Mitsubishi Integrated Solution e-F@ctory

A solution for advanced factories of the future
GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better.

Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems
A wide range of power and electrical products from generators to large-scale displays.

Electronics Devices
A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance
Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems
Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems
Maximizing productivity and efficiency with cutting-edge automation technology.
Reduce Total Cost of Ownership (TCO) with e-F@ctory while streamlining production operations.

Making maximum use of shopfloor data is a vital issue, given the increasing complexity of the manufacturing industry today.

Mitsubishi Electric, as a leading FA systems manufacturer, proposes e-F@ctory which has been developed with the aim of reducing production costs across the board, from development and manufacturing to maintenance. Utilizing highly advanced information technologies to optimize factories and support production systems of the future.
Think of those issues and the trouble involved…

Does your factor have the ability to "visualize, analyze and improve" them?

Does your factory face various issues and problems?

"Invisible problems" happen all the time on the shop floor. The keywords for resolving them in the manufacturing business are "visualize, analyze, and improve."

The first step in resolving a problem is to change from being "invisible" to "visible" by visualizing, analyzing and improving production information.

It becomes possible to "see (read)" factory information in real time, doing so onsite or from a remote location.

Before

- Increased lead time!
- Low operating rate!
- Production plan difficult to create!
- Expensive energy costs!

After

- Prompt delivery notice
- Reduced lead-time
- Improved operating rate
- Optimum production planning

e-F@ctory is the solution to issues facing the manufacturing industry

- Reduced lead-time
- Energy saving
- Improved operating rate
- Quality improvement
- Cost reduction

- Production management according to schedule
- Delivery date, inventory plan, progress, Production info, and more.

- Optimum production planning
- All according to plan

- e-F@ctory

Prompt delivery notice

When can you finish the products for Company A?

They're in the xxx process now, so they'll be ready for shipping today.

- All according to plan!
- No quality problems
- Rejects under control!
Increased lead time!
Efficient system difficult to create!
Accumulative rejects getting worse!
Expensive energy costs!
Production plan difficult to create!
Low operating rate!

After
Before

Think of those issues and the trouble involved…

Does your factor have the ability to “visualize, analyze and improve” them?

Does your factory face various issues and problems?

“Invisible problems” happen all the time on the shop floor. The keywords for resolving them in the manufacturing business are “visualize, analyze, and improve.”

The first step in resolving a problem is to change from being “invisible” to “visible” by visualizing, analyzing and improving production information.

It becomes possible to “see (read)” factory information in real time, doing so on-site or from a remote location.

Reduced lead-time
Energy saving
Improved operating rate
Quality improvement
Cost reduction

e-F@ctory is the solution to issues facing the manufacturing industry

 Prompt delivery notice
When can you finish the products for Company A?
They’re in the xxx process now, so they’ll be ready for shipping today.

Production management according to schedule
Delivery date
Inventory
Work in progress
Processes
All OK!

Optimum production planning
All according to plan!

Effective energy conservation
OK!!

Energy saving

Efficient system development
Great!
We’ve achieved our production targets!

No quality problems
No rejects!

I’ll look into it right away!
Give me a production status report, immediately!

Rejects are under control!
No more rejects!

Ho-hum… How much should we produce this month?

I’ll look into it right away! Give me a production status report, immediately!
The steps toward creating an e-F@ctory effectively results in a factory-wide optimization. An “e-F@ctory-based plant” incorporates a system that is capable of addressing various issues by collecting shop floor data such as production performance, operating performance and quality information from production equipment and devices “directly” and in “real time,” and directly interfacing with enterprise database’s.

In other words, the e-F@ctory platform substantially improves quality, work schedules, and productivity, by having significant vertical data integration from shop floor to enterprise.

FA-IT Information Interface Products

MES Interface products are the core of the e-F@ctory information communication technology. They connect production equipment directly to an MES (manufacturing execution system) without the need for PCs or other communication gateways. Information can be shared between the production equipment and the MES easily, and with minimum cost.

Increased production data, short production cycles, sudden changes in production volume—-if these issues are not addressed, the time it takes from the development of equipment components to commencing the production line will become longer, and it will become difficult to maintain stable quality. iQ Platform addresses such issues from the TCO* perspective.

*TCO: Total Cost of Ownership
An “e-F@ctory-based plant” incorporates a system that is capable of addressing various issues by collecting shop floor data such as production performance, operating performance and quality information from production equipment and devices “directly” and in “real time,” and directly interfacing with enterprise database’s. In other words, the e-F@ctory platform substantially improves quality, work schedules, and productivity, by having significant vertical data integration from shop floor to enterprise.

The steps toward creating an e-F@ctory effectively results in factory-wide optimization.

Flexible response to the diverse needs with abundant energy saving support devices

e&ecoF@ctory

Energy saving solution

Energy saving solution offers an aggressive energy conservation plan, which achieves not only the reduction of costs through energy saving but also close management for every production equipment or line and the reduction of production life cycle cost.
Mitsubishi Electric’s advanced FA and IT data communication technologies will draw out the full potential of your plant.

Flexible to changes, operating rate increase, lead-time reduction, quality improvement, cost reduction - the issues of the manufacturing industry need to be addressed by utilizing all available shop floor data.

FA-IT information interface products are innovative products that embody the e-F@ctory system. They connect production equipment directly to an MES (manufacturing execution system) and further on to a higher IT system.
FA-IT information interface products create a seamless flow of information between production equipment and information systems in response to diverse needs in manufacturing plants.

The MES Interface is the information link between production equipment and the manufacturing execution system (MES).

High-speed Data Logger

The High-speed Data Logger collects data from each measuring device directly without requiring dedicated logging equipment.

Box Data Logger

The Box Data Logger can be connected to a network while existing equipment is running, and collect data thereafter.

The C Language Controller can control, process information and higher-level communications using C/C++ programming.

From higher-level information systems to facilities management systems, optimize FA-IT information-sharing products factory-wide.
A broad lineup of MES Interface products provides direct connections between production equipment and an MES with minimum fuss and at minimum cost.

MES Interface products enable production equipment and the MES database to be connected directly without requiring a communications gateway (e.g., computer).

Information collected on the MELSEC PLC is processed by the PLC MES interface.

Information from existing equipment and the controllers of each company is processed by the GOT2000 MES Interface function.

Information acquired and analyzed by MELQIC is processed by the MELQIC MES Interface board.

Information sharing between production and inspection equipment and the MES is easy, realizing reduced cost.

Information collected from the shop floor sent directly to the database

The conditions regarding event data generation can be monitored on the MES interface side and when the conditions are established, work results and other data are sent to the IT system database.

The MES interface can also be used to retrieve data, such as work instructions, from the database.

System configuration costs reduced by 65%*1

MES Interface modules enable direct connectivity between IT database servers and programmable controllers on the shop floor, eliminating the need for gateway computers or specified programs. Being much more reliable than computers, the MES Interface saves on maintenance costs typical of computers.

*1. Assumption based on a typical control architecture.
The various functions of FA-IT information interface products strongly support the informatization of production equipment.

