td>0 to 703</td>
<td>S</td>
<td>0 to 65535</td>
<td>10ms: 0.01s 100ms: 0.1s (Note)</td>
</tr>
</tbody>
</table>

(Note) The increment differs according to the command. The increment is 10ms for the OUTH command and 100ms for the OUT command.

[PLC integrated timer]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>17000 to 17063</td>
<td>PLC integrated timer (ST0 to ST63)</td>
<td>9</td>
<td>–</td>
<td>0 to 63</td>
<td>S</td>
<td>0 to 65535</td>
<td>0.1s</td>
</tr>
</tbody>
</table>

[PLC counter]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>17200 to 17455</td>
<td>PLC counter (C0 to C255)</td>
<td>7</td>
<td>–</td>
<td>0 to 255</td>
<td>S</td>
<td>0 to 65535</td>
<td>...</td>
</tr>
</tbody>
</table>

[Bit selection]

<table>
<thead>
<tr>
<th>#</th>
<th>Item</th>
<th>P</th>
<th>A</th>
<th>N</th>
<th>Data type</th>
<th>Setting range (Unit)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6401 to 6596</td>
<td>Bit selection</td>
<td>8</td>
<td>–</td>
<td>1 to 196</td>
<td>D</td>
<td>0x00 to 0xFF (Hex) 0 to 255 (Dec)</td>
<td></td>
</tr>
</tbody>
</table>

(Note) Convert the 0x00 to 0xFF data into a decimal before using.
Appendix 2. Program Error

(The bold characters are the message displayed in the screen.)
These alarms occur during automatic operation, and the causes of these alarms are mainly program errors which occur, for instance, when mistakes have been made in the preparation of the machining programs or when programs which conform to the specification have not been prepared.

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P 10 | No. of simultaneous axes over | • Divide the alarm block command into two.
• Check the specifications. |
| P 11 | Illegal axis address | • Revise the axis names in the program. |
| P 20 | Division error | • Check the program. |
| P 29 | Not accept command | • Check the program. |
| P 30 | Parity H error | • Check the paper tape.
• Check the tape puncher and tape reader. |
| P 31 | Parity V error | • Make the number of characters per block on the paper tape even.
• Set the parameter parity V selection OFF. |
| P 32 | Illegal address | • Check and revise the program address.
• Check and correct the parameters values.
• Check the specifications. |
| P 33 | Format error | • Check the program. |
| P 34 | Illegal G code | • Check and correct the G code address in the program. |
| P 35 | Setting value range over | • Check the program. |
| P 36 | Program end error | • Enter the M02 and M30 command at the end of the program.
• Enter the M99 command at the end of the subprogram. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 37</td>
<td>O, N number zero
A zero has been specified for program and sequence Nos.</td>
<td>• The program Nos. are designated across a range from 1 to 99999999.
• The sequence Nos. are designated across a range from 1 to 9999.</td>
</tr>
<tr>
<td>P 38</td>
<td>No spec: Add. Op block skip
"/n" has been issued even though there are no optional block skip addition specifications.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P 39</td>
<td>No specifications
• A non-specified G code was specified.
• The selected operation mode is not used.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P 40</td>
<td>Pre-read block error
When tool radius compensation is executed, there is an error in the pre-read block and so the interference check is disabled.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>P 48</td>
<td>Restart pos return incomplete
Movement command was executed before executing the block that is restart-searched.</td>
<td>• Carry out program restart again. Movement command cannot be executed before executing the block that is restart-searched.</td>
</tr>
<tr>
<td>P 49</td>
<td>Invalid restart search
• Restart search was attempted for the 3-dimensional circular interpolation.
• Restart search was attempted during the cylindrical interpolation, polar coordinate interpolation, and tool tip center control.</td>
<td>• Reconsider the program.
• Reconsider the restart search position.</td>
</tr>
<tr>
<td>P 50</td>
<td>No spec: Inch/Metric change
Inch/Metric changeover (G20/G21) command was issued even though there is no inch/metric conversion specification.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P 60</td>
<td>Compensation length over
The commanded movement distance is excessive. (Over 2^{31})</td>
<td>• Reconsider the axis address command.</td>
</tr>
<tr>
<td>P 61</td>
<td>No spec: Unidirectional posit.
Unidirectional positioning (G60) was commanded even though there is no unidirectional positioning specification.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P 62</td>
<td>No F command
• No feed rate command has been issued.
• There is no F command in the cylindrical interpolation or polar coordinate interpolation immediately after the G95 mode is commanded.</td>
<td>• The default movement modal command at power ON is G01. This causes the machine to move without a G01 command if a movement command is issued in the program, and an alarm results. Use an F command to specify the feed rate.
• Specify F with a thread lead command.</td>
</tr>
<tr>
<td>P 63</td>
<td>No spec: High-speed machining
High-speed machining cancel (G5P0) was commanded even though there is no high-speed machining mode specification.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P 65</td>
<td>No spec: High speed mode 3</td>
<td>• Check the high-speed mode III specifications.</td>
</tr>
</tbody>
</table>
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P 70 | Arc end point deviation large
- There is an error in the arc start and end points as well as in the arc center.
- The difference of the involute curve through the start point and the end point is large.
- When arc was commanded, one of the two axes configuring the arc plane was a scaling valid axis. |
- Check the numerical values of the addresses that specify the start and end points, arc center as well as the radius in the program.
- Check the "+" and "-" directions of the address numerical values.
- Check the scaling valid axis. |
| P 71 | Arc center error
- The arc center is not sought during R-specified circular interpolation.
- The curvature center of the involute curve cannot be obtained. |
- Check the numerical values of the addresses in the program.
- Check whether the start point or end point is on the inner side of the base circle for involute interpolation. When carrying out tool radius compensation, check that the start point and end point after compensation are not on the inner side of the base circle for involute interpolation.
- Check whether the start point and end point are at an even distance from the center of the base circle for involute interpolation. |
| P 72 | No spec: Herical cutting
A helical command has been issued though it is not included in the specifications. |
- Check the helical specifications.
- An Axis 3 command was issued by the circular interpolation command. If there is no helical specification, the linear axis is moved to the next block. |
| P 73 | No spec: Spiral cutting
A spiral command was issued despite the fact that such a command does not exist in the specifications. |
- The G02.1 and G03.1 commands are issued for circular interpolation.
- Check the spiral specifications. |
| P 74 | Can't calculate 3DIM arc
The end block was not specified during 3-dimension circular interpolation supplementary modal, and therefore it is not possible to calculate the 3-dimension circular interpolation.
Furthermore, it not possible to calculate the 3-dimension circular interpolation due to an interruption during 3-dimension circular interpolation supplementary modal. |
- Reconsider the program. |
| P 75 | 3DIM arc illegal
An unusable G code was issued during 3-dimension circular interpolation modal.
Or, a 3-dimension circular interpolation command was issued during a modal for which a 3-dimension circular interpolation command cannot be issued. |
- Reconsider the program. |
| P 76 | No spec: 3DIM arc interpolat
G02.4/G03.4 was commanded even though there is no 3-dimension circular interpolation specification. |
- Check the specifications. |
| P 80 | No spec: Hypoth ax interpolat
Hypothetical axis interpolation (G07) was commanded even though there is no hypothetical axis interpolation specification. |
- Check the specifications. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 90</td>
<td>No spec: Thread cutting</td>
<td>A thread cutting command was issued even though there is no thread cutting command specification. • Check the specifications.</td>
</tr>
<tr>
<td>P 91</td>
<td>No spec: Var lead threading</td>
<td>Variable lead thread cutting (G34) was commanded even though there is no variable lead thread cutting specification. • Check the specifications.</td>
</tr>
<tr>
<td>P 93</td>
<td>Illegal pitch vaule</td>
<td>The thread lead (thread pitch) when performing the thread cutting command is incorrect. • Set the correct thread lead command for the thread cutting command.</td>
</tr>
<tr>
<td>P100</td>
<td>No spec: Cylindric interpolat</td>
<td>A cylindrical interpolation command was issued even though there is no cylindrical interpolation specification. • Check the specifications.</td>
</tr>
<tr>
<td>P110</td>
<td>Plane select during figure rot</td>
<td>Plane selection (G17/G18/G19) was commanded during figure rotation. • Check the machining program.</td>
</tr>
<tr>
<td>P111</td>
<td>Plane selected while coord rot</td>
<td>Plane selection commands (G17, G18, G19) were issued during a coordinate rotation command (G68). • After command G68, always issue a plane selection command following a G69 (coordinate rotation cancel) command.</td>
</tr>
<tr>
<td>P112</td>
<td>Plane selected while R compen</td>
<td>• Plane selection commands (G17, G18, G19) were issued while tool radius compensation (G41, G42) and nose R compensation (G41, G42, G46) commands were being issued. • Plane selection commands were issued after completing nose R compensation commands when there are no further axis movement commands after G40, and compensation has not been cancelled. • Issue plane selection commands after completing (axis movement commands issued after G40 cancel command) tool radius compensation and nose R compensation commands.</td>
</tr>
<tr>
<td>P113</td>
<td>Illegal plane select</td>
<td>The circular command axis differs from the selected plane. • Issue a circular command after correct plane selection.</td>
</tr>
<tr>
<td>P120</td>
<td>No spec: Feed per rotation</td>
<td>Feed per rotation (G95) was commanded even though there is no feed per rotation specification. • Check the specifications.</td>
</tr>
<tr>
<td>P121</td>
<td>F0 command during arc modal</td>
<td>F0 (F 1-digit feed) was commanded during the arc modal (G02/G03). • Check the machining program.</td>
</tr>
<tr>
<td>P122</td>
<td>No spec: Auto corner override</td>
<td>An auto corner override command (G62) was issued even though there is no auto corner override specification. • Check the specifications. • Delete the G62 command from the program.</td>
</tr>
<tr>
<td>P123</td>
<td>No spec: High-accuracy control</td>
<td>High-accuracy control command was issued even though there is no high-accuracy control specification. • Check the specifications.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Details</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>P124</td>
<td>No spec: Inverse time feed
There is no inverse time option.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P125</td>
<td>G93 mode error
• A G code command that cannot be issued was issued during G93 mode.