Supporting functions that ensure data reliability

- Information with timestamps is temporarily saved to a SD or CF card during communication faults or when no response is received from the server. The data is automatically resent when the problem is resolved, therefore securing data continuity.
- SNTP enables time synchronization between the information system and production equipment.
- Log acquisition is possible during communication faults.

Program-free easy configuration (Easy to Use)

With the special-purpose configuration tool, it is possible to configure only the necessary items in the correct order utilizing a simple wizard-style setup process. SQL text is automatically generated based on configurations, therefore eliminating the need to create a program for data communication.

The incorporation of MES Template Package allows assessment and examination of investment effect and performance using a test line, for easy application to the entire plant upon verification of effectiveness.

MES Template Package offers templates of all general functions of the MES system to provide easy production management, traceability, and preparation of Gantt charts. It will also facilitate the future transition of data to a large-scale database system.

Excel® macros	Extracts data from the sample database and displays Excel® macros traceability information and Gantt charts
Sample database	Database tables and sample data for production management, traceability, and Gantt charts
MES Interface project	Delivers production management data to the PLC and sends collected performance data to the sample database

* The MES template package can be downloaded from the Mitsubishi Electric FA website: www.MitsubishiElectric.co.jp/fa
Informatization of inspection data using highly reliable hardware

By being HDD-free and equipped with a real-time OS, long-term stable use as an FA device is possible, and various communications such as MES Interface, CC-Link, CAN and GP-IB are supported.

The adoption of VISIO allows high functionality with easy programming.

Multi-channel sampling maximum 10MHz/data analysis FFT, digital filter, peak detection, rise/fall detection, etc.

High-speed logging (maximum 1ms interval, maximum 90 channels)/built-in computer card slot (maximum 16GB)

Data collection analyzer MELQIC MES Interface function
Collecting production and inspection information from the shop floor in real-time.

Jig control
PLC
Control panel
Conductivity
inspection location
Products
Conveyor
control
Multiple meters
Multiple meters
Voltage generator
MELQIC
GOT2000 HMI MES Interface function
The GOT2000 HMI collects and sends data from connected FA products to the MES.

Collects data from existing equipment and other equipment that utilize third-party PLCs.

Supports operators’ tasks by providing access to a barcode reader, document viewer, or other such tools.

Equipped with substantial information management functions characteristic of a display unit (HMI).
- Displays logging data (logging function + display of historical trend graph/historical trend list)
- Management of alarm history, such as equipment alarms and production history
- Management of worker operational history

GOT2000 HMI MES Interface function

MELSEC iQ-R/MELSEC-Q PLC MES Interface

PLCs are connected directly to the MES without the use of gateway PCs or communication programs.

- Comprehensive plant information, including production, equipment, quality, and energy data, are collected and managed via a seamless network.
- Even the most detailed equipment-level information can be collected via an extensive field network.
- Machine tools and equipment that utilize third-party PLCs can be easily configured into the open network.

Enhances traceability and supports visualization of the entire factory.

When machining is complete or an alarm occurs, the information collected by the CNC is sent from the built-in MES interface to the database.

Achieves visualization of operation status, which simplifies the creation of production plans and production management, as well as the visualization of machining results and alarm occurrence status so that a higher standard of quality control can be realized.

CNC sends machining information and operation status of machine tools to MES.

M800/M80 Series computerized numerical controller MES interface function

Workpiece being machined
Workpiece ID
Machine tool Machined product

Production plan management
Parts inventory management
Product inventory management

Ethernet
SQL
MES database server
Production plan management
Parts inventory management
Product inventory management

Production management system
Ethernet
SQL
MES database server
Production plan management
Parts inventory management
Product inventory management

Work-receiving stage
3rd party PLCs
Shipping stage

Sub assembly line
Main assembly line

3rd party PLCs
Temperature regulator
Processing line

MES Interface

Work process 1
Work process 2
Work process 3
Work process 4
Shipping stage

POS terminal

MES Interface

B/NET
CC-Link IE
Ethernet

M800/M80 Series computerized numerical controller MES interface function

Collects data from existing equipment and other equipment that utilize third-party PLCs.

Supports operators’ tasks by providing access to a barcode reader, document viewer, or other such tools.

Equipped with substantial information management functions characteristic of a display unit (HMI).
- Displays logging data (logging function + display of historical trend graph/historical trend list)
- Management of alarm history, such as equipment alarms and production history
- Management of worker operational history

MELSEC iQ-R/MELSEC-Q PLC MES Interface

PLCs are connected directly to the MES without the use of gateway PCs or communication programs.
Data collection analyzer MELQIC MES Interface function
Collecting production and inspection information from the shop floor in real-time.

- Informatization of inspection data using highly reliable hardware
 By being HDD-free and equipped with a real-time OS, long-term stable use as an FA device is possible, and various communications such as MES Interface, CC-Link, CAN and GP-IB are supported

- The adoption of VISIO allows high functionality with easy programming
 Multi-channel sampling maximum 10MHz/data analysis FFT, digital filter, peak detection, rise/fall detection, etc.
 High-speed logging (maximum 1ms interval, maximum 90 channels)/built-in computer card slot (maximum 16GB)

M800/M80 Series computerized numerical controller MES interface function
CNC sends machining information and operation status of machine tools to MES.

- Enhances traceability and supports visualization of the entire factory.
- When machining is complete or an alarm occurs, the information collected by the CNC is sent from the built-in MES interface to the database.
- Achieves visualization of operation status, which simplifies the creation of production plans and production management, as well as the visualization of machining results and alarm occurrence status so that a higher standard of quality control can be realized.

Machining information
At machining completion
- Workpiece ID, machining start/finish time, maximum spindle load, power consumption, tool ID number, tool offset, etc.

At alarm occurrence
- Workpiece ID, alarm occurrence time, alarm description, number of tool used, tool offset, etc.
MELSEC iQ-R/MELSEC-Q
High-speed Data Logger

PLC data logging possible with simple configuration.

Various measurement data are directly collected by the data logger to provide high-speed, easy, and low-cost data logging solutions with greater precision than conventional modules. Because there is no need to install PCs or dedicated devices on the shop floor, using the data logger contributes to minimizing system costs and improving system reliability.

- An Assistant Wizard helps set up the appropriate logging method for the intended use, and the Viewer Utility generates trend graphs to facilitate data monitoring and analyses.
- Since no PC or protocol converter is needed to collect data, initial costs can be kept extremely low.
- Realize logging data management on the upper server by forwarding to an FTP server/Windows shared folder.

* Forwarding to a Windows shared folder is only possible when using the MELSEC iQ-R High-speed Data Logger

Automatic creation of graphical materials to suit the application, such as daily reports, ledgers and reports!

Data is recorded in synchronization with sequence scanning! (High-speed Data Logger)

The High-speed Data Sampling Function synchronizes the data logging task with sequence scanning, which is the smallest time unit of control, to ensure high-speed, high-precision data logging.

The sampled data can be used not only to analyze machine performance, but also to identify the causes of errors when they occur, because the data logger records even the smallest change in control values.

Connect to existing equipment system while its running and begin collecting equipment data immediately (Box Data Logger)

Module can be attached to the DIN rail and easily connected to equipment via Ethernet or RS-232 serial port afterwards. Data logging for PLCs of other companies is also possible.

[High-speed Data Logger / BOX Data Logger: Shared functions]

- High-speed, high-accuracy data logging
- Assistance in the form of a wizard makes it easy to set the appropriate logging method for the purpose. In addition, display of trend graphs by the display utility provides a simple expression of monitoring data analysis results.
- Because no computer or protocol converter is necessary for data collection, initial costs are significantly reduced.
- The use of CF cards enables data logging over an extended period. In addition, sending saved log files to the server makes it possible to log data in excess of the capacity of the CF cards.
- Setting Excel file templates for layout, graphs, formulas, etc. in advance makes it possible to save data as ledgers or reports.
- GX Log Viewer is used as the display and analysis tool, enabling display and analysis of high volumes of collected data using easy-to-understand operations.
- Device data essential for detailed checks, etc. can be read from a recipe file (CSV format) and written to the PLC CPU at the specified timing.
MELSEC iQ-R/MELSEC-Q PLC C controller
Control, information processing and upper-level communication processing are possible with partner software products and a C/C++ language program.

- Utilization of partner software products
CIMSNIPER (Nippon Denno Co., Ltd.)
Realize low-cost data mining
CIMSNIPER enables direct collection of target data and possesses features and functions enabling upper-level data analysis to be performed with minimal man-hours.

Program-free collection possible
A product offering the information you want, when you want it, and in the format you want it in. Through configuration only, the monitoring of equipment information and host-to-host communication*, as well as automatic collection of data, are possible.

Various analysis tools supported
Various types of analysis tools required for data mining are supported.

CIMOPERATOR® (Nippon Denno Co., Ltd.)
Various communications possible program-free
Simply by configuring a data device-trigger relay handshake, various communication functions can be added to the PLC. Various communication logs and PLC logs can also be output.
A large volume of equipment processing data can be reported without the use of a gateway computer and existing equipment can be brought online.

- Program development using C/C++ language
 - Preinstall real-time OS (VxWorks)
 - Software development can be performed in an integrated development environment (CW Workbench)
 - Prepare a special-purpose tool to perform configuration/diagnosis on the various units

<table>
<thead>
<tr>
<th>Series</th>
<th>Model</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>iQ-R</td>
<td>P120CP0U</td>
<td>High-speed control utilizing newly developed high-speed system bus realizes significantly shorter takt time</td>
</tr>
<tr>
<td></td>
<td>Standard model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R03SU.P0E-V</td>
<td>Ability to link each CPU enables operation as an intelligent function module, making C and C++ program processing possible</td>
</tr>
<tr>
<td></td>
<td>C intelligent function module</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Q120CP0U-V</td>
<td>Installation of RTOS (VxWorks) enables high-speed I/O control</td>
</tr>
<tr>
<td></td>
<td>Standard model</td>
<td>Optimized by replacing microcomputer control system</td>
</tr>
<tr>
<td></td>
<td>Q240HCP0U-V</td>
<td>Installation of high-speed CPU and RTOS (VxWorks) enables optimization by replacing personal computer-based control system</td>
</tr>
<tr>
<td></td>
<td>High-end model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q24HCP0UVG</td>
<td>Model with display function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VGA port added to high-end model and middleware installed to support GUI output</td>
</tr>
<tr>
<td></td>
<td>Q4HDDCPSULS</td>
<td>Model supporting general-purpose OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supports general-purpose OS such as Linux and TI/Kermit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Makes effective use of software assets</td>
</tr>
</tbody>
</table>
MES Interface Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB record input/output function</td>
<td>Function to perform the reading/writing of database data for upper-level information system.</td>
</tr>
<tr>
<td>Device memory input/output function</td>
<td>Function to perform the reading/writing of device memory data for CPU module.</td>
</tr>
<tr>
<td>Trigger condition monitoring function</td>
<td>Function to monitor values such as time and device tag elements, and start a job when trigger conditions change from false to true (condition establishment).</td>
</tr>
<tr>
<td>Data calculation/processing function</td>
<td>Function to perform addition, subtraction, multiplication and division, remainder and character string operations.</td>
</tr>
<tr>
<td>Program execution function</td>
<td>Function to execute programs on the server from MES Interface.</td>
</tr>
<tr>
<td>Database buffering</td>
<td>Function for buffering transmission data to the database and resuming after a normal state is recovered in the case of data interface trouble, such as lost network between MES Interface and database or when the database has crashed.</td>
</tr>
</tbody>
</table>

MES Interface Specifications

<table>
<thead>
<tr>
<th>Functions</th>
<th>RD81ME596</th>
<th>QJ71ME596</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral device connection port</td>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Database type</td>
<td>Oracle database, Microsoft SQL Server, Microsoft Access</td>
<td>Oracle database, Microsoft SQL Server, Microsoft Access</td>
</tr>
<tr>
<td>Job</td>
<td>Configurable number</td>
<td>Max. 64 points/project</td>
</tr>
<tr>
<td></td>
<td>Max. 30 actions/job</td>
<td>Max. 10 actions/job</td>
</tr>
<tr>
<td></td>
<td>(20 main processing actions + 10 post-processing actions)</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Configurable number</td>
<td>Max. 1,020 actions/project</td>
</tr>
<tr>
<td></td>
<td>Max. 30 actions/job</td>
<td>Max. 10 actions/job</td>
</tr>
<tr>
<td></td>
<td>(20 main processing actions + 10 post-processing actions)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>SELECT, INSERT, UPDATE, DELETE, Multi-SELECT, STORED PROCEDURE</td>
</tr>
<tr>
<td></td>
<td>Number of DB communication action fields</td>
<td>Max. 8,536 fields/project</td>
</tr>
<tr>
<td></td>
<td>Number of calculations possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. 20/calculation action</td>
<td></td>
</tr>
<tr>
<td>Program execution</td>
<td>Configurable number</td>
<td>Max. 10/job</td>
</tr>
<tr>
<td></td>
<td>(maximum of 10 including pre/post-processing)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Access destination device</td>
<td>Q-R Series (own station, other stations), Q Series (other stations), L Series (other stations)</td>
</tr>
<tr>
<td></td>
<td>Access internal</td>
<td>Q-R Series (own station, other stations), Q Series (other stations), L Series (other stations)</td>
</tr>
<tr>
<td></td>
<td>Number of elements</td>
<td>64 bps/project</td>
</tr>
<tr>
<td></td>
<td>Number of elements</td>
<td>1,024 points/tag</td>
</tr>
<tr>
<td></td>
<td>Buffer size during communication</td>
<td>65,536 points/project</td>
</tr>
<tr>
<td></td>
<td>lost network between MES Interface and database or when the database has crashed.</td>
<td></td>
</tr>
</tbody>
</table>

MELSEC iQ-R series MES Interface module

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface module</td>
<td>FCA830H-MESIF-J</td>
<td>MELSEC iQ-R series MES Interface module</td>
</tr>
<tr>
<td>SD memory card</td>
<td>NZ1MEM-2GBSD</td>
<td>2GB</td>
</tr>
<tr>
<td></td>
<td>NZ1MEM-4GBSD</td>
<td>4GB</td>
</tr>
<tr>
<td></td>
<td>NZ1MEM-8GBSD</td>
<td>8GB</td>
</tr>
<tr>
<td></td>
<td>NZ1MEM-16GBSD</td>
<td>16GB</td>
</tr>
</tbody>
</table>