• G93 command was issued during a modal for which inverse time feed cannot be performed.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>P126</td>
<td>Invalid cmd in high-accuracy
An illegal command was issued during the high-accuracy control mode.
• A G code group 13 command was issued during the high-accuracy control mode.
• Milling, cylindrical interpolation or pole coordinate interpolation was commanded during the high-accuracy control mode.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>P127</td>
<td>No spec: SSS Control
The SSS control valid parameter was set to ON although there is no SSS control specification.</td>
<td>• Check the specifications. If there is no SSS control specification, set the parameter #8090 SSS ON to 0.</td>
</tr>
<tr>
<td>P130</td>
<td>2nd M function code illegal
The 2nd miscellaneous function address commanded in the program differs from the address set in the parameters.</td>
<td>• Check and correct the 2nd miscellaneous function address in the program.</td>
</tr>
<tr>
<td>P131</td>
<td>No spec: Cnst surface ctrl G96
A constant surface speed control command (G96) was issued even though there is no specification.</td>
<td>• Check the specifications. • Change the constant surface speed control command (G96) to a rotation speed command (G97).</td>
</tr>
<tr>
<td>P132</td>
<td>Spindle rotation speed S=0
No spindle rotation speed command has been issued.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>P133</td>
<td>Illegal P-No. G96
An invalid constant surface speed control axis has been specified.</td>
<td>• Reconsider the parameter specified for the constant surface speed control axis.</td>
</tr>
<tr>
<td>P140</td>
<td>No spec: Pos compen cmd
The position compensation command (G45 to G48) specifications are not available.</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td>P141</td>
<td>Pos compen during rotation
Position compensation was commanded during the figure rotation or coordinate rotation command.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>P142</td>
<td>Pos compen invalid arc
A position compensation invalid arc command was commanded.</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Details</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>P150</td>
<td>No spec: Nose R compensation</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>• Even though there were no tool radius compensation specifications, tool radius compensation commands (G41 and G42) were issued.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Even though there were no nose R compensation specifications, nose R compensation commands (G41, G42, and G46) were issued.</td>
<td></td>
</tr>
<tr>
<td>P151</td>
<td>Radius compen during arc mode</td>
<td>• Issue the linear command (G01) or rapid traverse command (G00) in the compensation command block or cancel block. (Set the modal to linear interpolation.)</td>
</tr>
<tr>
<td></td>
<td>A compensation command (G40, G41, G42, G43, G44, G46) has been issued in the arc modal (G02, G03).</td>
<td></td>
</tr>
<tr>
<td>P152</td>
<td>No intersection</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>In interference block processing during execution of a tool radius compensation (G41 or G42) or nose R compensation (G41, G42, or G46) command, the intersection point after one block is skipped cannot be determined.</td>
<td></td>
</tr>
<tr>
<td>P153</td>
<td>Compensation interference</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>An interference error has arisen while the tool radius compensation command (G41, G42) or nose R compensation command (G41, G42, G46) was being executed.</td>
<td></td>
</tr>
<tr>
<td>P154</td>
<td>No spec: 3D compensation</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>A three-dimensional compensation command was issued even though there are no three-dimensional compensation specifications.</td>
<td></td>
</tr>
<tr>
<td>P155</td>
<td>Fixed cyc exec during compen</td>
<td>• The radius compensation mode is established when a fixed cycle command is executed and so the radius compensation cancel command (G40) should be issued.</td>
</tr>
<tr>
<td></td>
<td>A fixed cycle command has been issued in the radius compensation mode.</td>
<td></td>
</tr>
<tr>
<td>P156</td>
<td>R compen direction not defined</td>
<td>• Change the vector to that with which the compensation direction is defined.</td>
</tr>
<tr>
<td></td>
<td>At the start of G46 nose R compensation, the compensation direction is undefined if this shift vector is used.</td>
<td>• Exchange with a tool having a different tip point No.</td>
</tr>
<tr>
<td>P157</td>
<td>R compen direction changed</td>
<td>• Change the G command to that which allows inversion of the compensation direction (G00, G28, G30, G33, or G53).</td>
</tr>
<tr>
<td></td>
<td>During G46 nose R compensation, the compensation direction is inverted.</td>
<td>• Exchange with a tool having a different tip point No.</td>
</tr>
<tr>
<td></td>
<td>• Turn ON the "#8106 G46 NO REV-ERR" parameter.</td>
<td></td>
</tr>
<tr>
<td>P158</td>
<td>Illegal tip point</td>
<td>• Change the tip point No. to a legal one.</td>
</tr>
<tr>
<td></td>
<td>During G46 nose R compensation, the tip point is illegal (other than 1 to 8).</td>
<td></td>
</tr>
<tr>
<td>Error No.</td>
<td>Details</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| P170 | **No offset number**
The compensation No. (DOO, TOO, HOO) command was not given when the radius compensation (G41, G42, G43, G46) command was issued. Alternatively, the compensation No. is larger than the number of sets in the specifications. | • Add the compensation No. command to the compensation command block.
• Check the number of compensation No. sets a correct it to a compensation No. command within the permitted number of tool compensation sets. |
| P171 | **No spec:Comp input by prog G10**
Compensation data input by program (G10) was commanded even though there is no specification of compensation data input by program. | • Check the specifications. |
| P172 | **G10 L number error**
(G10 L-No. error)
The L address command is not correct when the G10 command is issued. | • Check the address L-No. of the G10 command and correct the No. |
| P173 | **G10 P number error**
(G10 compensation error)
When the G10 command is issued, a compensation No. outside the permitted number of sets in the specifications has been commanded for the compensation No. command. | • First check the number of compensation sets and then set the address P designation to within the permitted number of sets. |
| P174 | **No spec:Comp input by prog G11**
Compensation data input by program cancel (G11) was commanded even though there is no specification of compensation data input by program. | • Check the specifications. |
| P177 | **Tool life count active**
Registration of tool life management data with G10 was attempted when the used data count valid signal was ON. | • The tool life management data cannot be registered when counting the used data. Turn the used data count valid signal OFF. |
| P178 | **Tool life data entry over**
The number of registration groups, total number of registered tools or the number of registrations per group exceeded the specifications range. | • Review the number of registrations. |
| P179 | **Illegal group No.**
• When registering the tool life management data with G10, the group No. was commanded in duplicate.
• A group No. that was not registered was designated during the T□□□□□99 command.
• An M code command must be issued as a single command but coexists in the same block as that of another M code command.
• The M code commands set in the same group exist in the same block. | • The group No. cannot be commanded in duplicate. When registering the group data, register it in group units.
• Correct to the correct group No. |
| P180 | **No spec: Drilling cycle**
A fixed cycle command was issued though there are not fixed cycle (G72 - G89) specifications. | • Check the specifications.
• Correct the program. |
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P181 | No spindle command (Tap cycle) Spindle rotation speed (S) has not been commanded in synchronous tapping. | • Command the spindle rotation speed (S) in synchronous tapping.
• When "#8125 Check Scode in G84" is set to "1", enter the S command in the same block where the synchronous tapping command is issued. |
| P182 | Synchronous tap error
• Connection to the main spindle unit was not established.
• The synchronous tapping was attempted with the spindle not serially connected under the multiple-spindle control I. | • Check connection to the main spindle.
• Check that the main spindle encoder exists.
• Set 1 to the parameter #3024 (sout). |
| P183 | No pitch/thread number
The pitch or thread number command has not been issued in the tap cycle of a fixed cycle for drilling command. | • Specify the pitch data and the number of threads by F or E command. |
| P184 | Pitch/thread number error
• The pitch or the number of threads per inch is illegal in the tap cycle of the fixed cycle for drilling command.
• The pitch is too small for the spindle rotation speed.
• The thread number is too large for the spindle rotation speed. | • Check the pitch or the number of threads per inch. |
| P185 | No spec: Sync tapping cycle
Synchronous tapping cycle (G84/G74) was commanded even though there is no synchronous tapping cycle specification. | • Check the specifications. |
| P186 | Illegal S cmd in synchro tap
S command was issued during synchronous tapping modal. | • Cancel the synchronous tapping before issuing the S command. |
| P190 | No spec: Turning cycle
A lathe cutting cycle command was input although the lathe cutting cycle was undefined in the specification. | • Check the specification.
• Delete the lathe cutting cycle command. |
| P191 | Taper length error
In the lathe cutting cycle, the specified length of taper section is illegal. | • The radius set value in the lathe cycle command must be smaller than the axis shift amount. |
| P192 | Chamfering error
Chamfering in the thread cutting cycle is illegal. | • Set a chamfering amount not exceeding the cycle. |