MELSEC-Q series MES Interface Support Tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface Support Tool</td>
<td>XW1DND-MESIF-J</td>
<td>MELSEC-Q series MES Interface Configuration Tool, etc.</td>
</tr>
</tbody>
</table>

MELSEC-Q series MES Interface module

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface module</td>
<td>QJ71ME596</td>
<td>MES Interface Function module</td>
</tr>
<tr>
<td>Compact/Flash card</td>
<td>GT05-MEM-128MC</td>
<td>128MB</td>
</tr>
<tr>
<td></td>
<td>GT05-MEM-256MC</td>
<td>256MB</td>
</tr>
<tr>
<td></td>
<td>QD81MEM-512MB</td>
<td>512MB</td>
</tr>
<tr>
<td></td>
<td>QD81MEM-1GBR</td>
<td>1GB</td>
</tr>
</tbody>
</table>

MELSEC-Q series MES Interface Support Tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface Support Tool</td>
<td>XW1DND-MESIF-J</td>
<td>MELSEC-Q series MES Interface Configuration Tool, etc.</td>
</tr>
</tbody>
</table>

GOT2000 MES Interface functions

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOT2000</td>
<td>GT27</td>
<td>GOT2000 series module</td>
</tr>
<tr>
<td>MES Interface function license</td>
<td>GT05-MESIF-J</td>
<td>MELSEC-Q series MES Interface function license</td>
</tr>
<tr>
<td>SD memory card</td>
<td>NZ1MEM-16GBSD</td>
<td>Supports SD memory card</td>
</tr>
</tbody>
</table>

GOT2000 MES Interface configuration tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen creation software</td>
<td>GT Works3</td>
<td>Sets MES Interface actions, Tool for configuring DB connection service, etc.</td>
</tr>
</tbody>
</table>

MELSEC-Q MES Interface functions

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection analyzer</td>
<td>IJ2-8M10-H(100)</td>
<td>IJ2 series MELSEC module</td>
</tr>
<tr>
<td>MES Interface board</td>
<td>IJ2-1MES</td>
<td>MES Interface function-executing board</td>
</tr>
<tr>
<td>Compact/Flash card</td>
<td>--</td>
<td>Required: 128 Mbytes or more</td>
</tr>
</tbody>
</table>

MELSEC-Q MES Interface Support Tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface Support Tool</td>
<td>XW1DND-XUMF</td>
<td>MELSEC-Q series MES Interface Function Configuration Tool, etc.</td>
</tr>
</tbody>
</table>

MELSEC-Q series MES Interface module

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Interface module</td>
<td>FCA830H-MESIF-J</td>
<td>MELSEC-Q series MES Interface module</td>
</tr>
<tr>
<td></td>
<td>FCA830H-MESIF-J</td>
<td>MELSEC-Q series control unit</td>
</tr>
</tbody>
</table>

1. Refer to the manual for details.
High-speed Data Logger / BOX Data Logger: Functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed data collection function</td>
<td>Function for collecting by synchronizing with PLC scanning (only for High-speed Data Logger)</td>
</tr>
<tr>
<td>Logging function</td>
<td>Function for collection and recording of data and event data.</td>
</tr>
<tr>
<td>Data logging function</td>
<td>Function for recording data continuously or when triggered.</td>
</tr>
<tr>
<td>Event logging function</td>
<td>Function for recording sequence of occurrence of recorded events as a time history.</td>
</tr>
<tr>
<td>FTP server function</td>
<td>Function for reading and download of saved High-speed Data Logger module files from PC, FTP client software.</td>
</tr>
<tr>
<td>File forwarding function</td>
<td>Function for forwarding saved files to the computer FTP server or Windows shared folder (Windows shared folder only possible when used with MELSEC-Q/R High-speed Data Logger)</td>
</tr>
<tr>
<td>e-mail sending function</td>
<td>Function for sending notification of events and saved files in e-mail.</td>
</tr>
<tr>
<td>CSV file saving function</td>
<td>Function for saving of collected data in CSV format.</td>
</tr>
<tr>
<td>Time synchronization function</td>
<td>Function for synchronization of times with data collection time. Function for synchronization with NTP server in the network of PLC, CSV external clock is used in the case of QX/MQX.</td>
</tr>
</tbody>
</table>

High-speed Data Logger / BOX Data Logger: Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device type</td>
<td>Base unit-mounted type, Standalone type</td>
</tr>
<tr>
<td>Data collection interval</td>
<td>High-speed data collection, General-purpose data collection</td>
</tr>
<tr>
<td>Number of data collected</td>
<td>Total number of data: Maximum 32,768 (Per setting: 1,024), Total number of devices: Maximum 32,768 (Per setting: 4,096)</td>
</tr>
<tr>
<td>Data collection</td>
<td>Format for data output (CSV files)</td>
</tr>
<tr>
<td>Event logging</td>
<td>Maximum of 256 for event logging setting, Total number of devices: Maximum of 262,144 (Per setting: 4,096)</td>
</tr>
<tr>
<td>Report</td>
<td>File format, Output data type, Number of output data</td>
</tr>
<tr>
<td>e-mail sending function</td>
<td>Attached files, Mail delivery address, Mail delivery system/operation confirmation software</td>
</tr>
<tr>
<td>FTP server</td>
<td>User, FTP client software, Maximum of 10 groups</td>
</tr>
<tr>
<td>Windows shared folder</td>
<td>Operation completion system operation, Number of data</td>
</tr>
<tr>
<td>Recipe</td>
<td>Number of records, DC card (Maximum of 16GB), CF card (Maximum of 8GB)</td>
</tr>
<tr>
<td>Compatible memory cards</td>
<td>SD cards (Maximum of 16GB), CF cards (Maximum of 8GB)</td>
</tr>
<tr>
<td>External dimensions</td>
<td>27.6(W)x106(H)x110(D)mm, 98(W)x104(H)x145(D)mm</td>
</tr>
</tbody>
</table>

MELSEC iQ-R series High-speed Data Logger module

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed Data Logger</td>
<td>R6HDL19G, R6HDL19A, R6HDL19B</td>
<td>High-speed Data Logger module "Requires an SD card"</td>
</tr>
<tr>
<td>SD card</td>
<td>N-2T1MEM-256MB, N-2T1MEM-512MB, N-2T1MEM-1GB</td>
<td>256MB, 512MB, 1GB</td>
</tr>
</tbody>
</table>

MELSEC iQ-R series High-speed Data Logger module Configuration Tool

| Tool for MELSEC-Q/R High-speed Data Logger tool for module | SW1DNN-DLUTL-J | High-speed Data Logger module setting tool |

MELSEC-Q series High-speed Data Logger module

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed Data Logger</td>
<td>QD81MEM-2GB, QD81MEM-4GB, QD81MEM-8GB</td>
<td>High-speed Data Logger module "Requires compact flash card"</td>
</tr>
<tr>
<td>Compact flash card</td>
<td>N-2Q1MEM-512MB, N-2Q1MEM-1GB, N-2Q1MEM-2GB, N-2Q1MEM-4GB, N-2Q1MEM-8GB</td>
<td>512MB, 1GB, 2GB, 4GB, 8GB</td>
</tr>
</tbody>
</table>