| P200 | No spec: MRC cycle
The compound type fixed cycle for turning machining I (G70 to G73) was commanded when the compound type fixed cycle for turning machining I specifications were not provided. | • Check the specification. |
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P201</td>
<td>Program error (MRC)</td>
<td>- Delete the following G codes from this subprogram that is called with the compound type fixed cycle for turning machining I commands (G70 to G73): G27, G28, G29, G30, G31, G33, G34, and fixed cycle G codes. - Remove G2 and G3 from the first move block of the finish shape program in compound type fixed cycle for turning machining I.</td>
</tr>
<tr>
<td>P202</td>
<td>Block over (MRC)</td>
<td>- Specify 50 or a less value. The number of blocks in the shape program called by the compound type fixed cycle for turning machining I commands (G70 to G73) must be decreased below 50 or 200 (this differs according to the model).</td>
</tr>
<tr>
<td>P203</td>
<td>D cmnd figure error (MRC)</td>
<td>- Check the compound type fixed cycle for turning machining I (G70 to G73) shape program.</td>
</tr>
<tr>
<td>P204</td>
<td>E cmnd fixed cycle error</td>
<td>- Check the compound type fixed cycle for turning machining (G70 to G76) command value.</td>
</tr>
<tr>
<td>P210</td>
<td>No spec: Pattern cycle</td>
<td>- Check the specification.</td>
</tr>
<tr>
<td>P220</td>
<td>No spec: Special fixed cycle</td>
<td>- Check the specifications.</td>
</tr>
<tr>
<td>P221</td>
<td>No. of special fixed holes = 0</td>
<td>- Reconsider the program.</td>
</tr>
<tr>
<td>P222</td>
<td>G36 angle error</td>
<td>- Reconsider the program.</td>
</tr>
<tr>
<td>P223</td>
<td>G12/G13 radius error</td>
<td>- Reconsider the program.</td>
</tr>
<tr>
<td>P224</td>
<td>No spec: Circular (G12/G13)</td>
<td>- Check the specifications.</td>
</tr>
</tbody>
</table>
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P230 | Subprogram nesting over
• A subprogram has been called 8 or more times in succession from the subprogram.
• The program in the data server contains the M198 command.
• The program in the IC card has been called more than once (the program in the IC card can be called only once at a time). | • Check the number of subprogram calls and correct the program so that it does not exceed 8 times. |
| P231 | No sequence No.
At subprogram call time, the sequence No. set at return from the subprogram or specified by GOTO, was not set. | • Specify the sequence Nos. in the call block of the subprogram. |
| P232 | No program No.
• The machining program has not been found when the machining program is called.
• The file name of the program registered in IC card is not corresponding to O No. | • Enter the machining program.
• Check the subprogram storage destination parameters.
• Ensure that the external device (including IC card) that contains the file is mounted. |
| P235 | Program editing
Operation was attempted for the file under program editing. | • Execute the program again after completion of program editing. |
| P240 | Program editing
Operation was attempted for the file under program editing. | • Check the specifications. |
| P241 | No variable No.
The variable No. commanded is out of the range specified in the specifications. | • Check the specifications.
• Check the program variable No. |
| P242 | = not defined at vrble set
The "=" sign has not been commanded when a variable is defined. | • Designate the "=" sign in the variable definition of the program. |
| P243 | Can't use variables
An invalid variable has been specified in the left or right side of an operation expression. | • Correct the program. |
| P244 | Invalid set date or time
Date or time was set earlier than current date or time in the system variables (#3011, #3012) when the credit system was valid. | • Date or time cannot be changed.
• Reconsider the program. |
| P250 | No spec: Figure rotation
Figure rotation (M98 I_J_P_H_L_) was commanded even though there is no figure rotation specification. | • Check the specifications. |
| P251 | Figure rotation overlapped
Figure rotation command was issued during figure rotation. | • Check the machining program. |
| P252 | Coord rotate in fig. rotation
A coordinate rotation related command (G68, G69) was issued during figure rotation. | • Reconsider the program. |
| P260 | No spec: Coordinates rotation
Even though there were no coordinate rotation specifications, a coordinate rotation command was issued. | • Check the specifications. |
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P270 | No spec: User macro
A macro specification was commanded though there are no such command specifications. | • Check the specifications. |
| P271 | No spec: Macro interrupt
A macro interruption command has been issued though it is not included in the specifications. | • Check the specifications. |
| P272 | NC and macro texts in a block
A statement and a macro statement exist together in the same block. | • Reconsider the program and place the executable statement and macro statement in separate blocks. |
| P273 | Macro call nesting over
The number of macro call nests exceeded the specifications. | • Reconsider the program and correct it so that the macro calls do not exceed the limit imposed by the specification. |
| P275 | Macro argument over
The number of macro call argument type II sets has exceeded the limit. | • Reconsider the program. |
| P276 | Illegal G67 command
A G67 command was issued though it was not during the G66 command modal. | • Reconsider the program.
• The G67 command is the call cancel command and so the G66 command must be designated first before it is issued. |
| P277 | Macro alarm message
An alarm command has been issued in #3000. | • Refer to the operator messages on the DIAG screen.
• Refer to the instruction manual issued by the machine tool builder. |
| P280 | Brackets [] nesting over
The number of parentheses "[" or "]" which can be commanded in a single block has exceeded five. | • Reconsider the program and correct it so the number of "[" or "]" is five or less. |
| P281 | Brackets [] not paired
The number of "[" and "]" parentheses commanded in a single block does not match. | • Reconsider the program and correct it so that "[" and "]" parentheses are paired up properly. |
| P282 | Calculation impossible
The arithmetic formula is incorrect. | • Reconsider the program and correct the formula. |
| P283 | Divided by zero
The denominator of the division is zero. | • Reconsider the program and correct it so that the denominator for division in the formula is not zero. |
| P290 | IF sentence error
There is an error in the IF conditional GOTO□ statement. | • Reconsider the program. |
| P291 | WHILE sentence error
There is an error in the WHILE conditional DO□-END□ statement. | • Reconsider the program. |
| P292 | SETVN sentence error
There is an error in the SETVN□ statement when the variable name setting was made. | • Reconsider the program.
• The number of characters in the variable name of the SETVN statement must be 7 or less. |
| P293 | DO-END nesting over
The number of DO-END nesting levels in WHILE conditional DO□-END□ statement has exceeded 27. | • Reconsider the program and correct it so that the nesting levels of the DO - END statement does not exceed 27. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P294</td>
<td>DO and END not paired</td>
<td>• Reconsider the program and correct it so that the DO's and END's are paired off properly.</td>
</tr>
<tr>
<td></td>
<td>The DO's and END's are not paired off properly.</td>
<td></td>
</tr>
<tr>
<td>P295</td>
<td>WHILE/GOTO in tape</td>
<td>• During tape operation, a program which includes a WHILE or GOTO statement cannot be executed and so the memory operation mode is established instead.</td>
</tr>
<tr>
<td></td>
<td>There is a WHILE or GOTO statement on the tape during tape operation.</td>
<td></td>
</tr>
<tr>
<td>P296</td>
<td>No address (macro)</td>
<td>• Review the program.</td>
</tr>
<tr>
<td></td>
<td>A required address has not been specified in the user macro.</td>
<td></td>
</tr>
<tr>
<td>P297</td>
<td>Address-A error</td>
<td>• Review the program.</td>
</tr>
<tr>
<td></td>
<td>The user macro does not use address A as a variable.</td>
<td></td>
</tr>
<tr>
<td>P298</td>
<td>G200-G202 cmd in tape</td>
<td>• Review the program.</td>
</tr>
<tr>
<td></td>
<td>User macro G200, G201, or G202 was specified during tape or MDI mode.</td>
<td></td>
</tr>
<tr>
<td>P300</td>
<td>Variable name illegal</td>
<td>• Reconsider the variable names in the program and correct them.</td>
</tr>
<tr>
<td></td>
<td>The variable names have not been commanded properly.</td>
<td></td>
</tr>
<tr>
<td>P301</td>
<td>Variable name duplicated</td>
<td>• Correct the program so that the name is not duplicated.</td>
</tr>
<tr>
<td></td>
<td>The name of the variable has been duplicated.</td>
<td></td>
</tr>
<tr>
<td>P310</td>
<td>Not use GMSTB macro code</td>
<td>• Review the program.</td>
</tr>
<tr>
<td></td>
<td>G, M, S, T, or B macro code was called during fixed cycle.</td>
<td>• Review the parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P350</td>
<td>No spec: Scaling command</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>The scaling command (G50, G51) was issued when the scaling specifications were not available.</td>
<td></td>
</tr>
<tr>
<td>P360</td>
<td>No spec: Program mirror</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>A mirror image (G50.1 or G51.1) command has been issued though the programmable mirror image specifications are not provided.</td>
<td></td>
</tr>
<tr>
<td>P370</td>
<td>No spec: Facing t-post MR</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>The facing turret mirror image specifications are not provided.</td>
<td></td>
</tr>
<tr>
<td>P371</td>
<td>Facing t-post MR illegal</td>
<td>• Check the program.</td>
</tr>
<tr>
<td></td>
<td>Mirror image for facing tool posts was commanded to an axis for which external mirror image or parameter mirror image is valid.</td>
<td>• Check the parameters.</td>
</tr>
<tr>
<td></td>
<td>Mirror image for facing tool posts validating mirror image for a rotary axis was commanded.</td>
<td></td>
</tr>
<tr>
<td>P380</td>
<td>No spec: Corner R/C</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>The corner R/C was issued when the corner R/C specifications were not available.</td>
<td>• Remove the corner chamfering/corner rounding command from the program.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Details</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| P381 | **No spec: Arc R/C**
Corner chamfering II /corner rounding II was specified in the arc interpolation block although corner chamfering/corner rounding II is unsupported. | • Check the specifications. |
| P382 | **No corner movement**
The block next to corner chamfering/corner rounding is not a movement command. | • Replace the block succeeding the corner chamfering/corner rounding command by G01 command. |
| P383 | **Corner movement short**
In the corner chamfering/corner rounding command, the movement distance was shorter than the value in the corner chamfering/corner rounding command. | • Make the corner chamfering/corner rounding less than the movement distance since this distance is shorter than the corner chamfering/corner rounding. |
| P384 | **Corner next movement short**
When the corner chamfering/corner rounding command was input, the movement distance in the following block was shorter than the length of the corner chamfering/corner rounding. | • Make the corner chamfering/corner rounding less than the movement distance since this distance in the following block is shorter than the corner chamfering/corner rounding. |
| P385 | **Corner during G00/G33**
A block with corner chamfering/corner rounding was given during G00 or G33 modal. | • Recheck the program. |
| P390 | **No spec: Geometric**
A geometric command was issued though there are no geometric specifications. | • Check the specifications. |
| P391 | **No spec: Geometric arc**
There are no geometric IB specifications. | • Check the specifications. |
| P392 | **Angle < 1 degree (GEOMT)**
The angular difference between the geometric line and line is 1° or less. | • Correct the geometric angle. |
| P393 | **Inc value in 2nd block (GEOMT)**
The second geometric block was specified by an incremental value. | • Specify this block by an absolute value. |
| P394 | **No linear move command (GEOMT)**
The second geometric block contains no linear command. | • Specify the G01 command. |
| P395 | **Illegal address (GEOMT)**
The geometric format is invalid. | • Recheck the program. |
| P396 | **Plane selected in GEOMT ctrl**
A plane switching command was executed during geometric command processing. | • Execute the plane switching command before geometric command processing. |
| P397 | **Arc error (GEOMT)**
In geometric IB, the circular arc end point does not contact or cross the next block start point. | • Recheck the geometric circular arc command and the preceding and following commands. |
| P398 | **No spec: Geometric1B**
Although the geometric IB specifications are not included, a geometric command is given. | • Check the specifications. |
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P411 | **Illegal modal G111**
- G111 was issued during milling mode.
- G111 was issued during nose R compensation mode.
- G111 was issued during constant surface speed.
- G111 was issued during mixed synchronization control.
- G111 was issued during fixed cycle.
- G111 was issued during polar coordinate interpolation.
- G111 was issued during cylindrical interpolation mode. | • Before commanding G111, cancel the following commands.
- Milling mode
- Nose R compensation
- Constant surface speed
- Mixed synchronization control
- Fixed cycle
- Polar coordinate interpolation
- Cylindrical interpolation |
| P412 | **P412 No spec: Axis name switch**
Axis name switch (G111) was issued even though there is no axis name switch (G111) specification. | • Check the specifications. |
| P420 | **No spec: Para input by program**
Parameter input by program (G10) was commanded even though there is no specification of parameter input by program. | • Check the specifications. |
| P421 | **Parameter input error**
- The specified parameter No. or set data is illegal.
- An illegal G command address was input in parameter input mode.
- A parameter input command was input during fixed cycle modal or nose R compensation.
- G10L50, G10L70, G11 were not commanded in independent blocks. | • Check the program. |
| P430 | **R-pnt return incomplete**
A command was issued to move an axis, which has not returned to the reference position, away from that reference position.
A command was issued to an axis removal axis. | • Execute reference position return manually.
- The command was issued to an axis for which axis removal is validated so invalidate axis removal. |
| P431 | **No spec: 2,3,4th R-point ret**
A command for second, third or fourth reference position return was issued though there are no such command specifications. | • Check the specifications. |
| P432 | **No spec: Start position return**
Start position return (G29) was commanded even though there is no start position return specification. | • Check the specifications. |
| P433 | **No spec: R-position check**
Reference position check (G27) was commanded even though there is no reference position check specification. | • Check the specifications. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P434 | Compare error
One of the axes did not return to the reference position when the reference position check command (G27) was executed. | • Check the program. |
| P435 | G27 and M commands in a block
An M command was issued simultaneously in the G27 command block. | • An M code command cannot be issued in a G27 command block and so the G27 command and M code command must be placed in separate blocks. |
| P436 | G29 and M commands in a block
An M command was issued simultaneously in the G29 command block. | • An M code command cannot be issued in a G29 command block and so the G29 command and M code command must be placed in separate blocks. |
| P438 | G52 invalid during G54.1
A local coordinate system command was issued during execution of the G54.1 command. | • Review the program. |
| P450 | No spec: Chuck barrier
The chuck barrier on command (G22) was specified although the chuck barrier was undefined in the specification. | • Check the specification. |
| P451 | No spec: Stroke chk bef travel
Stroke check before travel (G22/G23) was commanded even though there is no stroke check before travel specification. | • Check the specification. |
| P452 | Limit before travel exists
An illegal command such as the start or end point of the traveling axis is inside the prohibited area or the axis passes through the prohibited area, was detected when Stroke check before travel (G22) was ON. | • Review the coordinate values of the axis address commanded in the program. |
| P460 | Tape I/O error
An error has arisen in the tape reader or, alternatively, in the printer during macro printing. | • Check the power and cable of the connected devices.
• Check the I/O device parameters. |
| P461 | File I/O error
A file of the machining program cannot be read.
IC card has not been inserted. | • In memory mode, the programs stored in memory may have been destroyed. Output all of the programs and tool data once and format them.
• Ensure that the external device (including an IC card, etc) that contains the file is mounted.
• Check the parameters for HD operation or IC card operation. |
| P462 | Computer link commu error
A communication error occurred during the BTR operation. | • "L01 Computer link error" is displayed simultaneously, so remedy the problem according to the error No. |
| P480 | No spec: Milling
• Milling was commanded when the milling specifications were not provided.
• Polar coordinate interpolation was commanded when the polar coordinate interpolation specifications were not provided. | • Check the specification. |
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P481</td>
<td>Illegal G code (mill)</td>
<td>• Check the program.</td>
</tr>
<tr>
<td></td>
<td>• An illegal G code was used during the milling mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An illegal G code was used during cylindrical interpolation or polar coordinate interpolation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The G07.1 command was issued during the tool radius compensation.</td>
<td></td>
</tr>
<tr>
<td>P482</td>
<td>Illegal axis (mill)</td>
<td>• Check the machining program, parameters and PLC I/F signal.</td>
</tr>
<tr>
<td></td>
<td>• A rotary axis was commanded during the milling mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Milling was executed even though an illegal value was set for the milling axis No.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cylindrical interpolation or polar coordinate interpolation was commanded during mirror image.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cylindrical interpolation or polar coordinate interpolation was commanded before the tool compensation was completed after the T command.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• G07.1 was commanded when cylindrical interpolation was not possible (there is no rotary axis, or external mirror image is ON).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• An axis other than a cylindrical coordinate system axis was commanded during cylindrical interpolation.</td>
<td></td>
</tr>
<tr>
<td>P484</td>
<td>R-pnt ret incomplete (mill)</td>
<td>• Carry out manual reference position return.</td>
</tr>
<tr>
<td></td>
<td>• Movement was commanded to an axis that had not completed reference position return during the milling mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Movement was commanded to an axis that had not completed reference position return during cylindrical interpolation or polar coordinate interpolation.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2. Program Error