MELSEC-Q series High-speed Data Logger module Configuration Tool

| Tool for MELSEC-Q/R High-speed Data Logger tool for module | SW1DNN-DLUTL-J | High-speed Data Logger module setting tool |

MELSEC-Q series High-speed Data Logger module Configuration Tool

| Tool for MELSEC-Q/R High-speed Data Logger tool for module | SW1DNN-DLUTL-J | High-speed Data Logger module setting tool |

BOX Data Logger

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Logger</td>
<td>N2DL</td>
<td>BOX Data Logger "Requires compact flash card"</td>
</tr>
</tbody>
</table>

Compact flash card

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact flash card</td>
<td>QD81MEM-512MB, QD81MEM-1GB, QD81MEM-2GB, QD81MEM-4GB, QD81MEM-8GB</td>
<td>512MB, 1GB, 2GB, 4GB, 8GB</td>
</tr>
</tbody>
</table>

BOX Data Logger Configuration Tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Logger setting tool</td>
<td>SW1DNN-DLUTL-J</td>
<td>BOX Data Logger logging setting tool</td>
</tr>
</tbody>
</table>

BOX Data Logger Setting Tool

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Logger setting tool</td>
<td>N2DL</td>
<td>BOX Data Logger logging setting tool</td>
</tr>
<tr>
<td>Compact flash card</td>
<td>QD81MEM-512MB, QD81MEM-1GB, QD81MEM-2GB, QD81MEM-4GB, QD81MEM-8GB</td>
<td>512MB, 1GB, 2GB, 4GB, 8GB</td>
</tr>
</tbody>
</table>
Applying e-F@ctory to various different types of applications, such as checking the error history of different aspects of the line. Device data is easily collected from various controllers via different controllers. This system provides a means of efficiently managing production process status (production quantity, cycle time) and process number, operation history, and quality directly from the shop floor.

Installation effects

- Efficiently manage production performances.
- Effectively realize quick recovery and intelligent preventative maintenance measures by proper management of real time errors and historical data.

Application example

Production management system

Manages operational performance data (production volume, cycle time, etc.).

This system provides a means of efficiently managing production process status (production quantity, cycle time) and checking the error history of different aspects of the line. Device data is easily collected from various controllers via the controller network and communicated directly to a database server via MES Interface.

Installation effects

- Efficiently manage production performances.
- Effectively realize quick recovery and intelligent preventative maintenance measures by proper management of real time errors and historical data.

Application example

Alarm information management system

Collects error information and in case of an error, information can be input/sent from HMI.

By having an alarm management system incorporated into the production line, various detailed information such as process, error description, cause, etc., can be efficiently collected and managed. This system reads a recipe information such as operator, error description, etc., when it starts up and detailed information in the event of an error can be input and sent from HMI.

Installation effects

- Automated alarm management provides accurate and fast analysis of errors.
- Equipment maintenance procedures are improved substantially by managing detailed information within the server.

Error occurs!

- Time: 10:20:31
- Process Assembly A
- Error: Transportation error

- Name:
- Details:
- Cause:

(Example: Food processing line)
Applying e-F@ctory to various different types of applications, suited for the users best needs.

[Installation effects]
- Traceability data can be used to respond promptly to production down situations and quality faults.
- Trends in operation status and quality information are closely monitored, highlighting production quality variances effectively in real time.

Application example
Traceability system

Ensuring accumulative collection of production process data such as process number, operation history, and quality directly from the shop floor.

Critical data such as equipment number, operation history, and quality data are collected from each individual process or machining point and fed directly to the database server. The serial number of each machining process (engine), processing history, and inspection history are sent to the database after completion.

Application example
Ingredient ratio management system

Allows management of ingredient ratio data by PC, to ensure smooth changes in ingredient ratios per product.

The ingredient ratio data for each product is managed as a recipe file by a personal computer. Using the FTP server function, the recipe files are stored on the SD card of the High-speed Data Logger Module. When changing products on the production line, a dedicated command retrieves the relevant recipe file needed for production.

[Installation effects]
- Shortens the time needed to change products.
- Prevents human errors when setting parameters for product changes.
- Rewriting the recipe file. The device value from the PLC CPU is written to the recipe file in the SD card.
Reduce Total Cost of Ownership (TCO) with iQ Platform

Mitsubishi Electric not only offers vertical integration with its MES Interfaces, but also offers horizontal hardware integration of all its automation products on the shop floor.

This is achieved and designed around the iQ Platform, which is a consolidated automation platform bringing all aspects of automation onto one main programmable automation controller.

The design highlights the integration of controllers, CNCs, Robots, HMIs, engineering environment, and networking, hence resulting in reduced TCO.
iQ Platform for maximum return on investment

Minimize TCO, Seamless integration, Maximize productivity, Transparent communications; these are common items that highlight the benefits of the iQ Platform and e-F@ctory. The iQ Platform minimizes TCO at all phases of the automation life cycle by improving development times, enhancing productivity, reducing maintenance costs, and making information more easily accessible across the plant. Together with e-F@ctory, offering various best-in-class solutions through its e-F@ctory alliance program, the capabilities of the manufacturing enterprise is enhanced even further realizing the next level for future intelligent manufacturing plants.

Further reduce TCO while securing your manufacturing assets

Automation Controller
- Improve productivity and product quality
 1. High-speed system bus realizing improved system performance
 2. On-screen multi-touch control enabling smooth GOT (HMI) operations

Integrated Network
- Best-in-class integrated network optimizing production capabilities
 1. CC-Link IE supporting 1 Gbps high-speed communication
 2. Seamless connectivity within all levels of manufacturing with SLMP

Centralized Engineering
- Integrated engineering environment with system level features
 1. Automatic generation of system configuration
 2. Share parameters across multiple engineering software via MELSOFT Navigator
 3. Changes to system labels are reflected between PAC and HMI

iQ Platform
HPD (Horizontal product design)

ERP (Enterprise resource planning)
MES (Manufacturing execution system)

PAC & HMI
Integration of automation controller and HMI

Network
Integrated network through seamless connectivity

Engineering
Centralized engineering environment
iQ Platform controller and HMI achieve multiple CPU high-speed communication.

The effective coordination of high-speed communication between multiple CPUs provides even higher speed control. The iQ platform consists of a ultra high speed multi CPU main base unit, realizing high speed communication across the backplane between high-speed and high-capacity PLC CPUs, and high-speed and high-precision motion controllers. Compatibility of sequence control and drive control has improved drastically, and complicated machine control can be performed high-speed and easily.

By adding the GOT1000 range of high function HMIs, the iQ platform provides a true integrated automation platform from all aspects of the application. Production line CNCs and robots are also supported.

iQ Platform PLC

Achieve ultra high speeds of nano order and large data handling functionality

- **Reduced operation times with higher processing performance**
 - Basic command processing time (LD command) of 9.5ns is realized.

- **Cycle time reduced significantly using newly developed high-speed system bus**
 - Cycle time is greatly reduced resulting in shorter operation times on the shop floor.

- **Easy handling of large-volume data**
 - Possible to process large, complex programs.

iQ Platform motion controller

Multi-CPU configuration enables high-speed motion control

- **CPU buffer memory with 2M words (motion CPU) as standard equipment.**
 - Convenient for forwarding large volumes of data between CPUs and immediately reflecting data updates.

- **In regards to the CPU buffer memory (fixed cycle communication area), 24K words (4 CPU total) is forwarded between CPUs every 0.222ms**
 - Also effective for transmitting/receiving highly synchronized data between CPUs.

Realizing the factory of the future with high end controllers.

<table>
<thead>
<tr>
<th>Development cost reduction</th>
<th>Production cost reduction</th>
<th>Maintenance cost reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in equipment design time</td>
<td>Shorter cycle and operation times</td>
<td>Utilization of MELSEC-Q series</td>
</tr>
<tr>
<td>Reduction in commissioning time</td>
<td>Integration with higher information systems</td>
<td>Reduced down time</td>
</tr>
</tbody>
</table>

Cutting edge technology with flexibility in application needs.
Multiple CPU high speed communication
Cycle/operation time is reduced by multiple CPU high speed data exchange. Existing modules can also be utilized.

High-speed data communication between PLC CPUs and CNC CPUs

High-speed communication

High-performance CNC CPU
CNC CPU performance is also increased by double. High speed communications from the NC control processing to sequence control and host communications.

Cycle time is greatly reduced
Scan time and M-code processing time substantially reduced resulting in shorter operation times on the shop floor.

Control performance is greatly enhanced
I/O processing time is greatly reduced by high speed communication between PLC and robot.

System cost is also reduced
Peripheral devices can be reduced by the expansion of I/O points with 1024 words between PLC and robot.

Reduced wiring connections
Less wiring is realized by the direct connection with PLC. Construction time and costs are substantially reduced.

Reliable back-up/restore function in case something goes wrong
Various data, such as that for PLC CPU sequence programs and parameters, is backed up on the SD memory card of the GOT.

FA transparent function for easy repair onsite
It is possible to connect a computer to the GOT, and via the GOT, prepare FA equipment programming, and start or adjust work.
Programmable controller engineering software

MELSOFT iQ Works

MELSOFT iQ Works is an integrated software suite consisting of GX Works3, MT Works2, GT Works3, RT ToolBox2 mini and FR Configurator2, which are programming software for each respective product. Integration is further enhanced with MELSOFT Navigator as the central system configuration incorporating an easy-to-use, graphical user interface with additional project-sharing features such as system labels and parameters. The advantages of this powerful integrated software suite are that system design is made much easier with a substantial reduction in repetitious tasks, cutting down on errors while helping to reduce the overall TCO.

System management software

MELSOFT Navigator

System level graphic-based configuration tool that simplifies the system design by providing a visual representation of the system. System management features such as system-wide parameterization, labels and block reading of project data are also included.

Programmable controller engineering software

MELSOFT GX Works3

Latest generation of software available for the MELSEC iQ-R and iQ-F Series control systems. Includes a graphic-based system configuration, integrated motion control setup, multiple language support, in addition to extensive diagnosis and troubleshooting functions.

MELSOFT GX Works2

Incorporating backward compatibility of programs created with GX Developer, GX Works2 further improves its functionality resulting in reduced engineering costs.

HMI/GOT screen design software

MELSOFT GT Works3

The GOT (Graphic Operation Terminal) screen creation software is designed with three main features; Simplicity, Graphics Design, and Easy-Usability, further helping to create graphic screens in fewer steps.

MELSOFT RT ToolBox2 mini

Supports various steps from programming, to commissioning, evaluation, and maintenance. In addition, improved preventative maintenance is realized through the use of an integrated 3D robot simulator.

Motion controller engineering software

MELSOFT MT Works2

The motion control design and maintenance software includes intuitive graphic based programming together with a digital oscilloscope simulator.

Inverter setup software

MELSOFT FR Configurator2

Simplifies the setup and maintenance of AC inverters. Parameters can be registered easily and distributed to multiple inverters when replacing, and activation of the PLC function all from one setup screen.
Seamless connectivity within all levels of automation

The backbone of e-F@ctory, leveraging connectivity between the shop floor and IT

Extensive visualization with advanced data connectivity

Big Data analytics requires deterministic data collection, which can be realized by incorporating two key features: SLMP* that enables seamless connectivity between devices in the IT layer and on the shop floor; and a high-speed, large-capacity 1 Gbps communications network that enables the handling of large-data, such as production, quality and control data between different production processes.

General, motion and safety control integrated into one network

CC-Link IE incorporates generic distributed control, synchronous motion control, and safety control enabling safety communications across multiple safety devices, all on the same network. The topology is quite versatile, based on twisted-pair cables, which enables flexibility in system configuration while helping to keep installation cost low.

Comprehensive diagnosis realizing higher reliability

Disruptions to the control system are kept to a minimum via comprehensive diagnostics functions, high communications integrity owing to the noise-resistant characteristics of the optical cable, and communication re-routing capabilities made possible as the result of using a ring topology. Also, network errors can be rectified quickly by visualizing the network system image using the engineering software*2, and remotely from a GOT (HMI) directly on the machine or production line.
A plant with increased "visualization" is also a plant with increased "energy saving".

Energy Saving

In the plant where severe cost management is required, an even greater effort for energy reduction is essential. Energy-saving solution of e-F@ctory offers an "aggressive energy conservation", which not only reduces the costs through energy saving but also assesses it totally to pump into new investment.

e&eco-F@ctory proposes precise management of every production equipment or production line and energy conservation plan based on the life cycle cost of production.
Factory energy optimization with e&eco-F@ctory.

Further strengthening e-F@ctory to reduce total costs encompassing development, production and maintenance through e&eco-F@ctory, which incorporates the visualized control of energy.
Fukuyama Works makes aggressive energy conservation efforts through "visible management."

Mitsubishi Electric's Fukuyama Works (Fukuyama City, Hiroshima Prefecture) adopted "visible management" in 1997, and now practices aggressive energy conservation efforts. It has realized an economical and ecological eco-factory, and uses its eco-expertise to engage in the energy conservation business. Under its policy of "visible energy conservation," it visualizes all aspects of energy usage in the factory as it implements factory-wide energy conservation activities. The knowledge it gains through these activities is incorporated in the development of energy-saving products.

Energy savings results of Fukuyama Works

<table>
<thead>
<tr>
<th>Year</th>
<th>Power Cost Ratio</th>
<th>Power Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>1.00</td>
<td>0%</td>
</tr>
<tr>
<td>2010</td>
<td>0.80</td>
<td>25%</td>
</tr>
</tbody>
</table>

Reduction effect

- **Power cost in contracted power**
 - **1,250 kW/year**
 - **Reduced 25%** (approx. 100 million yen less)

Web-based energy conservation support system

Visible support of energy conservation activities

The Eco Server! Web-based data server makes accumulated data available on the Web via the Intranet in an easy understanding manner, to promote greater energy conservation efforts.