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P485 | Illegal modal (mill)
- The milling mode was turned ON during nose R compensation or constant surface speed control.
- A T command was issued during the milling mode.
- The mode was switched from milling to cutting during tool compensation.
- Cylindrical interpolation or polar coordinate interpolation was commanded during the constant surface speed control mode (G96).
- The command unacceptable in the cylindrical interpolation was issued.
- A T command was issued during the cylindrical interpolation or polar coordinate interpolation mode.
- A movement command was issued when the plane was not selected just before or after the G07.1 command.
- A plane selection command was issued during the polar coordinate interpolation mode.
- Cylindrical interpolation or polar coordinate interpolation was commanded during tool radius compensation.
- The G16 plane in which the radius value of a cylinder is 0 was specified.
- A cylindrical interpolation or polar coordinate interpolation command was issued during coordinate rotation by program (G68). | • Check the program.
• Before issuing G12.1, issue G40 or G97.
• Before issuing G12.1, issue a T command.
• Before issuing G13.1, issue G40.
• Specify the radius value of a cylinder other than 0, or specify the X axis's current value other than 0 before issuing G12.1/G16. |
| P486 | Milling error
- The milling command was issued during the mirror image (when parameter or external input is turned ON).
- Polar coordinate interpolation, cylindrical interpolation or milling interpolation was commanded during mirror image for facing tool posts.
- The start command of the cylindrical interpolation or polar coordinate interpolation was issued during the normal line control. | • Check the program. |
| P511 | Synchronization M code error
- Two or more synchronization M codes were commanded in the same block.
- The synchronization M code and "I" code were commanded in the same block.
- Synchronization with the M code was commanded in 3rd part system or more. (Synchronization with the M code is valid only in 1st part system or 2nd part system.) | • Check the program. |
| P550 | No spec: G06.2(NURBS)
There is no NURBS interpolation option. | • Check the specifications. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| P551 G06.2 knot error | The knot (k) command value is smaller than the value for the previous block. | • Reconsider the program.
• Specify the knot by monotone increment. |
| P552 Start point of 1st G06.2 err | The block end point immediately before the G06.2 command and the G06.2 first block command value do not match. | • Match the G06.2 first block coordinate command value with the previous block end point. |
| P554 Invld manual interrupt in G6.2 | Manual interruption using a block was performed while in G06.2 mode. | • Perform for blocks other than G06.2 mode when manually interrupting. |
| P555 Invalid restart during G06.2 | Restart was attempted from the block in G06.2 mode. | • Restart from the block other than in G06.2 mode. |
| P600 No spec: Auto TLM | An automatic tool length measurement command (G37) was execute though there are no such command specifications. | • Check the specifications. |
| P601 No spec: Skip | A skip command (G31) was issued though there are no such command specifications. | • Check the specifications. |
| P602 No spec: Multi skip | A multiple skip command (G31.1, G31.2 or G31.3) was issued though there are no such command specifications. | • Check the specifications. |
| P603 Skip speed 0 | The skip speed is 0. | • Specify the skip speed. |
| P604 TLM illegal axis | No axis or more than one axis was specified in the automatic tool length measurement block. | • Specify only one axis. |
| P605 T & TLM command in a block | The T code is in the same block as the automatic tool length measurement block. | • Specify this T code before the block. |
| P606 T cmd not found before TLM | The T code was not yet specified in automatic tool length measurement. | • Specify this T code before the block. |
| P607 TLM illegal signal | Before the area specified by the D command or decelerating area parameter d, the measurement position arrival signal went ON. The signal remains OFF to the end. | • Check the program. |
| P608 Skip during radius compen | A skip command was specified during radius compensation processing. | • Specify a radius compensation cancel (G40) command or remove the skip command. |
| P610 Illegal parameter | • The parameter setting is not correct.
• G114.1 was commanded when the spindle synchronization with PLC I/F command was selected.
• G113 was commanded when the spindle-spindle polygon machining option was OFF and the spindle synchronization with PLC I/F command was selected. | • Check whether "#1549 Iv0vR1" to "#1553 Iv0vR5" are set in descending order (in order of large values).
• Check whether "#1554 Iv0rd2" to "#1557 Iv0rd5" are set in descending order.
• Check and correct "#1514 expLinax" and "#1515 expRotax".
• Check the program.
• Check the parameter. |
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Details</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P611</td>
<td>No spec: Exponential function</td>
<td>• Check the specification.</td>
</tr>
<tr>
<td></td>
<td>Specification for exponential interpolation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is not available.</td>
<td></td>
</tr>
<tr>
<td>P612</td>
<td>Exponential function error</td>
<td>• Check the program.</td>
</tr>
<tr>
<td></td>
<td>A movement command for exponential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpolation was issued during mirror image</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for facing tool posts.</td>
<td></td>
</tr>
<tr>
<td>P700</td>
<td>Illegal command value</td>
<td>• Check the program.</td>
</tr>
<tr>
<td></td>
<td>Spindle synchronization was commanded to a</td>
<td>• Check the parameter.</td>
</tr>
<tr>
<td></td>
<td>spindle that is not connected serially.</td>
<td></td>
</tr>
<tr>
<td>P900</td>
<td>No spec: Normal line control</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>A normal line control command (G40.1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G41.1, G42.1) was issued when the normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>line control specifications were not provided.</td>
<td></td>
</tr>
<tr>
<td>P901</td>
<td>Normal line control axis G92</td>
<td>• Check the program.</td>
</tr>
<tr>
<td></td>
<td>A coordinate system preset command (G92)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>was issued to a normal line control axis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>during normal line control.</td>
<td></td>
</tr>
<tr>
<td>P902</td>
<td>Normal line control axis error</td>
<td>• Correct the normal line control axis.</td>
</tr>
<tr>
<td></td>
<td>• The normal line control axis was set to a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linear axis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The normal line control axis was set to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linear type rotary axis II axis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The normal line control axis has not been</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The normal line control axis was the same</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as the plane selection axis.</td>
<td></td>
</tr>
<tr>
<td>P903</td>
<td>Plane chg in Normal line ctrl</td>
<td>• Delete the plane selection command (G17,</td>
</tr>
<tr>
<td></td>
<td>The plane selection command (G17, G18,</td>
<td>G18, G19) from the program for normal line</td>
</tr>
<tr>
<td></td>
<td>G19) was issued during normal line control.</td>
<td>control.</td>
</tr>
<tr>
<td>P920</td>
<td>No spec: 3D coord conv</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>There is no specification for 3-dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coordinate conversion.</td>
<td></td>
</tr>
<tr>
<td>P921</td>
<td>Illegal G code at 3D coord</td>
<td>• Refer to "Mitsubishi CNC 700/70 Series</td>
</tr>
<tr>
<td></td>
<td>A G code command that cannot be performed</td>
<td>Programming Instruction Manual (Machining</td>
</tr>
<tr>
<td></td>
<td>was made during 3-dimensional coordinate</td>
<td>Center Series)" for further details of usable</td>
</tr>
<tr>
<td></td>
<td>conversion modal.</td>
<td>G commands.</td>
</tr>
<tr>
<td></td>
<td>• When the basic specification parameter</td>
<td>• When the basic specification parameter</td>
</tr>
<tr>
<td></td>
<td>"#1229 set01/bit3" is ON, turn the parameter</td>
<td>"#1229 set01/bit3" is ON, turn the parameter</td>
</tr>
<tr>
<td></td>
<td>OFF or specify the constant surface speed</td>
<td>OFF or specify the constant surface speed</td>
</tr>
<tr>
<td></td>
<td>control cancel (G97).</td>
<td>control cancel (G97).</td>
</tr>
<tr>
<td>P922</td>
<td>Illegal mode at 3D coord</td>
<td>• Refer to "Mitsubishi CNC 700/70 Series</td>
</tr>
<tr>
<td></td>
<td>A 3-dimensional coordinate conversion</td>
<td>Programming Instruction Manual (Machining</td>
</tr>
<tr>
<td></td>
<td>command was issued during a modal for which</td>
<td>Center Series)" for further details of usable</td>
</tr>
<tr>
<td></td>
<td>3-dimensional coordinate conversion cannot</td>
<td>G commands.</td>
</tr>
<tr>
<td></td>
<td>be performed.</td>
<td>• Refer to "Mitsubishi CNC 700/70 Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programming Instruction Manual (Machining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Center Series)" for further details of usable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G commands.</td>
</tr>
<tr>
<td>P923</td>
<td>Illegal addr in 3D coord blk</td>
<td>• Refer to "Mitsubishi CNC 700/70 Series</td>
</tr>
<tr>
<td></td>
<td>A G code for which G68 to combination could</td>
<td>Programming Instruction Manual (Machining</td>
</tr>
<tr>
<td></td>
<td>not be performed was specified for the same</td>
<td>Center Series)" for further details of usable</td>
</tr>
<tr>
<td></td>
<td>block.</td>
<td>G commands.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Details</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>P930</td>
<td>No spec: Tool axis compen</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>A tool length compensation along the tool axis command was issued even though there is no tool length compensation along the tool axis specification.</td>
<td></td>
</tr>
<tr>
<td>P931</td>
<td>Executing tool axis compen</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>A G code that cannot be commanded exists during tool length compensation along the tool axis.</td>
<td></td>
</tr>
<tr>
<td>P932</td>
<td>Rot axis parameter error</td>
<td>• Set the correct value and reboot.</td>
</tr>
<tr>
<td></td>
<td>There is a mistake in the linear axis name and rotary axis name in the rotary axis configuration parameters.</td>
<td></td>
</tr>
<tr>
<td>P940</td>
<td>No spec: Tool tip control</td>
<td>• Check the specifications.</td>
</tr>
<tr>
<td></td>
<td>There is no tool tip center control specification.</td>
<td></td>
</tr>
<tr>
<td>P941</td>
<td>Invalid T tip control command</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>A tool tip center control command was issued during a modal for which a tool tip center control command cannot be issued.</td>
<td></td>
</tr>
<tr>
<td>P942</td>
<td>Invalid cmd during T tip ctrl</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>A G code that cannot be commanded was issued during tool tip center control.</td>
<td></td>
</tr>
<tr>
<td>P943</td>
<td>Tool posture command illegal</td>
<td>• Reconsider the program.</td>
</tr>
<tr>
<td></td>
<td>In the case of tool tip center control type 1, if the signs at the tool-side rotary axis or table base-side rotary axis start and finish points differ, a tool base-side rotary axis or table workpiece-side rotary axis rotation exists for the same block, and does not pass a singular point. In the case of tool tip center control type 2, the posture vector command is incorrect.</td>
<td></td>
</tr>
<tr>
<td>P990</td>
<td>PREPRO error</td>
<td>• Reduce the number of commands that require pre-reading or delete such commands.</td>
</tr>
<tr>
<td></td>
<td>Combining commands that required pre-reading (nose R offset, corner chamfering/corner rounding, geometric I, geometric IB, and compound type fixed cycle for turning machining) resulted in eight or more pre-read blocks.</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Numbers