Electric energy management system

Total support of energy and labor saving efforts in the factory

Electricity, gas, temperature, and other energy-related data in the factory is recorded and monitored in detail through an Ethernet network of power distribution and control equipment.

System for standard data management in each work process

Support for reducing standard electric energy data

- System improvements are made by measuring the power usage and production output of each work process and managing standard data based on those measurements.
- "Visible management" is realized by using Intranet Web-based PCs.

System improvement

Completed product

Packaging and shipping process

Inspection of finished assembly

General assembly line

Mechanical assembly line

Parts

Base unit excess count

Individual equipment, base unit, frequent stop graph

Inspection of mechanical assembly

Thermal inspection

Equipment breaker

Production information

Operation rate

Equipment module

Quality information

First-run rate

Inspection data

Production progress

Production process

Energy information

Electric power

Electric current

Electric energy

Air flow

Contracted power

Power cost

Power factor

Power factor

Power

Power factor

Power
Slots directly into the PLC for simple measurement of diverse energy information!

- PLC MELSEC-Q power measuring module

![Image of PLC MELSEC-Q power measuring module]

Key e&eco-F@ctory products, integrating production and quality data and energy data.

New power measurement units join the MELSEC-Q lineup, which continues to revolutionize the site of production. Enabling simple measurement of parameters including current, voltage, power, power factor, and active power, the units integrate production and quality data and energy data, assisting in increasing productivity, saving energy, and implementing preventive maintenance.

And because they can be directly slotted into PLCs, they save space, reduce wiring, and lower costs. A range of possibilities are now available, including measurement of the energy used by each piece of production equipment, preventive maintenance of equipment based on real time measurements, and the use of measurements as quality management indicators linked to manufacturing data.

Slots directly into the PLC!

The power measuring module is directly attached to the PLC, so there is no need to install any other instruments or connect wiring. There is no need for any major system construction either, so it also saves space.

Measure energy consumption simply

Read the signal from the current sensor on the device breaker, to measure energy consumed by the device. It’s easy to grasp power consumption for each PLC unit and manage the standard data for each individual device.

Easy comparison of power consumption

Power can be measured only when a specific output signal is on. Power over a period can be measured at two points, to find the standby power consumed while idling or compare power consumed over a certain period.

Grasp the energy consumption status of a device

Record the maximum and minimum values of demand current, voltage, demand power and power factor for each device. Equalization of energy consumption is supported, to identify devices and times of high energy consumption.

Quickly catch abnormal device status

Set two measurement factors and monitor their upper and lower limit values. That makes it possible to quickly catch abnormal device status, and to find devices which are using large amounts of energy.
At Mitsubishi Electric’s e-F@ctory Model Factory, significant improvements

Mitsubishi Electric has been running the "e-F@ctory Model Factory" within its Nagoya Works to verify productivity and equipment operating rates. On the premises, a production system comprised of the company's FA products that successfully integrate the information and solutions of partner manufacturers has been built.

This trial has produced numerous outstanding results, such as increasing productivity 180% and reducing system construction cost by 65%.* Please confirm the concrete accomplishments of e-F@ctory for yourself at Mitsubishi Electric’s model factory.

Assembly line quality control example: Servo motor plant (began operations in May 2005)

Real-time quality control ensures quality improvement.

The figure shows the latest example of an e-F@ctory plant. It pursues efficient operation management, real-time QC, quality control, and energy management, under the themes of "meticulousness" and "real time."

With MES Interface modules at its core, the system effectively links control systems and devices to an information system.

RFID application example in an assembly test cell: Inverter/servo amplifier/power module plant (Began operations in March 2009)

The application of RFID to promote automation and management of individual equipment has led to significant quality improvement.

By using RFID tags to coordinate different work processes, it has become possible to keep a historical log of quality and other factors. Furthermore, a mechanism has been established to prevent defective items (human errors) from being carried over to the next work process.
At Mitsubishi Electric’s e-F@ctory Model Factory, significant improvements in productivity and quality, as well as cost reductions, have been achieved.

Assembly line quality control example: Servo motor plant (began operations in May 2005)

RFID application example in an assembly test cell: Inverter/servo amplifier/power module plant (Began operations in March 2009)

This trial has produced numerous outstanding results, such as increasing productivity 180% and reducing system construction cost by 65%.*

Example of introducing an operating management system: FA Systems Production Building (commenced operation in May 2014)

By pursuing higher productivity per square foot through visualization and analysis/improvement of operating status in real-time, productivity and quality have been improved.

Example of introducing an air-conditioning and lighting energy-saving management system: FA Systems Production Building (commenced operation in May 2014)

Utilizing PLCs manufactured in-house, it is possible to monitor and control all information for the building, including that concerning air-conditioning, lighting and heat source devices. By forming a network of PLCs on each floor through CC-Link IE, real-time monitoring and operation through display units and MC Works (SCADA) have been achieved.

Example of introducing a robot assembly cell: Kani Factory electromagnetic switch production line (commenced operation in December 2012)

A high operating rate, high-quality, space-saving production system achieved through the fusion of people and equipment.

Realized the small lot/multi-cycle production demanded for electromagnetic switches by achieving both flexible production using cells and large-volume production using robots.

* All numerical values are trial calculated from the results of the e-F@ctory Model Factory at Mitsubishi Electric’s Nagoya Works and based on a computer-free, program-free approach.
Collaborating with partners to ensure thorough shop floor optimization.

Partnership

In order to provide optimal solutions that match customers’ needs, e-F@ctory is designed to enable collaboration with many partner manufacturers. Mitsubishi Electric is proud of its highly evaluated products in the FA field. Together with the partners participating in the e-F@ctory Alliance FA partner program promoted by Mitsubishi Electric, the aim is “total cost reduction” for all aspects of customer development, production and maintenance.

Solutions are wide-ranging, including improving facility operation efficiency, shortening lead time, improving quality and reducing costs.
Firmly linking partner companies, e-F@ctory Alliance offers solutions for diversified needs.

The e-F@ctory Alliance is a FA manufacturer partnering program that strongly links the connection compatibility of Mitsubishi Electric FA equipment utilizing excellent software and machinery offered by partners, thereby enabling systems to be built by systems integration partners and the proposal of optimal solutions to customers.

Create entire production systems. Realize advanced systems integration.
Combining Mitsubishi Electric FA equipment and other products, systems integrators propose systems solutions for everything from shop floors to information systems.

Develop applications software that further enhance connection compatibility of Mitsubishi Electric FA equipment.
Utilizing information-sharing products and technologies such as Mitsubishi Electric’s EZSocket and SLMP, vendors develop and propose excellent application software and drivers that ensure the connection compatibility of Mitsubishi Electric FA equipment.

Propose Mitsubishi Electric FA equipment and other machinery with superior compatibility.
Manufacturers proposing peripheral equipment that is easy to connect with Mitsubishi Electric FA equipment and is easier to use.
Factory Automation Global website

Mitsubishi Electric Factory Automation provides a mix of services to support its customers worldwide. A consolidated global website is the main portal, offering a selection of support tools and a window to its local Mitsubishi Electric sales and support network.