- 2nd Miscellaneous Functions (A8-digits, B8-digits or C8-digits) 164
- 2nd, 3rd, and 4th Reference Position (Zero point) Return; G30 551
- 2-part System Simultaneous Thread-cutting Cycle (MELDAS special format) 539
- 2-part System Synchronous Thread Cutting Cycle 531
- 2-part System Synchronous Thread Cutting Cycle I; G76.1 532
- 2-part System Synchronous Thread Cutting Cycle II; G76.2 535

A

- ASCII Code Macro ... 405
- Automatic Acceleration/Deceleration .. 142
- Automatic Coordinate System Setting 544
- Automatic Corner Override; G62 ... 154
- Automatic Tool Length Measurement; G37 577

B

- Balance Cut; G15, G14 ... 517
- Basic Machine Coordinate System Selection; G53 545
- Basic Machine, Workpiece and Local Coordinate Systems 542
- Buffer Register .. 24

C

- Calling Subprogram with M198 Commands 390
- Calling Subprogram with M98 and M99 Commands 385
- Chuck Barrier/Tailstock Barrier; G22, G23 570
- Circular Interpolation; G02, G03 .. 44
- Circular Thread Cutting; G35, G36 ... 64
- Compensation Data Input by Program; G10, G11 288
- Compound Thread Cutting Cycle; G76 334
- Compound Type Fixed Cycle for Turning Machining 306
- Compound Type Fixed Cycle for Turning Machining (MITSUBISHI CNC special format) 341
- Constant Lead Thread Cutting; G33 ... 53
- Constant Surface Speed Control; G96, G97 169
- Continuous Thread Cutting ... 60
- Control Axes ... 1
- Control Commands ... 456
- Coordinate System for Rotary Axis .. 567
- Coordinate System Setting Functions .. 541
- Coordinate System Setting; G92 .. 546
- Coordinate Systems and Coordinate Zero Point Symbols 2
- Coordinate Words and Control Axes ... 1, 541
- Corner Chamfering "C_" (or "L_", "K_", "C_") 473, 481
- Corner Chamfering/Corner Rounding Expansion 477, 485
- Corner Chamfering/Corner Rounding I 473
- Corner Chamfering/Corner Rounding II 481
- Corner Rounding "R_" (or "R_") ... 475, 484
- Counting the Tool Life .. 294
- Cutting Feed Rate ... 132
- Cutting Mode; G64 ... 159
- Cylindrical Interpolation; G07.1 (6 and 7 only in G code list) 111

D

- Data Formats ... 6
- Deceleration Check .. 150
- Decimal Point Input .. 150
- Deep Hole Drilling Cycle 2; G83.2 .. 389
- Dwell ... 160

E

- Exact Stop Check Mode; G61 .. 149
- Exact Stop Check; G09 ... 146
- Expanded Method at Starting Tool Offset 238
- Exponential Interpolation; G02.3, G03.3 126
- External Output Commands ... 459

F

- F1-digit Feed ... 133
- Face Boring Cycle; G85 (Longitudinal boring cycle; G89) 359
- Face Cut-off Cycle; G74 .. 330
- Face Cutting Cycle; G79 ... 302
- Face Deep Hole Drilling Cycle 1; G83 .. 354
- Face Rough Cutting Cycle; G72 ... 323
- Face Tapping Cycle; G84 (Longitudinal tapping cycle; G88) 355
- (Face Reverse Tapping Cycle; G84.1) .. 355
- Feed Function .. 85
- Feed Functions .. 132
- Feed Per Minute/Feed Per Revolution (Asynchronous Feed/Synchronous Feed); G94, G95 135
- Feed Rate Designation and Effects on Control Axes 137
- Finishing Cycle; G70 ... 329
- Fixed Cycle for Drilling Cancel; G80 ... 362
- Fixed Cycle for Drilling; G80 to G89 ... 346
- Fixed Cycle for Drilling; G80 to G89 (MITSUBISHI CNC special format) 364
- Fixed Cycle for Turning Machining (MITSUBISHI CNC special format) 305
- Fixed Cycles for Turning Machining ... 296
- Formed Material Rough Cutting Cycle; G73 325

G

- G Code Lists .. 17
- G1 -> G0 Deceleration Check ... 152
- G1 -> G1 Deceleration Check .. 153
- G41/G42 Commands and I, J, K Designation 275
- General Precautions for Tool Nose Radius Compensation 282
- Geometric .. 487
- Geometric I ... 487
- Geometric IB .. 490

H

- Helical Interpolation; G17, G18, G19, and G02, G03 68

I

- Inch Thread Cutting; G33 ... 58
- Inch/Metric Conversion; G20, G21 .. 28
- Incremental/Absolute Value Commands 26
- Index Table Indexing ... 165
- Indexing Increment .. 5
- Initial Point and R Point Level Return; G98, G99 383
- Input Buffer ... 24
- Input Setting Units ... 3
- Interference Check .. 283
- Interpolation Functions ... 34
- Interrupt during Corner Chamfering/Corner Rounding 479, 485
- Interrupts during Tool Nose Radius Compensation 280

X - 1
INDEX

L

Least Command Increments ... 3
Linear Angle Command ...486
Linear Interpolation; G01 ... 41
Local Coordinate System Setting; G52 561
Longitudinal Cut-off Cycle; G75 ... 332
Longitudinal Cutting Cycle; G77 ... 297
Longitudinal Rough Cutting Cycle; G71 307

M

Machine Zero Point and 2nd Reference Position (Zero point) 543
Macro Call Instruction .. 397
Macro Interruption .. 506
Measurement Support Functions .. 577
Milling Interpolation Control and Command Axes 74
Milling Interpolation; G12.1 ... 71
Mirror Image for Facing Tool Posts ... 463
Miscellaneous Functions ... 86, 162
Miscellaneous Functions (N8-digits BCD) 162
Multiple-spindle Control ... 226
Multiple-spindle Control (multiple spindle command) 227
Multiple-spindle Control (spindle selection command) 228
Multiple-spindle Control II ... 231
Multiple-step Skip Function 2; G31 .. 589
Multiple-step Skip Function; G31,n, G04 587

O

Operation Commands ... 450
Optional Block Skip ... 12
Optional Block Skip Addition; /n ... 13
Optional Block Skip; / .. 12
Other Operations during Tool Nose Radius Compensation 267

P

Parameter Input by Program N No. Correspondence Table 596
Parameter Input by Program; G10, G11 504
Parameter Setting Command ... 531
Parity H/V ... 16
Per-second Dwell; G04 .. 160
Plane Selection; G17, G18, G19 .. 51
Polar Coordinate Interpolation; G12.1, G13.1/G112, G113 119
Position Commands ... 26
Positioning (Rapid Traverse); G00 ... 34
Precautions .. 461
Precautions before Starting Machining 23
Precautions for Compound Type Fixed Cycle
 for Turning Machining; G70 to G78 338
Precautions for Using Spindle Synchronization Control 190
Precautions When Using a Fixed Cycle for Drilling 362
Preparatory Functions .. 80
Pre-read Buffers ... 25
Program Error ... 599
Program Formats ... 9
Program Support Functions .. 85, 296
Program/Sequence/Block Nos.; O, N 15
Programmable Current Limitation ... 595
Protection Function ... 570

R

R Specification Circular Interpolation; G02, G03 49
Radius/Diameter Commands ... 27
Rapid Traverse Constant Inclination Acceleration/Deceleration .. 143
Rapid Traverse Rate ... 132
Reference Position (Zero point) Return; G28, G29 547
Reference Position Collation; G27 .. 554

S

Selecting a Plane during the Milling Mode 76
Selecting Milling Mode .. 73
Setting Milling Coordinate System ... 78
Setting of Workpiece Coordinates in Fixed Cycle Mode 384
Skip Function; G31 ... 581
Speed Change Skip ... 592
Speed Clamp ... 145
Spindle Clamp Speed Setting; G92 ... 170
Spindle Functions ... 167
Spindle Functions (S2-digits BCD) During Standard PLC Specifications .. 167
Spindle Functions (S6-digits Analog) .. 167
Spindle Functions (S8-digits) .. 168
Spindle Synchronization ... 174
Spindle Synchronization Control I ... 175
Spindle Synchronization II ... 185
Spindle/C Axis Control .. 171
Start Point Designation Synchronization (Type 2); G116 526
Start Point Designation Synchronizing (Type 1); G115 524
Stored Stroke Limit ... 575
Subprogram Control; M98, M99, M198 385
Switching from Milling Mode to Turning Mode; G13.1 85
Synchronization Function Using M Codes 528
Synchronization Standby Code (l-code) 521
Synchronizing Operation between Part Systems 521

T

Tape Codes .. 6
Tape Memory Format ... 12
Tapping Mode; G63 ... 159
Thread Cutting ... 53, 299
Thread Cutting Cycle; G78 .. 299
Thread Cutting Mode ... 141
Tool Change Position Return; G30.1 to G30.5 514
Tool Functions ... 234, 235
Tool Functions (T6-digits BCD) ... 234
Tool Length Offset ... 240
Tool Life Management II .. 291
Tool Nose Point and Compensation Directions 245
Tool Nose Radius Compensation Operations 249
Tool Nose Radius Compensation; G40, G41, G42, G46 243
Tool Nose Wear Offset ... 242
Tool Offset ... 235
Tool Offset Functions ... 87, 235
Tool Offset Start ... 236, 239
Tool Spindle Synchronization IA
(Spindle-Spindle, Polygon); G114.2 .. 192
Tool Spindle Synchronization IB (Spindle-Spindle, Polygon); G51.2 (Only 6 and 7 in G code list) 200
Tool Spindle Synchronization IC (Spindle-NC Axis, Polygon); G51.2 (Only 6 and 7 in G code list) 208
Tool Spindle Synchronization II (Hobbing); G114.3 211
Types of Variables ... 412

U

User Macro ... 396, 396
User Macro Commands; G65, G66, G66.1, G67 396
INDEX

V

Variable Commands ... 391
Variable Lead Thread Cutting; G34 ... 61
Variables .. 410

W

Workpiece Coordinate System Preset; G92.1 562
Workpiece Coordinate System Setting and Offset;
 G54 to G59 (G54.1) .. 555
Revision History

<table>
<thead>
<tr>
<th>Date of revision</th>
<th>Manual No.</th>
<th>Revision details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep. 2004</td>
<td>IB(NA)1500057-B</td>
<td>• Contents were revised to correspond to Mitsubishi CNC700 Series software version A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "2.1 Input Command Increments" was deleted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "2.2 Indexing Increment" was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "3.3 Program Address Check Function" was deleted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "14.9 Simple Zero Point Return" was deleted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "14.13 Coordinate System for Rotary Axis" was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mistakes were corrected.</td>
</tr>
<tr>
<td>Sep. 2005</td>
<td>IB(NA)1500057-C</td>
<td>• Contents were revised to correspond to Mitsubishi CNC700 Series software version B3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "13.15 Parameter Input by Program" was revised wholly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "13.21 2-part System Simultaneous Thread-cutting Cycle (MELDAS special format)" was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section "Appendix 1. Parameter Input by Program N No. Correspondence" was deleted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Other contents were added/revised/deleted according to specification.</td>
</tr>
<tr>
<td>Sep. 2006</td>
<td>IB(NA)1500057-D</td>
<td>Contents were revised to correspond to Mitsubishi CNC700 Series software version D0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contents were revised to correspond to Mitsubishi CNC70 Series software version A0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The "Section" (reference) was added in "3.7 G Code Lists".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following sections are added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mistakes were corrected.</td>
</tr>
<tr>
<td>Jun. 2007</td>
<td>IB(NA)1500057-E</td>
<td>The following sections were added. 7.8 Rapid Traverse Constant Inclination Acceleration/Deceleration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.11 Tool Spindle Synchronization II (Hobbing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mistakes were corrected.</td>
</tr>
<tr>
<td>Aug. 2008</td>
<td>IB(NA)1500057-F</td>
<td>This version is compliant with MITSUBISHI CNC700/70 Series S/W ver.F0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following section were added. 3.4.2 Optional Block Skip Addition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mistakes were corrected.</td>
</tr>
</tbody>
</table>
Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible.
Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

Duplication Prohibited

This manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 2004-2008 MITSUBISHI ELECTRIC CORPORATION
ALL RIGHTS RESERVED.
MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

<table>
<thead>
<tr>
<th>MODEL</th>
<th>700/70 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL CODE</td>
<td>008—292</td>
</tr>
<tr>
<td>Manual No</td>
<td>IB-1500057(ENG)</td>
</tr>
</tbody>
</table>