■ From here you can find:
 • Overview of available factory automation products
 • Library of downloadable literature
 • Support tools such as online e-learning courses, terminology dictionary, etc.
 • Global sales and service network portal
 • Latest news related to Mitsubishi Electric factory automation

Mitsubishi Electric Factory Automation Global website:
www.MitsubishiElectric.com/fa

Online e-learning

An extensive library of e-learning courses covering the factory automation product range has been prepared. Courses from beginner to advanced levels of difficulty are available in various languages.

■ Beginner level
 Designed for newcomers to Mitsubishi Electric Factory Automation products gaining a background of the fundamentals and an overview of various products related to the course.

■ Basic to Advanced levels
 These courses are designed to provide education at all levels. Various different features are explained with application examples providing an easy and informative resource for in-house company training.

Precautions before use

This publication explains the typical features and functions of the products herein and does not provide restrictions or other information related to usage and module combinations. Before using the products, always read the product user manuals. Mitsubishi Electric will not be held liable for damage caused by factors found not to be the cause of Mitsubishi Electric; opportunity loss or lost profits caused by faults in Mitsubishi Electric products; damage, secondary damage, or accident compensation, whether foreseeable or not, caused by special factors; damage to products other than Mitsubishi Electric products; or any other duties.

For safe use

• To use the products given in this publication properly, always read the relevant manuals before beginning operation.
• The products have been manufactured as general-purpose parts for general industries, and are not designed or manufactured to be incorporated in a device or system used in purposes related to human life.
• Before using the products for special purposes such as nuclear power, electric power, aerospace, medicine or passenger-carrying vehicles, consult with Mitsubishi Electric.
• The products have been manufactured under strict quality control. However, when installing the products where major accidents or losses could occur if the products fail, install appropriate backup or fail-safe functions in the system.
Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

This is why you can rely on Mitsubishi Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world’s leading companies with a global turnover of over 4 trillion Yen (over $40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

* Not all products are available in all countries.
Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO 14001 (standards for environmental management systems) and ISO 9001 (standards for quality assurance management systems).

Country/Region Sales office Tel/Fax
USA MITSUBISHI ELECTRIC AUTOMATION, INC. Tel : +1-847-478-2100
500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A. Fax : +1-847-478-2253
Mexico MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Tel : +52-55-3067-7500
Mariano Escobedo #69, Col. Zona Industrial, Tlalnepantla Edo. Mexico, C.P.54030
Brazil MITSUBISHI ELECTRIC DO BRASIL COMERCIO E SERVIÇOS LTDA. Tel : +55-11-4689-3000
Avenida Adelino Cardana, 293, 21 andar, Belhaven, Barueri SP, Brazil Fax : +55-11-4689-3016
Germany MITSUBISHI ELECTRIC EUROPE B.V. German Branch Tel : +49-2102-486-0
Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany Fax : +49-2102-486-1120
UK MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Tel : +44-1707-28-8760
Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, U.K. Fax : +44-1707-28-8695
Ireland MITSUBISHI ELECTRIC EUROPE B.V. Irish Branch Tel : +353-1-4198800
Westgate Business Park, Ballymount, Dublin 24, Ireland Fax : +353-1-4198890
Italy MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Tel : +39-039-605312
Centro Direzionale Colleoni-Palazzo Sirio Viale Colleoni 7, 20864 Agraete Brianza(Milano) Italy Fax : +39-039-6053-312
Spain MITSUBISHI ELECTRIC EUROPE B.V. Spanish Branch Tel : +34-935-65-3131
Calle de Rubí, 76-80-Apdo. 420, 08190 Sant Cugat del Vallés (Barcelona), Spain Fax : +34-935-89-1579
France MITSUBISHI ELECTRIC EUROPE B.V. French Branch Tel : +33-1-55-68-55-68
25, Boulevard des Bouvets, 92741 Nanterre Cedex, France Fax : +33-1-55-68-57-57
Czech Republic MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Tel : +420-251-551-471
Avenir Business Park, Radlicka 751/113e, 158 00 Praha5, Czech Republic Fax : +420-251-551-471
Poland MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch Tel : +48-12-347-65-00
ul. Krakowska 50, 32-083 Balice, Poland Fax : +48-12-630-47-01
Sweden MITSUBISHI ELECTRIC EUROPE B.V. (Scandinavia) Tel : +46-8-625-10-00
Fjellvägen 8, SE-22736 Lund, Sweden Fax : +46-46-39-70-18
Russia MITSUBISHI ELECTRIC (RUSSIA) LLC St. Petersburgh Branch Tel : +7-812-633-3499
Piskarevsky pr. 2, bld 2, II “Sch”, BC “Benua”, office 720, 195027 St. Petersburgh, Russia Fax : +7-812-633-3499
Turkey MITSUBISHI ELECTRIC TURKEY A.Ş Ümraniye Branch Tel : +90-216-526-3990
Serfaç Mahallesi Nutuk Sokak No:5, TR-34775 Ümraniye/Istanbul, Turkey Fax : +90-216-526-3995
UAE MITSUBISHI ELECTRIC EUROPE B.V. Dubai Branch Tel : +971-4-3724716
Dubai Silicon Oasis, P.O. BOX 341241, Dubai, U.A.E. Fax : +971-4-3724721
South Africa ADROIT TECHNOLOGIES Tel : +27-11-658-8100
20 Waterford Office Park, 189 Wilkoppen Road, Fourways, South Africa Fax : +27-11-658-8101
China MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Tel : +86-21-2322-3030
No.1386 Hongqiao Road, Mitsubishi Electric Automation Center, Shanghai, China Fax : +86-21-2322-3000
Taiwan SETSUYO ENTERPRISE CO., LTD. Tel : +886-2-2299-2499
6F, No.105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan Fax : +886-2-2299-2509
Korea MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. Tel : +82-2-3660-9530
7F-9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 07528, Korea Fax : +82-2-3664-8372
Singapore MITSUBISHI ELECTRIC ASIA PTE, LTD. Tel : +65-6473-2308
307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943 Fax : +65-6476-7439
Thailand MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD. Tel : +66-2828-6522
12F Floor, S.CITY Building, Office Tower 1, No. 896/19 and 20 Rama 3 Road, Kwaeng Bangpongpang, Khet Yanawat, Bangkok 10120, Thailand Fax : +66-2828-6020
Vietnam MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Hanoi Branch Tel : +84-4-3937-8075
8th Floor, Detech Tower, 8 Ton That Thuoy Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi, Vietnam Fax : +84-4-3937-8076
Indonesia PT. MITSUBISHI ELECTRIC INDONESIA Tel : +62-21-3192-6461
Gedung Jaya 11th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia Fax : +62-21-3192-3942
India MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Tel : +91-20-2710-2000
Emerald House, EL-3, J Block, M.I.D.C., Bhosari, Pune-411026, Maharashtra, India Fax : +91-20-2710-2100
Australia MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD. Tel : +61-2-9684-7777
348 Victoria Road, P.O. Box 11, Rydalmere, N.S.W 2116, Australia Fax : +61-2-9684-7245

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO 14001 (standards for environmental management systems) and ISO 9001 (standards for quality assurance management systems).

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
www.MitsubishiElectric.com

Specifications are subject to change without notice.